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Abstract: In this work, we consider the feedback stabilization problem of the so-called Translational
Oscillator with a Rotational Actuator (TORA) system by applying the Interconnection and Damping
Assignment (IDA) control methodology. To achieve this goal, the mechanical system is firstly
transformed into the general port controlled Hamiltonian form and, then, the IDA design procedure
is applied to synthesize the stabilizing control law. The Hamiltonian structure of the closed loop
system is preserved and asymptotic stability of the mechanical position is achieved, which is verified

by digital simulations. Copyright © 2008 IFAC

Keywords: Design methods, Nonlinear system control, Asymptotic stabilization.

1. INTRODUCTION

Energy shaping methods pursue to preserve the physical
structure of closed-loop systems. Total energy shaping in
mechanical systems is guaranteed by firstly modifying the
inertia matrix in the kinetic energy and, then, the potential
energy is shaped. The Interconnection and Damping
Assignment Passivity Based Control (IDA-PBC) approach is
used to achieve this goal in Ortega, et al. (2002a) for
mechanical systems in the general Port-Controlled
Hamiltonian (PCH) form (Ortega, et al. 2002b).

The stabilization problem of underactuated nonlinear
systems has attracted attention of the control community in
recent years (Olfati-Saber, 2001). The IDA-PBC design
method deals with nonlinear systems with one degree of
underactuation, achieving (asymptotic) stabilization of
mechanical systems and endowing closed loop systems with
a Hamiltonian structure and a desired energy function
(Mahindrakar, et al., 2006). In this paper we consider the
problem of achieving asymptotic stability of the TORA
system through a control law synthesized by applying the
IDA-PBC methodology. This result is based on an alternative
approach to the cascade and PBC control designs proposed
by Escobar, Ortega and Sira-Ramirez, (1999); and by Pavlov,

where [ , 1s the n-order identity matrix, V ¢H., \Y pH are the

gradient of H with respect to ¢ and p, respectively,
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et al. (2005), which were employed for regulation and output
feedback stabilization of the TORA system.

2. STABILIZATION OF UNDERACTUATED
MECHANICAL SYSTEMS VIA IDA-PBC

2.1. Mechanical systems in PCH form
Consider underactuated mechanical systems with total
energy function
1 ,
Hig,p)=—p"M (@p+V(9) @

where g € R", pe R" represent the generalized positions
and momenta, respectively, M (q)= M "(q) >0 1is the
inertia matrix, and J’ (¢) denotes the potential energy of the

system. By assuming that system (1) has not natural
damping, it can be written as follows

[o 5, VeH] T 0
{—In O}BPHHG@}” @

ue R" is the control function and Ge R™ with
rank(G)y=m<n.
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In the application of the IDA-PBC approach two basic steps
are followed (Ortega, et al, 2002a; Mahindrakar, et al,
2006): (1) energy shaping, on which the total energy is
modified to assign a desired equilibrium point; and (2)
damping injection, to achieve asymptotic stability and also to
preserve the Hamiltonian form of the closed loop system.

The form of equation (1) suggests to propose the total energy
function

Hy(q.p) =%pTM;1 @p+V,(q) 3)

where M, =M 5 >0 and V, are the desired inertia matrix
and the potential energy, respectively, to be defined. It is

required that ¥, has a local minimum at ¢, i.e.

q" =argminVy(q) “4)

In the PBC methodology the control input is usually
decomposed into the following two terms (Ortega, et al.,
2002a)

U= y5(q, p)+ug (g, p) (5)

with the first term used to achieve energy shaping and the
second term is employed to inject damping into the system,
in order to reach a closed loop system with the Hamiltonian
form

V H
T =[s,0a.p)+ Rd(q,p)]{ ‘ "} (6)

p VpHd
where
0 MM 0 0
Jg= 1 a4 !:{ GT:|20 (7)
-M,M" J,(q.p) 0 GK;

are the desired interconnection and damping structures. The
skew-symmetric matrix J, (and some elements of M ;) are

free parameters for design, whilst the term M ~'M 4 1S

considered to preserve the relationship ¢=M"'p.
Furthermore, damping is provided by feeding back the new
passive output GV »H 4 - Thus, the term u; of the equation

(5) is chosen, with K =K >0, as follows

ug =-K,G'V ,Hy (®)

2.2. Stability

In order to guarantee stability of the closed loop system, the
following proposition is used.

Proposition 1: System (2) with H, as in (3) and q" the
desired position holding (4) has a stable equilibrium point on
(¢", 0). This equilibrium point is asymptotically stable if
the system is

G"(9)VH 4(4.p).

locally  detectable from the output

Proof. See Ortega, ef al. (2002a) for a detailed proof.

2.3. Energy Shaping

To obtain the energy shaping term u,, in the controller,

equations (5) and (7) are substituted in (2) and the result is

equated to (6), i.e.
0 1,|Vei| fo] |0 MM, |VH, )
-1, 0|V,H| |G o MM Ty(q.p) | Volla

where the term R, of (6) has been cancelled by u,, of (7).

The first row of (9) produces an identity, whilst the second
row can be written as follows

Gu, =V, H-M,M™'V H,+J,M;'p  (10)

Since the system is underactuated, the control u,, has only
effect on the image space of the operator G . Thus, for any

choice of u,, the following relationship should be satisfied

GV H-M MV H M7 pl=0 (1)

where G is a full rank left annihilator of G ( ie.,

G'*G=0). Equation (11) is a set of nonlinear partial
differential equations (PDE) with unknown terms
M, and V,;,and J, being a free parameter, whilst p is an

independent coordinate. If a solution is obtained for equation

(11), the control term ,, is written in the form
up =(GTGIV H =M MV 1+ 0,M7 ) (12)
Equation (11) is equivalent to the pair of equations
Gi{vq o0 p)—MdM‘vq ("M p)+2mpipl=0  (13)
Gl{VqV—MdM_lqud}=o (14)

The partial differential equation (13) is nonlinear and should
be solved with respect to unknown elements of the inertia
matrix M ;. Then, using the already known matrix M ;, the
equation (14) can be solved to obtain the desired potential
energy ¥, . When the inertia matrix in (1) is independent of

the underactuated coordinate, it is common to assume a
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constant inertia matrix M ;, thus allows focusing on finding

a solution to the potential energy V, .

This work closely follows the results in Ortega, et al. (2002a)
and Mahindrakar, et al. (2006), where to obtain a reduction
of the PDE (13) and (14), the following assumptions hold:

HI: The system has underactuation degree one, i.e.
m=n—1.

H2: The inertia matrix M depends only on the actuated
coordinates.

_H3: The system has two degree of freedom and,
without loss of generality, take G = [O I]T .

Assumption H3 is critical in this application. Assumptions
HI and H2 ensure that the term Gqu(pTM‘lp) in the
PDE (13) is zero. In this case (13) can be solved with a
constant matrix M ,, by taking J, =0. This allows us to
focus on potential energy shaping and the PDE

G vy, f=o0. (15)

3. MATHEMATICAL MODEL OF THE TORA SYSTEM

The translational oscillator with rotational actuator (TORA)
system (Pavlov, et al., 2005) consists of a platform of mass
m; which can oscillate without damping in the horizontal

plane (see Fig. 1). On the platform a rotating eccentric mass
m, is actuated by a DC motor. Its motion applies a force to

the platform which can be used to damp the translational
oscillations.

The inertia matrix of the system has the form

nmy +le

myr cos(qy)

myr cos(q;)
m2r2 +17 (16)

where ¢, is the rotating angle of the mass m,, r is the
eccentricity ratio, and / is the moment of inertia. Denoting
the generalized positions by g = [ql q, ]T, the gravitational
constant by g, and the potential energy by V(ql,qz), the
system Lagrangian can be written as follows

L] 1 L] L] q
L(q,qJ =5{q1 qz}M(qz S anar) a7
92
where V(ql,qz) represents the potential energy
|
V(a1,92) =5 Kq1” +mpgreosqy) — (18)
and K stand by the constant stiffness of the spring.

A N A N N N N N

Fig. 1. The TORA system

Denoting the motor torque, acting at the rotating point of the
mass m,, by 7, the Euler-Lagrange equations of the TORA

system has the form

. 2
Oy +m3) g1+ myr c08(42) 4, =myrsin(@2)ay"+ Ky =0 (19,

myrcos(qy) ¢+ (mzr2 +1 )612+Mzgrsin(qz) =7

Thus, the TORA system has two degrees of freedom and
underactuation degree one, with ¢, being the actuated

coordinate and G being the matrix G = [O I]T. Hence, it

can be easily verified that assumptions A/, H2 and H3 hold.

By defining the generalized inertia momenta and the system

parameters, as p=Myq and
co=m;+my , Cp =Myr, 3= m2r2 +1, the inertia
matrix can be written as follows
_ c 3 c0s(q7)
Mlgy)= (20)
¢ cos(q;) 3

where it is assumed that the condition
2
cic3 —c2°>0 @n
hold. The total system energy is expressed as
I R
H(p,q) == "M (a2)p+V(a142). (22)

Thus, the Hamiltonian form of the TORA system,

T
with G = [0 l] e ® , can be written as follows

[o 1,JVv.H] [0 23
__[n OVPH-I_Gu' (23)

Substituting (20) and (22) in (23), the open loop model of the
TORA system is obtained

N e e
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* 1

%23[03171 _02172005(%)]

c 1

‘12:3[01172 — P €08(q, )]

=K 24)
_ &’ sin(g;)cos(gy)

2 52

_Gpipysingg,) Ty
)

2 2
X|e3p1”—2¢, pip, €08(g,) + ¢ Py ]

where & =c, c3 —022 cosz(qz) is the determinant of the
matix M . Finally, the equilibrium points belong to the set

q1-492>P1>P2-u) /q; =0,
E= (1 25 P15 P2 ) 1 (25)
p1=0, p, =0, u=0 ,q, arbitrary

4. STABILIZATION OF THE TORA SYSTEM
4.1. Energy Shaping

By focusing on the solution of the PDE (14), the desired
constant inertia matrix M ; can be chosen

a a4 2
Md:|: } a >0 aas—ay,” >0 (26)
a, a3

Thus, the equation (14) yields

a;¢3 —a,¢, cos(q;)
ViV,
a,c, —a,c, cos(q2)

27)
o
+Vq,V, = Kq,
a,c, —a,c, cos(q2)
Denoting
N _ @i —asxey cos(q,) _ by +b, cos(q2) (28)
72 ayep—aic;cos(q2) b +b, cos(q,)
with
h=ayq, b=, b=ac, b=-uc. (29)
It can be obtained
APy, by =0 (30)

}/2 bz

and, equivalently,

a C
A:—Z@az == —3a1=0( oy 3
7, | c1

which is defined on the subset (a;,a,,a;)e R* satisfying

(26), with a, =« ;. By taking into account  that
Jeies —e,cos(q,) # 0, it is finally obtained

o 1 K
q—VqlVd +q—Vq2Vd Za—L,CICS +Cy COS(Q2)]. (32)
q 1 1

A solution of (32) has the form

K 1
Valaran)=F6)+ X Jeres =g =gy -t 0, ]
a, 2a (33)
K K .
+—c,aco8(q,)+—cyq, sin(g,)——c,a
a; a a

where F(s) is an arbitrary function of the wvariable

s =g, —aq, . To assign the equilibrium point at the origin of

V4, F(s) can be defined as F(s)= %R(q1 -0q, )2 , with R

a design parameter.

The obtained function V, (ql ,qz) satisfies 7,(0,0)=0, and
also

VgV ,(q1.92)=0 q;=0, q,=0 (34
where
K.lcc

Rlg, - q2)++q2
V.V, = p Kl @)

¢, cos(gq
[——RJOK(% o g )+ =2

a, a,x
35)

In order to have a minimum of ¥ (ql,q2 ) at the origin, it is

necessary that the Hessian matrix of V,; at (0,0), denoted by
Hess(V,(0,0)), be
that Hess(V,(0,0),, = R, and

det Hess(V;(0,0)) = % {Ral Jeieza+Rajc o
a4

—KCIC3 -2K €3 Cy —K022}

positive definite. Notice

(36)

therefore, Hess(V,(0,0)) will be positive definite if the

parameter R is chosen such that it satisfies the two
conditions:
(i) R>0, (@) R >£[ cC3 +02] (37)
a
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Finally, it should be noticed that the desired inertia matrix
has the form

a, aa
Md:{ ! 11, a; >0, a1a3—a2a12>0 (38)

Thus, by using (38) together with the potential energy (34),
the desired total energy can be defined as

H,(q,p) =%pTMd_l (@p+V4(q) (39)

B. Stability Analysis

The stability of the equilibrium for the TORA system can be
established by applying the invariance LaSalle principle. To
this end, let us define the residual set

= {(00102)& 3 a0 ) 0. 0) =0} 0
By differentiating H ,, it is obtained

* 2
Ha(t)=~(VpH,)) GK ,G'"VpH, =K, GTVpHd“ (41)

with ” . " denoting the usual Euclidean norm. Then,

Q={(q1,q2,p1,p2)eiﬁ4/ GTVpHd:O}
={(qlaQ2,plsP2)€%4/ GTMdilpzo}' (42)

From the time derivative of G M dfl p =0, and the value of

p inequation (6) it is obtained

GTMd"l(—MdM’IVqu):—GTM’IVqu =0. (43)
Now, pre-multiplying by GT the expression

M q 1| VgV, —c,c08(9,)Vq,V, (44)
VgV, =
0| —c,c08(¢,)Vq )V, +cVg,V,

it is obtained

1
5[— ¢y cos@)VayVy +cVarVyl=0.  (45)

This equation has a numerable set of solutions given by

{(0, N %)} U {(ql*,N %)},N =0+143,...., ql* const

For allN #0, cos[N%j =0holds, and ¢,(¢), ¢,(¢) are

constants, thus the equations in (6) are reduced to

* 1

91 :_[C3pl]:0
.9 (46)
q, =g[¢1p2]=0

and

. 1 1 °
P = E[—mcs](vfh Va )+§[— (Vg ) - K,q1=0
(47)

1 1
Py = E[—am](vch Va )+5[_ axci|VaVy) - K,q,= 0

It means that

P©=0, p©)=0 and p,©)=0, p,()=0 (48)

The determinant of the associated matrix of the linear system
(47)is

—a)1C3 a0

A= de‘{ } =—(c,c4 )(a1a3 - a22)¢ 0 (49)

—axC3  —dazc

Thus, VaVy(g1.42)=0, Vaq,V4(q1.92)=0 and,

recalling (34), this implies that ¢, (t) =0, q, (t)=0.

Considering this result together with (49), it is concluded that
Q= {(0,0,0,0)} and, by virtue of the LaSalle invariance

principle, the origin is an asymptotically stable equilibrium
point.

C. Damping Injection

According to (12) and considering that J, =0, the control

term u,, is given by

3785



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

_ ¢, sin(g,)cos(q, )

Uy = T &P, —26pp, c08(g, +Clp22:|
Labp, Sin(qz) [61203 —4C, COS(q2 )]
o o
k .
x| R(g, —ag,) + V99 % | K 5N(G)
<l 4
[

B k
a6 ~ ¢, c0s(q,)] {—R(q] _%)mﬂ(q] ~a)
a4

o
+/(c20!sinq2}
4

(50)

Furthermore, the control term u ,, is given by

Vp H -
ug ==K, [0 1{ =-k,[0 1, "p
VPZHd (5 1)
1
=-K, ——la1py —asp|]
aaz —ap

These results can be summarized in the following
proposition.

Proposition 2: The TORA system (24), with the parameters
¢, €,, c3 verifying the inequality (21), in closed loop with

the IDA-PBC control lawu = u, +uy;, with U,, and u,

given by the expressions (50) and (51), has an asymptotically
stable equilibrium point at the origin.

5. DIGITAL SIMULATIONS

Digital simulations were carried out for the TORA system
with parameters taken from Olfati-Saber, (2001),
e, =12, ¢, =1, ¢; =11, K =5, and the design

parameters where R=66and K, =20. A response of the
controlled system is shown in Fig. 2.

6. CONCLUSIONS

In this work the stabilization problem for the TORA system
has been solved by applying the IDA-PBC method. The
design method take advantage of two properties of the
TORA system: it has underactuation degree one and the
inertia matrix depends only on the actuated coordinates.
These conditions allowed us to choose a constant desired
inertia matrix and pay attention on the potential energy
shaping, and finding a solution for the arising PDE.

Digital simulations were carried out to evaluate the
performance of the designed control law. The controlled
system exhibited a good behavior with an acceptable settling
time.

Translational and rotationsl postions and moments
T T

ql,62,p1, and g2

Fig. 2. Controlled response of the TORA system
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