
Modeling of Programs and its Verification
for Programmable Logic Controllers

Cleber A. Sarmento, José R. Silva, Paulo E. Miyagi,
Diolino J. Santos Filho

University of São Paulo - Escola Politécnica, São Paulo, SP, Brazil

(Tel.: +55 11 3091 6025;
 e-mails: cleber.sarmento@poli.usp.br; reinaldo, pemiyagi@usp.br; diolino.santos@poli.usp.br)

Abstract: Programmable logic controller is still the main device used for control of productive systems,
which can be approached as discrete event dynamic systems. For programming these controllers, five lan-
guages were standardized by IEC 61131, and the LD (ladder diagram) language is distinguished among
the others, i.e., it has been widely applied in productive systems, even with studies that confirm the restric-
tions and problems regarding the use of this language, such as the difficulties for errors identification in
developed control programs. Therefore, this work presents a proposal for the modeling of extended finite
state machines from control programs written in LD. These models are verified through a computational
tool, aiming the identification of possible errors in the control program.

1. INTRODUCTION

Discrete event dynamic systems (DEDSs) are systems that
evolve according to the occurrence of events in instants of
time, which are usually non-deterministic. The variables that
represent their states are modified discretely through the oc-
currence of events considered instantaneous. In this sense,
productive systems (PSs) can be classified as DEDSs, and
many manufacturing processes have used programmable
logic controllers (PLCs) as the controlling devices, due to
their reliability, hardiness and easy programming.

The IEC 61131 indicates the following languages for PLCs
programming: IL (instruction list), ST (structured text), FBD
(function block diagram), SFC (sequential function chart)
and LD (ladder diagram). From all of the languages, the LD
has still been widely used to develop control programs for
PSs (Lucas; Tilbury, 2005).

According to (Uzam; Jones, 1998), when programmers de-
velop a control program written in LD, they generally use
heuristic programming methods, which are susceptible to
errors. In general, these errors are hard to be identified be-
cause they are associated with the difficulty in analyzing the
parallelisms, concurrences and sequences in control pro-
grams written in LD (Suesut et al., 2004). Then, several ap-
proaches have been conducted so as to eliminate these errors.
Among these it is possible to find the ones that follow a pro-
cedure in which a controlling system model is initially
created in a Petri net and then, the model is converted into a
control program in LD (Lee et al., 2004). Another approach
uses the inverse process, which is a more complex task than
the aforementioned one, as can be seen in (Peng; Zhou,
2004).

There are approaches based on manual tests execution,
where the control program under analysis is executed by a

PLC and then results are analyzed according to the occur-
rence of events simulated by the programmer (Šusta, 2003).
However, these tests may not present reliable results since
they might not consider all the possible combinations of val-
ues of the input addresses of the control program.

So this work presents a proposal for modeling of extended
finite state machines (EFSMs), which are derived from con-
trol programs written in LD, considering the PLC operational
cycle. These EFSMs models can be verified using a compu-
tational tool, making the identification of errors feasible in
the models, and consequently, in the control program.

This work is organized as follows: in the next section, defini-
tions for control program elements and verification are pre-
sented. In section 3, some important concepts are revised.
Section 4 describes the modeling procedure contribution for
deriving EFSMs models from control programs written in
LD. Final considerations are drawn in Section 5.

2. DEFINITIONS

The different types of data in a PLC can be represented, for
example, by Boolean or integer variables, and these data can
be associated with some control program elements whose
proposed definition is the following:

Definition 1: control program elements refer to all the graph-
ic elements of the LD language, which can be programmed
neatly through the rungs (programming lines in LD).

These elements, according to the values of the variables as-
sociated with the input addresses of the PLC and its scan
procedure, update the variables that are associated with the
output addresses of the PLC. In this work, we consider the
following five types of LD control program elements: con-
tacts type NO (normally opened) and NC (normally closed),
simple coils, set/reset coils, and timers type TON (timer on-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10546 10.3182/20080706-5-KR-1001.3634

delay).

The following definition has its focus on the PSs controlled
by PLCs and is mainly based on (IEC 61508-4, 1998; Zou-
bek, 2004; Wang; Tan, 2006).

Definition 2: verification is a process in which exhaustive
tests are conducted on finite state models developed from
existing control programs executed by a PLC aiming at iden-
tifying whether a specific state of the control program can be
reached or not.

The specific state mentioned is formed by the combination of
a set of variable addresses (and their respective values) that
belongs to the control program in study. Such variables are
related to inputs, outputs, flags, and timers. In case an un-
wanted state is reached through the verification of the model
of the control program, it indicates the presence of error(s) in
the model and, consequently, in the control program written
in LD. When a sought state is not reached after the verifica-
tion of the model it also indicates the presence of error(s).

An error in a control program written in LD can occur as a
result of a mistake made by the programmer during the PLC
addresses (variables) association with the control program
elements, or even as a result of heuristic methods used by the
programmer, which may result in the occurrence of problems
related to the interlocking in the control program execution,
and that may imply in an undesired dynamic behavior of the
controlled PS. Another factor is related to the unexpected
values associated with the PLC input addresses (input va-
riables) which can be different from the expected ones in a
certain moment due, for example, the occurrence of some
fault in the detection and/or command devices connected
with the PLC.

3. FUNDAMENTAL CONCEPTS

The verification of models generated from control programs
written in LD is an issue studied by various researchers, for
instance (Moon, 1994; Rossi; Schnoebelen, 2000; De Smet;
Rossi, 2002; Zoubek et al., 2003), and this work benefits
from the contributions of all these researchers. Before intro-
ducing the modeling procedure, a brief review of some fun-
damental concepts is presented.

3.1 PLC operational cycle

According to (De Smet; Rossi, 2002) the PLCs present an
operational cycle as shown in Fig. 1.

Fig. 1. Operational cycle of a PLC. The circles indicate the stages
of the operational cycle and the arrows indicate the sequence of

execution of these stages.

In Fig. 1 the scan time is the time measurement of the PLC

operational cycle execution, which depends on the time val-
ue for execution of each one of the 3 stages of this opera-
tional cycle (Erickson, 1996).

As the amount of local input and output addresses of a PLC
is not modified when it is running, the time value for execu-
tion of the stages “input addresses values update” and “out-
put addresses values update” can be considered constant. In
the stage “control program execution” the time value (that
composes the scan time) results from the sum of the execu-
tion time of each control program element allocated neatly
through the rungs of the control program (Chmiel et al.,
2002). The control program generally includes conditional
and/or unconditional jumps among rungs, and control pro-
gram elements with a high execution time and whose execu-
tion is performed in non-deterministic time intervals. Then,
the variation of the scan time value is basically dependent on
the “control program execution” stage, and based on this con-
sideration, the highest value associated with the scan time,
which is the critical scan time, is the considered in the mod-
eling procedure presented (see section 4.1 – step 7).

3.2 LD language

The programming language of PLC named LD was created
to provide an easy assimilation language for professionals
familiar with the electric circuits diagrams based on electro-
magnetic relays (Suesut et al., 2004). Rules for the construc-
tion and execution of a control program in LD language can
be found in (Chmiel et al., 2002).

An important aspect of the LD language is the possibility for
the rungs of the control program to be represented by Boo-
lean expressions (Moon, 1994; Chmiel et al, 2002; Zoubek,
2004), and this aspect is fundamental to allow the develop-
ment of the EFSMs models presented in this work.

3.3 Extended finite state machines (EFSMs)

The EFSMs can be considered an extension of the Mealy
machines. In both machines (Mealy and EFSMs) restrictions
and/or assignments are found in the transitions between their
states. These restrictions and/or assignments that can be add-
ed to the transitions in an EFSM model are composed by
variables in integer or Boolean format.

The mathematical definition of an EFSM adopted in this
work is the one proposed by (Hong et al., 2002), which is
valid for deterministic cases. Then, an EFSM is a mathemati-
cal model described by a tuple of the form (S, S0, E, V, T),
where:

• S is a finite set of states;

• S0⊆S is the set of initial states;

• E is a finite set of events (reception and emission);

• V is a finite set of data variables partitioned into
three disjoint subsets VI, VL, VO, where VI refers to
the input variables, VL refers to the local variables
and VO refers to the output variables;

• T is a finite set of transitions.

input
addresses

values
update

control
program

execution

output
addresses

values
update

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10547

An example of an EFSM (simple coffee vending machine)
presented by (Hong et al., 2002) is shown in Fig. 2.

Fig. 2. An example of EFSM.

In Fig. 2 the following items are identified: states: IDLE and
BUSY; initial state: IDLE; events: insert, coffee, done and dis-
play; transitions: t1, t2, t3, t4 and t5; data variables of integer
subrange [0..5]: x, m and y; restrictions to the transitions ex-
ecution: [m+x≤5] (t1) and [m>1] (t2); value assignment to the
variables with the execution of the transitions: {m=m+x} (t1),
{m=m–1} (t2) and {y=m} (t4 and t5). The meaning of the data
variables x, m and y is: x represents the credits inserted by
the user in the vending machine; m represents the accumu-
lated credits and; y shows the credits in the machine.

An EFSM presents a formalism that is associated with the
concept of symbolic states (Hessel, 2007). This concept is
important for the stipulation of temporal logic formulas,
since these formulas refer to states and/or variables that be-
long to the model that will be verified. Therefore, a symbolic
state is described by a tuple of the form (s, σ), where s
represents the active state (in the process of simulation or
verification) of the EFSM and σ represents the actual data
value of all the variables of the EFSM.

3.4 Model verification

(Clarke et al., 2000) stated that the model checking is an
automatic verification process of finite state concurrent sys-
tems, where specifications are stipulated using temporal log-
ic formulas which are checked through an exhaustive scan
process in the state space resulting from the models under
analysis. In this work, the model verification can be ap-
proached as being a model checking, but the term verifica-
tion will be used. The verification implies in identifying
through the analysis of this state space whether a symbolic
state (or symbolic states) fulfills (fulfill) the established tem-
poral logic formulas or not.

In the work of (Hong et al., 2002) the use of temporal logic
formulas that belong to the computation tree logic (CTL) is
presented so as to verify models developed in EFSM. Here,
we use a simplified version of the temporal logic CTL,
which is compatible with the UPPAAL tool (Larsen et al.,
1997), that is a tool for modeling and verification of timed
automata extended with data variables, but that can be also
applied to non-timed models, as seen, for example, in (Ro-
binson-Mallett et al., 2005),. Among the formulas of this
simplified version of the temporal logic CTL, our focus is on
those that allow the verification of the reachability and safety

properties.

The verification of the reachability property is determined by
the formula EF p, where EF (exist finally) is the temporal
operator that sets the verification tool to identify if there is at
least one symbolic state (in the state space resulting from the
verified model) that fulfills the propositional expression p.
Such expression refers to states and/or values of data va-
riables of the model that is being verified. The verification of
the safety property is determined by the formula AG p, where
AG (all globally) is the temporal operator that sets the verifi-
cation tool to identify if all symbolic states (in the state space
resulting from the verified model) always (or never: AG ¬p)
fulfill the propositional expression p.

4. MODELING AND VERIFICATION

To describe the approach proposed we use symbols for ad-
dresses and control program elements found in the PLCs
Allen-Bradley SLC 500 (Allen-Bradley, 2006). Symbols
and control program elements found in other PLCs are non-
restrictive for this work, being necessary that they are prop-
erly adequate to the EFSMs models proposed here.

Before presenting the modeling procedure, some examples
of mapping a control program written in LD to EFSMs (us-
ing the UPPAAL tool) are illustrated. Fig. 3 presents an ex-
ample of a rung from a control program written in LD and
executed by a PLC Allen-Bradley SLC 500. In this example,
when the two NO contacts in the mentioned rung have a true
logic state, the simple coil will assume a true logic state.

Fig. 3. Example of a rung in LD.

In Fig. 3 the addresses associated with the two NO contacts
are I:1.0/0 and I:1.0/1, and the address associated with the
simple coil is O:2.0/0. A possible way to represent this rung
as a Boolean expression can be: O:2.0/0 = I:1.0/0 & I:1.0/1.
Such expression can be described as a value assignment ex-
pression that can be executed in a transition between EFSM
states. In the format of the UPPAAL tool this expression can
be written as: O2_0_0 = I1_0_0 && I1_0_1 (O2_0_0, I1_0_0
and I1_0_1 ∈ VL), as could be seen in the transition between
the states “execute_program” and “update_outputs” (Fig. 4).

Fig. 4. Example of an EFSM main model.

start

read_inputs

I1_0_0 = g_I1_0_0,
I1_0_1 = g_I1_0_1

O2_0_0 = I1_0_0 && I1_0_1

execute_program

update_outputs

update_scantime

scantime = 10

g_O2_0_0 = O2_0_0

{m=m+x}
[m+x≤5]

insert

coffee
[m>1]

{m=m-1}

display display
{y=m} {y=m}

done

t1
t2

t3
t4 t5

IDLE

BUSY

I:1.0/0 I:1.0/1 O:2.0/0

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10548

The model in Fig. 4 is composed basically by 5 states:
“start”, “read_inputs”, “execute_program”, “up-
date_outputs” and “update_scantime”. In this EFSM is im-
plicit the modeling of the three stages of the PLC operational
cycle: between the states “read_inputs” and “execute_ pro-
gram” the input addresses values are updated; between the
states “execute_program” and “update_outputs” the execu-
tion of the mapped control program is done; finally, between
the states “update_outputs” and “update_scantime” the val-
ues of the output addresses are updated. This example of
EFSM presented in Fig. 4 is the so-called main model.

To perform the mapping of a control program written in LD
the main model is not enough. Because of this fact other
EFSMs that communicate with the main model are created.
These EFSMs are called auxiliary models and they are used
to model the behavior of the PLC input addresses and TON
timer elements. The main model and the auxiliary models
constitute a settling of EFSMs called global model.

The auxiliary models of the inputs (Zoubek, 2004) are neces-
sary because the input addresses values can be different from
the expected ones in a certain moment, as described in Sec-
tion 2. Then, the auxiliary models of the inputs allow the
verification tool to generate all the possible combinations of
the input addresses values, so that the state space resulting
from the global model verification can be constructed and
analyzed. Two examples of auxiliary models of the inputs
are shown in Fig. 5, which refer to the input addresses I:1.0/0
and I:1.0/1, that are modeled, respectively, by the variables
g_I1_0_0 and g_I1_0_1 (g_I1_0_0, g_I1_0_1 ∈ VI), which
are also used in the main model presented in Fig. 4.

Fig. 5. Auxiliary models of the inputs (addresses I:1.0/0 and I:1.0/1).

Another auxiliary model proposed is the TON timer element.
In Fig. 6, is shown an example of a rung where a TON timer
element (address T4:0) is programmed, and whose preset
value is 180s.

Fig. 6. Example of a rung that contains a TON timer element (ad-

dress T4:0).

The proposed model in EFSM of the previous TON timer
element (as shown in Fig. 6) is illustrated in Fig. 7.

Fig. 7. Auxiliary model of the TON timer (address T4:0).

In the auxiliary model presented in Fig. 7 can be observed
that all the transitions are conditioned to a fulfillment of ex-
pressions involving data variables and the reception of an
event obtained through the synchronism channel TON_4_0?
(reception). It can be also observed that the time value accu-
mulated by the TON timer element T4:0, determined by the
variable T4_0_ACC, is incremented by the variable scantime,
whose value is updated in the main model through the execu-
tion of the transition between the states “update_scantime”
and “read_inputs”. This can be visualized in Fig. 8, which
represents the main model of the rung showed in Fig. 6.

Fig. 8. Main model of the rung illustrated in Fig. 6.

In Fig. 8 is shown that in order to activate the auxiliary mod-
el of the TON timer element of the Fig. 7 it is necessary to
set the variable T4_0_EN (T4_0_EN = 1) and execute two
events of emission through two consecutive synchronism
channels assigned by TON_4_0!.

4.1 Modeling procedure

The modeling procedure for deriving EFSMs from control
program written in LD, which aims at identifying errors, can
be synthesized through the following steps:

1. Initial parameterization of the main model;

2. Parameterization of the auxiliary models of the in-
put addresses;

3. Parameterization of the auxiliary models of the
TON timer elements;

g_I1_0_0 = 1

g_I1_0_0 = 0

g_I1_0_1 = 1

g_I1_0_1 = 0

state_0

TON_4_0?
T4_0_ACC = 0,
T4_0_DN = 0

T4_0_EN == 0

 state_1

T4_0_ACC = T4_0_ACC + scantime

TON_4_0?

 T4_0_DN = 1
increment_end

T4_0_ACC >= 180000

TON_4_0?
T4_0_ACC < 180000

TON_4_0?
T4_0_ACC = 0

T4_0_EN == 0

TON_4_0?
T4_0_EN == 1

TON_4_0?
T4_0_DN = 1

T4_0_EN == 1

start

read_inputs

I1_0_0 = g_I1_0_0

TON_4_0!

TON_4_0!

T4_0_EN = I1_0_0

execute_program

update_outputs

update_scantime

scantime = 10

I:1.0/0
EN

DN

TIMER ON DELAY
Timer
Timer Base
Preset
Accum

T4:0

1.0
180

0

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10549

4. Declaration of all the variables associated with the
addresses of the control program;

5. Mapping of the rungs in the transition between the
states “execute_program” and “update_outputs”;

6. Insertion of two states between the states “ex-
ecute_program” and “update_outputs” for each
TON timer element existent in the control program.
Each one of the two resultant transitions must be as-
sociated with the same channel of synchronism
(emission) in order to establish the communication
between the main model and the model of the TON
timer element used;

7. Establishment of the critical scan time value.

4.2 Application example

Two examples of verifications are described to illustrate the
application of the proposal. These verifications were both
conducted in a global model, whose (original) main model is
illustrated in Fig. 9. This main model is the result from the
modeling procedure described earlier applied to a control
program executed by a PLC Allen-Bradley SLC 500 that
controls a gas burning equipment (Zoubek, 2004). The use of
committed locations in the main model was necessary to
avoid the out of memory error that was reported by the the
UPPAAL tool, when such locations were not used.

In the first verification, the following temporal logic formula
is used: A[] not (Main.read_input and Main.B3_0_0==1 and
Main.B3_0_8==1). It is related to the verification of a safety
property of the global model, and the verification tool checks
for all symbolic states of the state space resulting from the
global model under analysis if does not exist an occurrence
of a symbolic state where the propositional expression
Main.read_inputs and Main.B3_0_0==1 and Main.B3_0_8==1
holds (A[] has the same meaning given by temporal operator
AG, and “Main” refers to the name given to the main model
(Fig. 9) whose state and variables of interest are
“read_inputs” (state), B3_0_0 and B3_0_8 (variables)).

In the current case, this verification is not satisfied, meaning
that it is possible to obtain a symbolic state where
Main.read_inputs and Main.B3_0_0==1 and Main.B3_0_8==1
hold, what is not intended, indicating the presence of error(s)
in the modeled control program. Analyzing the history path
of symbolic states generated by the UPPAAL tool, this path
showed how the undesired symbolic state is reached. Then,
association errors between addresses and control program
elements are identified in the original control program. After
correcting these errors in the main model of the control pro-
gram, a new verification is performed, and the result shows
that the propositional expression Main.read_inputs and
Main.B3_0_0==1 and Main.B3_0_8==1 does not hold, con-
firming that the model is correct, that is, corresponding to its
specification.

The second verification performed uses the following tem-
poral logic formula: E<> (Main.read_inputs and
Main.B3_0_0==1 and Main.B9_0_12==0). It is related to the
verification of a reachability property, where E<> has the

same meaning given by temporal operator EF. This second
verification is also not satisfied and it indicates that the
propositional expression stipulated does not hold. The values
for the addresses B3:0/1==1 and B9:0/12==0 are not expected
to hold simultaneously, according to the specification of the
control program operation, and the achieved result indicates
that the control program does not contain any error that re-
sults in B3:0/1==1 and B9:0/12==0 (simultaneously).

The corrections performed in the main model (Fig. 9) after
the first verification were also applied to the original control
program executed by a PLC Allen-Bradley SLC 500, and the
tests confirmed the effectiveness of the proposal presented.

5. FINAL CONSIDERATIONS

This work introduces a modeling procedure for deriving
EFSMs from control programs written in LD. These EFSMs
models can be verified using a computational tool, making
the identification of errors feasible in the models, and conse-
quently, in the control program. Tests have been conducted
with other existing and running control programs being ex-
ecuted by PLCs Allen-Bradley SLC 500, before and after the
correction of errors (identified in the global model of these
control programs), and the results confirmed the proposed
procedure effectiveness.

In Zoubek (2004), the UPPAAL tool presented problems to
finish the verification of the timed automata models generat-
ed from the control program of the gas burning equipment.
Then, it was necessary to eliminate some rungs of the related
control program to create smaller timed automata models in
order to prevent the state explosion problem. In our proposal
this elimination of rungs was not necessary.

There are some characteristics that were not considered in
the proposed approach and that can be found in existing
PLCs, for instance, any interruption during the execution of
a control program so as to execute another procedure (this
characteristic is being considered for the improvement of this
work). Another improvement that is being considered is to
adopt the value of the time execution of each rung of the
modeled control program, in such a way that this value
would be, after each rung execution, added to the value of
the scantime variable, not being necessary to use critical
values of scan time in the main models anymore.

This work was partially supported by Brazilian governmental
agencies that support research: CNPq, CAPES and FAPESP.

REFERENCES

Allen-Bradley (2006). SLC 500 Instruction Set – Reference
Manual.

Chmiel, M.; Hrynkiewicz, E.; Muszyński, M. (2002). The
way of ladder diagram analysis for small compact
programmable controller. 6th KORUS Russian-Korean
Intern. Symp. on Sci. and Tech., pp. 169-173.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. (2000).
Progress on the state explosion problem in model

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10550

checking. Lecture Notes in Computer Science, Vol.
2000, Springer-Verlag, Berlin.

De Smet, O.; Rossi, O. (2002). Verification of a controller
for a flexible manufacturing line written in ladder
diagram via model checking. ACC2002 American
Control Conference, pp. 51-56.

Erickson, K.T. (1996). Programmable logic controllers – the
workhorse of factory automation keeps things on track.
IEEE Potentials (Publications). 15(1): 14-17.

Hessel, A. (2007). Model-based test case generation for
real-time systems. PhD Dissertation, Department of
Computer Systems, Uppsala University, Sweden.

Hong, H.S.; Lee, I.; Sokolsky, O.; Ural, H. (2002). A
temporal logic based theory of test coverage and
generation. 8th TACAS Intern. Conf. on Tools and
Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, Vol. 2280,
pp. 327-341.

IEC 61508-4. (1998). Functional safety of electrical/
electronic/programmable electronic safety-related
systems – Part 4: Definitions and abbreviations.

Larsen, K.G.; Pettersson, P.; Yi, W. (1997). Uppaal in a
Nutshell. Intern. J. of Software Tools for Technology
Transfer. 1(1-2): 134-152.

Lee, G.B.; Zandong, H.; Lee, J.S. (2004). Automatic
generation of ladder diagram with control Petri net. J. of
Intelligent Manufacturing, 15: 245-252.

Lucas, M.R.; Tilbury, D.M. (2005) Methods of measuring
the size and complexity of PLC programs in different
logic control design methodologies. Intern. J. of
Advanced Manufacturing Technology. 26(5-6): 436-447.

Moon, I. (1994). Modeling programmable logic controllers
for logic verification. IEEE Control Systems Magazine,
14(2): 53-59.

Peng, S.S.; Zhou, M.C. (2004). Ladder diagram and Petri-
net-based discrete-event control design methods. IEEE
Trans. on Systems, Man and Cybernetics - Part C:

Applications and Reviews, 34(4): 523-531.
Robinson-Mallett, C.; Liggesmeyer, P.; Mücke, T.; Goltz, U.

(2005). Generating optimal distinguishing sequences
with a model checker. ACM SIGSOFT Software
Engineering Notes. Session: Advances in Model-Based
Testing, 30(4).

Rossi, O.; Schnoebelen, P. (2000). Formal modeling of timed
function blocks for the automatic verification of ladder
diagram programs. 4th ADPM Intern. Conf. Automation
of Mixed Processes: Hybrid Dynamic Systems,
Dortmund.

Suesut, T.; Inban, P.; Nilas, P.; Rerngreun, P.; Gulphanich,
S. (2004). Interpretation Petri net model to IEC 1131-3:
LD for programmable logic controller. IEEE Conf. on
Robotics, Automation and Mechatronics. Singapore,
Vol. 2, pp. 1107-1111.

Šusta, R. (2003). Verification of PLC programs. Doctoral
Dissertation, Department of Cybernetics of the Faculty
of Electrotechical Engineering. Prague, Czech Republic.

Uzam, M.; Jones, A.H. (1998). Discrete event control system
design using automation Petri nets and their ladder
diagram implementation. Intern. J. of Advanced
Manufacturing Systems. 14(10): 716-728.

Wang, L., Tan, K.C. (2006). Modern Industrial Automation
Software Design – Principles and Real-World
Examples. John Wiley & Sons Inc., Hoboken, New
Jersey.

Zoubek, B.; Roussel, J-M., Kwiatkowska, M. (2003).
Towards automatic verification of ladder logic
programs. IMACS-IEEE CESA'03 Computational
Engineering in Systems Applications, paper S2-I-04-
0169, 6 p.

Zoubek, B. (2004). Automatic verification of temporal and
timed properties of control programs. PhD Thesis,
School of Computer Science, University of
Birmingham, UK.

Fig. 9. Main model of the gas burning equipment.

start

 C C C C C C

C

CCCC C

//Rung 7
aux4 = (B9_0_5 && T4_0_DN),
B9_0_4 = (aux4==1 ? 1 : B9_0_4),
B9_0_5 = (aux4==1 ? 0 : B9_0_5),
//Rung 8
O2_0_0 = (B9_0_4==1 ? 0 : O2_0_0),
O2_0_2 = (B9_0_4==1 ? 0 : O2_0_2),
O2_0_3 = (B9_0_4==1 ? 1 : O2_0_3),
//Rung 9
O2_0_3 = (B9_0_4==1 && I1_0_2==1 && I1_0_1==1 ? 1 : O2_0_3),
//Rung 10
T4_1_EN = B9_0_4

//Rung 11
B9_0_11 = (B9_0_4==1 && T4_1_DN==1 && I1_0_4==0 ? 1 : B9_0_11),
//Rung 12
B3_0_15 = (B9_0_4==1 && B3_0_0==0 && I1_0_4==1 ? 1 : B3_0_15),
//Rung 13
B9_0_12 = (B3_0_0==1 || I1_0_10==1 || B9_0_11==1 ? 0 : B9_0_12),
//Rung 14
B3_0_8 = (B9_0_12==1 ? 0 : B3_0_8),
B3_0_15 = (B9_0_12==1 ? 0 : B3_0_15),
O2_0_3 = (B9_0_12==1 ? 0 : O2_0_3),
O2_0_2 = (B9_0_12==1 ? 1 : O2_0_2),
O2_0_0 = (B9_0_12==1 ? 0 : O2_0_0),
O2_0_1 = (B9_0_12==1 ? 0 : O2_0_1)

//Rung 0
aux1 = (I1_0_8 && !B3_0_0),
B9_0_8 = (aux1==1 ? 1 : B9_0_8),
B3_0_8 = (aux1==1 ? 0 : B3_0_8),
//Rung 1
O2_0_3 = (B9_0_8==1 ? 0 : O2_0_3),
O2_0_0 = (B9_0_8==1 ? 1 : O2_0_0),
O2_0_2 = (B9_0_8==1 ? 1 : O2_0_2),
//Rung 2
aux2 = (B9_0_8 && I1_0_0 && !I1_0_2 && !I1_0_1),
B9_0_10 = (aux2==1 ? 1 : B9_0_10),
B9_0_8 = (aux2==1 ? 0 : B9_0_8),
//Rung 3
T4_2_EN = B9_0_8 && I1_0_15

//Rung 4
aux3 = (B9_0_8 && !I1_0_15),
B9_0_8 = (aux3==1 ? 0 : B9_0_8),
B3_0_0 = (aux3==1 ? 1 : B3_0_0),
//Rung 5
B3_0_8 = (T4_2_DN==1 && B3_0_0==0 ? 1 : B3_0_8),
//Rung 6
O2_0_8 = (B9_0_5==1 && B3_0_8==1 ? 1 : O2_0_8),
O2_0_1 = (B9_0_5==1 && B3_0_8==1 ? 1 : O2_0_1),
T4_0_EN = B9_0_5 && B3_0_8

TON_4_2! TON_4_2! TON_4_0!
TON_4_0!

TON_4_1! TON_4_1!

read_inputs execute_program

update_outputs
update_scantime

g_O2_0_0 = O2_0_0,
g_O2_0_1 = O2_0_1,
g_O2_0_2 = O2_0_2,
g_O2_0_3 = O2_0_3,
g_O2_0_8 = O2_0_8

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10551

