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Abstract: In this work, we consider the feedback stabilization problem of the so-called Translational 
Oscillator with a Rotational Actuator (TORA) system by applying  the Interconnection and Damping 
Assignment (IDA) control methodology. To achieve this goal, the mechanical system is firstly 
transformed into the general port controlled Hamiltonian form and, then, the IDA design procedure 
is applied to synthesize the stabilizing control law. The Hamiltonian structure of the closed loop 
system is preserved and asymptotic stability of the mechanical position is achieved, which is verified 
by digital simulations.  Copyright © 2008 IFAC 
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1. INTRODUCTION 
 
Energy shaping methods pursue to preserve the physical 
structure of closed-loop systems. Total energy shaping in 
mechanical systems is guaranteed by firstly modifying the 
inertia matrix in the kinetic energy and, then, the potential 
energy is shaped. The Interconnection and Damping 
Assignment Passivity Based Control (IDA-PBC) approach is 
used to achieve this goal in Ortega, et al. (2002a) for 
mechanical systems in the general Port-Controlled 
Hamiltonian (PCH) form (Ortega, et al. 2002b).  
 
The stabilization problem of underactuated nonlinear 
systems has attracted attention of the control community in 
recent years (Olfati-Saber, 2001). The IDA-PBC design 
method deals with nonlinear systems with one degree of 
underactuation, achieving (asymptotic) stabilization of 
mechanical systems and endowing closed loop systems with 
a Hamiltonian structure and a desired energy function 
(Mahindrakar, et al., 2006). In this paper we consider the 
problem of achieving asymptotic stability of the TORA 
system through a control law synthesized by applying the 
IDA-PBC methodology. This result is based on an alternative 
approach to the cascade and PBC control designs proposed 
by Escobar, Ortega and Sira-Ramirez, (1999); and by Pavlov, 

et al. (2005), which were employed for regulation and output 
feedback stabilization of the TORA system. 
 

2. STABILIZATION OF UNDERACTUATED 
MECHANICAL SYSTEMS VIA IDA-PBC 

 
2.1. Mechanical systems in PCH  form 
 
Consider underactuated  mechanical  systems with total 
energy function   
 

            )()(
2
1),( 1 qVpqMppqH T += −                   (1) 

where nn pq ℜ∈ℜ∈ ,  represent the generalized positions 
and momenta, respectively, 0)()( >= qMqM T  is the 
inertia matrix, and )(qV  denotes the potential energy of the 
system. By assuming that system (1) has not natural 
damping, it can be written as follows  
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where nI  is the n-order identity matrix, HH pq ∇∇ ,  are the 
gradient of H  with respect to q  and p , respectively, 

mu ℜ∈  is the control function and nxmG ℜ∈  with 
nmGrank <=)( . 

 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3781 10.3182/20080706-5-KR-1001.3620



     

In the application of the IDA-PBC approach two basic steps 
are followed (Ortega, et al., 2002a; Mahindrakar, et al., 
2006): (1) energy shaping, on which the total energy is 
modified to assign a desired equilibrium point; and (2) 
damping injection, to achieve asymptotic stability and also to 
preserve the Hamiltonian form of the closed loop system.  
 
The form of equation (1) suggests to propose the total energy 
function 

 

)()(
2
1),( 1 qVpqMppqH dd

T
d += −                        (3) 

 
where 0>= T

dd MM  and dV  are the desired inertia matrix 
and the potential energy, respectively, to be defined. It is 
required that  dV  has a local minimum at ∗q , i.e. 
 
                    )(minarg qVq d=∗                              (4) 
 
In the PBC methodology the control input is usually 
decomposed into the following two terms (Ortega, et al., 
2002a) 
 

     ),(),( pqupquu dies +=                        (5) 
 
with the first term used to achieve energy shaping and the 
second term is employed to inject damping into the system, 
in order to reach a closed loop system with the Hamiltonian 
form 
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are the desired interconnection and damping structures. The 
skew-symmetric matrix 2J  (and some elements of dM )  are 

free parameters for design, whilst the term dMM 1−  is 

considered to preserve the relationship pMq 1−
•

= . 
Furthermore, damping is provided by feeding back the new 
passive output dp

T HG ∇ . Thus, the term diu  of the equation 

(5) is chosen, with 0>= T
vv KK , as follows 

 
                      dp

T
vdi HGKu ∇−=                        (8) 

 
 
2.2. Stability  
 
In order to guarantee stability of the closed loop system, the 
following proposition is used. 
 

Proposition 1:  System (2) with dH  as in (3) and ∗q  the 
desired position holding (4) has a stable equilibrium point on 

)0,( ∗q . This equilibrium point is asymptotically stable if 
the system is locally detectable from the output 

),()( pqHqG d
T ∇ . 

 
Proof.  See  Ortega, et al. (2002a) for a detailed proof. 
 
2.3. Energy Shaping 
 
To obtain the energy shaping term esu  in the controller, 
equations (5) and (7) are substituted in (2) and the result is 
equated to (6), i.e. 
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where the term dR  of (6) has been cancelled by diu  of (7). 
The first row of (9) produces an identity, whilst the second 
row can be written as follows 
                               

     pMJHMMHGu ddqdqes
1

2
1 −− +∇−∇=       (10) 

 
Since the system is underactuated, the control  esu  has only 
effect on the image space of the operator  G . Thus, for any 
choice of esu , the following relationship should be satisfied  
                                       

     { } 01
2

1 =+∇−∇ −−⊥ pMJHMMHG ddqdq       (11)                
 
where ⊥G  is a full rank left annihilator of G  ( i.e.,  

0=⊥GG ).  Equation (11) is a set of nonlinear partial 
differential equations (PDE) with unknown terms 

dd VandM , and 2J  being a free parameter, whilst p  is an 
independent coordinate. If a solution is obtained for equation 
(11), the control term esu  is written in the form 

               
( )( )pMJHMMHGGu ddqdq

T
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−
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Equation (11) is equivalent to the pair of equations 
 

( ) ( ){ } 02 1
2

111 =+∇−∇ −−−−⊥ pMJpMpMMpMpG dd
T

qd
T

q      (13)                
 

              { } 01 =∇−∇ −
⊥

dqdq VMMVG                (14) 
 
The partial differential equation (13) is nonlinear and should 
be solved with respect to unknown elements of the inertia 
matrix dM . Then, using the already known matrix dM , the 
equation (14) can be solved to obtain the desired potential 
energy dV . When the inertia matrix in (1) is independent of 
the underactuated coordinate, it is common to assume a 
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constant inertia matrix dM , thus allows focusing on finding 
a solution to the potential energy dV .  
 
This work closely follows the results in Ortega, et al. (2002a)  
and Mahindrakar, et al. (2006), where to obtain a reduction 
of the PDE (13) and (14), the following assumptions hold: 
 
 H1: The system has underactuation degree one, i.e. 

1−= nm . 
 
 H2: The inertia matrix M  depends only on the actuated 
coordinates. 
 
 H3: The system has two degree of freedom and,  
without loss of generality, take [ ]TG 10= . 
 
Assumption H3 is critical in this application. Assumptions 
H1 and H2 ensure that the term ( )pMpG T

q
1−⊥∇   in the 

PDE (13) is zero. In this case (13) can be solved with a 
constant matrix dM , by taking 02 =J . This allows us to 
focus on potential energy shaping and the PDE 
 

                      { } 01 =∇−⊥
dd VMMG .                    (15) 

 
 
3. MATHEMATICAL MODEL OF THE TORA SYSTEM 

 
The translational oscillator with rotational actuator (TORA) 
system (Pavlov, et al., 2005)  consists of a platform of mass 

1m  which can oscillate without damping in the horizontal 
plane (see Fig. 1). On the platform a rotating eccentric mass 

2m  is actuated by a DC motor. Its motion applies a force to 
the platform which can be used to damp the translational 
oscillations.  
 
The inertia matrix of the system has the form 
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where 2q  is the rotating angle of the mass 2m , r  is the 
eccentricity ratio, and I  is the moment of inertia. Denoting 
the generalized positions by [ ]Tqqq 21= , the gravitational 
constant by g , and the potential energy by ( )21,qqV , the 
system Lagrangian can be written as  follows 
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where  ( )21, qqV  represents the potential energy 

         )cos(
2
1),( 22

2
121 qgrmKqqqV +=        (18) 

and  K stand by  the constant stiffness of the spring.  
 
 

 
Fig. 1. The TORA system 
 
Denoting the motor torque, acting at the rotating point of the 
mass 2m , by τ , the Euler-Lagrange equations  of the TORA 
system has the form 
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Thus,  the TORA system has two degrees of freedom and 
underactuation degree one, with 2q  being the actuated 

coordinate and G being the matrix [ ]TG 10= .  Hence, it 
can be easily verified that  assumptions H1, H2 and H3  hold. 
  
By defining the generalized inertia momenta and the system 

parameters, as 
•

= qMp  and   

Irmcrmcmmc +==+= 2
2322211 ,, , the inertia 

matrix can be written as follows 
                                             

        ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

322

221
2 )cos(

)cos(
cqc

qcc
qM           (20) 

 
where it is assumed that the condition         
                                                       

02
231 >−ccc                          (21) 

 
hold.  The total system energy is expressed as 
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Thus, the Hamiltonian form of the TORA system,  
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Substituting (20) and (22) in (23), the open loop model of the 
TORA system is obtained 
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where )(cos 2

22
231 qccc −=δ  is the determinant of the 

matix M . Finally, the equilibrium points belong to the set 
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4. STABILIZATION OF THE TORA SYSTEM 
 

4.1. Energy Shaping 
 
By focusing on the solution of the PDE (14), the desired 
constant inertia matrix dM  can be chosen 
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Thus, the equation (14) yields 
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It  can be  obtained  
 

           04123
2

4

2

1 =−⇔= bbbb
b
b

γ
γ

                     (30) 

 
and, equivalently, 
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which is defined on the subset  3
321 ),,( ℜ∈aaa  satisfying 

(26), with 12 aa α= . By taking into account  that 

0)cos( 2231 ≠− qccc , it is finally obtained  
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A solution of (32) has the form 
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where )(sF  is an arbitrary function of the variable  

21 qqs α−= . To assign the equilibrium point at the origin of 

dV , )(sF  can be defined as ( )2
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1)( qqRsF α−= , with R 

a design parameter.  
The obtained function ( )21,qqVd   satisfies ( ) 00,0 =dV , and 
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In order to have a minimum of ( )21, qqVd at the origin, it is 
necessary that the Hessian matrix of dV  at ( )0,0 , denoted by 
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therefore, ( )( )0,0dVHess  will be positive definite if the 
parameter  R is chosen such  that it satisfies the two 
conditions: 
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Finally, it should be noticed that the desired inertia matrix 
has the form  
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Thus, by using (38) together with the potential energy (34),   
the desired total energy can be defined as     
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B. Stability Analysis 
 
The stability of the equilibrium for the TORA system can be 
established by applying the invariance LaSalle principle. To 
this end, let us define the residual set 
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This equation has a numerable set of solutions given by 
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It means that 
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The determinant of the associated matrix of the linear system 
(47) is 
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Thus, ( ) ( ) 0,,0, 212211 =∇=∇ qqVqqqVq dd  and, 

recalling (34), this implies that ( ) ( ) 0,0 21 == tqtq . 
Considering this result together with (49), it is concluded that 

( ){ }0,0,0,0=Ω  and, by virtue of the LaSalle invariance 
principle, the origin is an asymptotically stable equilibrium 
point.  
 
 
 
C. Damping Injection 
 
According to (12) and considering that 02 =J , the control 
term esu  is given by 
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Furthermore, the control term diu  is given by 
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These results can be summarized in the following 
proposition. 
 
Proposition 2: The TORA system (24), with the parameters 

321 ,, ccc  verifying the inequality (21), in closed loop with 

the IDA-PBC control law dies uuu += , with dies uandu  

given by the expressions (50) and (51), has an asymptotically 
stable equilibrium point at the origin. 
 
 

5. DIGITAL SIMULATIONS 
 
Digital simulations were carried out for the TORA system 
with parameters taken from Olfati-Saber, (2001),  

5,11,1,12 321 ==== Kccc , and the design 

parameters where 66=R and 20=vK . A response of  the 
controlled system is shown in Fig. 2.  
 
 

6. CONCLUSIONS 
 

In this work the stabilization problem for the TORA system 
has been solved by applying the IDA-PBC method. The 
design method take advantage of two properties of the 
TORA system: it has underactuation degree one and the 
inertia matrix depends only on the actuated coordinates. 
These conditions allowed us to choose a constant desired 
inertia matrix and pay attention on the potential energy 
shaping, and finding a solution for the arising PDE.   
Digital simulations were carried out to evaluate the 
performance of the designed control law. The controlled 
system exhibited a good behavior with an acceptable settling 
time. 
 

 
Fig. 2. Controlled response of the TORA system 
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