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Abstract: In this paper, a new discontinuous control strategy is proposed for robust stabiliza-
tion of a class of uncertain multivariable linear time-delay system with delays in both the state
and control variables. The integral sliding mode control technique is applied to compensate
the uncertainty term and then a predictor is used to obtain free-delay closed-loop system with
desired spectra. For systems presented in Block Controllable (BC) form with delay, a block
dead time compensation algorithm which gives a sliding manifold is derived. An example of the
application of the proposed control strategy is presented.

1. INTRODUCTION

Robust feedback stabilization of time-delay systems re-
mains is one of the most challenging problems in control
theory because many industrial processes are modelled by
delay differential equations. It is well-known that the delay
can dramatically limit the performance and sometimes
destabilizes the closed-loop system. This problem has been
extensively studied and several controllers and stability
criteria based on optimal control method including H∞
and LMIs approaches Fridman et al. [2003], used basically
Lyapunov- Krasovskii functional have been proposed.

On the other hand, a sliding mode (SM) control has attrac-
tive properties such as decomposition of the original con-
trol design procedure and robustness to plant parameter
variations and external matched disturbances Utkin et al.
[1999]. In addition, SM control achieves fast transient re-
sponse of the closed-loop system. Due to these advantages
and simplicity implementation SM approach was used to
design robust stabilizing discontinuous controllers for the
delayed systems by Gouaisbaut et al. [2002], Li et al.
[2004], Shtessel et al. [2003] and Xia et al. [2003].

However, most of these controllers were proposed for
systems with only delay in the state, while the direct
implementation of discontinuous control in systems with
input delay can cause ostillations Fridman et al. [1996].
This problem can be treated via a predictor-based con-
troller proposed by Roh et al. [1999], but the condi-
tions to preserve uncertainties matching condition in the
transformed predicted system, are very restrictive Nguang
[2001]. Moreover, the problem of designing a predictor-
based control for system with both delayed state and input
is still open to the best knowledge of the authors.

In this paper, a new sliding mode control strategy is
proposed for robust stabilization of a class of uncertain
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systems with delays in both the state and control variables,
firstly in general form and then in Block Controllable form
(BC form) Loukianov et al. [2003]. The control vector is
divided in three parts. The first part is designed using the
integral sliding mode (ISM) technique Utkin et al. [1999]
which enables to preserve the matching condition for the
unknown perturbation. In addition, the switching function
includes an auxiliary variable that allows to compensate
the perturbation. The second part of the control cancels
the known undesired matched dynamics, including delayed
part. And the third, nominal part of the control is selected
to stabilize the nominal delay-free dynamics. Based on this
nominal system, two predictors are designed for the state
and auxiliary variables to compensate for the input delay,
and therefore ensure the sliding mode stability and achieve
chattering-free sliding mode motion. In the case of BC
form with delay, part of the state variables is used as a
fictitious control for the other variables. Such presentation
and using the block control techniques allows to relax
the matching condition with respect to retarded part of
the plant dynamics, introduced in general case. Note that
the various plants are presented in BC form with delay
Loukianov et al. [2006].

2. GENERAL FORM WITH TIME DELAY

Consider a linear time-delay system with uncertainties
described by the following state equation:

ẋ(t) = Ax(t) + Cx(t− τ1) +Bu(t− τ2) + f(x(t), t) (1)
x(t) = ϕ1(t), u(t) = ϕ2(t) ∀t ∈ [t0 − τ , t0], t0 ≥ 0
where x ∈ Rn and u ∈ Rm are the state and control vec-
tors, respectively; the unknown function f ∈ Rm represent
the system nonlinearity and any model uncertainties in
the system including external disturbances; rank B = m;
τ1 and τ2 are known time delays, τ1 ≥ τ2. We use the
following assumptions:

A1) The pair (A,B) is controllable;
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A2) The perturbation term f(x(t), t) is Lipshitz, contin-
uous and satisfies the matching condition:

f(x(t), t) = Bf̄(x(t), t) (2)
with f̄ ∈ Rm bounded by°°f̄(x(t), t)°° ≤ α(x(t), t) (3)
for some known scalar function α(·).
A3) There is a matrix C̄ ∈ Rm×n such that C = BC̄.

2.1 Controller design

Under assumptions A2 and A3, system (1) is represented
as
ẋ(t) = Ax(t)+B[u(t− τ2)+ C̄x(t− τ1)+ f̄(x(t), t)]. (4)
To cancel the perturbation term f̄(·) in (4) the method
of integral SM will be used. For, let us first redefine the
control to be

u(t) = u0(t) + u1(t) + u2(t) (5)
where u1 ∈ Rm will be designed to reject the perturbation
term, f̄(·); u2 ∈ Rm is chosen to cancel the delay term,
C̄x(t− τ1), i.e.

u2(t) = −C̄x(t−∆), ∆ = τ1 − τ2 (6)
and u0 ∈ Rm is the nominal part of the control. Substi-
tuting (5) and (6) into (4) yields
ẋ(t) = Ax(t)+B[u0(t− τ2)+u1(t− τ2)+ f̄(x(t), t)]. (7)
A predictor is designed as

ξ(t) = eAτ2x(t) +

0Z
−τ2

e−AθBu0(t+ θ)dθ (8)

with a predictive state ξ(t) ∈ Rn. Now define a sliding
variable s(t) of the form

s(t) = Gξ(t) + w(t) (9)
where s ∈ Rm, G ∈ Rm×n is a design matrix, and

ẇ(t) = −G[Aξ(t) +Bu0(t)], w(0) = −Gξ(0). (10)
Taking the time derivative of (9) results in

ṡ(t) =G[eAτ2 ẋ(t) +A

0Z
−τ2

e−AθBu0(t+ θ)dθ

+Bu0(t)− eAτ2Bu0(t− τ2)] + ẇ(t). (11)

Using (7) in (11) and then (8) yields

ṡ(t) =G[Aξ(t) +Bu0(t)]

+GeAτ2B[u1(t− τ2) + f̄(x(t), t)] + ẇ(t).

Choosing G = BT e−Aτ2 and using (10) we have
ṡ(t) =M [u1(t− τ2) + f̄(x(t), t)] (12)

whereM = BTB > 0. To eliminate the input delay in (12)
the following predictor is used:

σ(t) = s(t) +M

0Z
−τ2

u1(t+ θ)dθ.

The straightforward calculations via (12) gives

σ̇(t) = ṡ(t) +M [u1(t)− u1(t− τ2)]

=M [u1(t) + f̄(x(t), t)]. (13)

To induce a sliding motion on the sliding manifold σ(t) = 0
the control component u1 is selected as

u1(t) = −ρ1(x(t), x(t− τ(t)), t)
σ(t)

kσ(t)k (14)

where ρ1(x(t), x(t − τ(t)), t) is a positive scalar function
for control gain.

Taking the time derivative of a Lyapunov functional can-
didate Vσ(t) =

1
2σ

T (t)M−1σ(t) along the trajectories of
(13) with control (14) and using (3), yields

V̇σ(t) ≤ − kσ(t)k [ρ1(x(t), x(t− τ1, t)− α(x(t), t)

If we choose the control gain as
ρ1(x(t), x(t− τ(t), t)− α(x(t), t) ≥ ρ0 > 0 (15)

(ρ0 is a constant) then σ(t) vanishes and SMmotion occurs
on manifold σ(t) = 0 in finite time.

2.2 Sliding mode dynamics

The delayed system (7) is transformed by (8) into a system
which is delay free in the nominal part u0 of the control:

ξ̇(t) = Aξ(t)+Bu0(t)+e
Aτ2B[u1(t−τ2)+f̄(x(t), t)]. (16)

Now, formally setting σ̇(t) = 0 (13) we have
σ̇(t) =M [u1(t) + f̄(x(t), t)] = 0. (17)

Solving (17) for u1 shows that
u1eq(t) = −f̄1(x(t), t) (18)

where u1eq is the equivalent control value for u1. Substi-
tuting (18) into (16), the SM motion for ξ(t) on σ(t) = 0
is described by following perturbed system:

ξ̇(t) = Aξ(t) +Bu0(t) + eAτ2B∆fτ,eq(t) (19)
where

∆fτ,eq(t) = f̄1(x(t), t)− [f̄1(x(t− τ2), t) (20)

=−u1eq(t) + u1eq(t− τ2)

It implies that that:

1. The predictor (8) enables to conserve the matching
condition (2) with respect to the part of the control,
namely u1.

2. With the equivalent control u1eq(t) we can cancel the
perturbation term in the system (19) at time t but not at
time t + τ2. However, due to this cancellation at time t
the system (19) contents the perturbation of O(τ2) order
only.

The nominal component of the control, u0(t) in (19) now
is selected as

u0(t) = K0ξ(t) (21)
where K0 ∈ Rn×n is chosen under the assumption A1 such
that the matrix (A+BK0) be Hurwitz.

However, instead of the system (19) we have to analyze the
behavior of the original predicted variable ζ(t) = x(t+τ2).
Using (8) this variable can be defined on σ(t) = 0 as

ζ(t) = ξ(t) +

0Z
−τ2

e−AθB∆fτ,eq(t+ θ)dθ. (22)

The dynamics for ζ(t) on σ(t) = 0 are given by

ζ̇(t) = Aζ(t) +Bu0(t) +B∆fτ,eq(t+ τ2) (23)
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where ∆fτ,eq(t + τ2) is the predicted value for ∆fτ,eq(t)
defined in (20), and it can be expressed as

∆fτ,eq(t+ τ2) = f̄1(x(t+ τ2), t)− f̄1(x(t), t)

= f̄1(ζ(t), t)− f̄1(ζ(t− τ2), t)

Expressing

ξ(t) = ζ(t)−
0Z

−τ2

e−AθB∆fτ,eq(t+ θ)dθζ(t)

from (22) and substituting it then in the nominal control

(21), i.e. u0(t) = K0ξ(t) = K0ζ(t)−K0

0Z
−τ2

e−AθB∆fτ,eq(t+

θ)dθ and then into (23) yields

ζ̇(t) = Āζ(t) +B[∆fτ,eq(t+ τ2)

−K0

0Z
−τ2

e−Aθ∆fτ,eq(t+ θ)dθ] (24)

with Ā = (A+ BK0). To study behavior of ζ(t) we use a
Lyapunov function Vζ(t) =

1
2ζ

T (t)Pζ(t) with P positive
definite solution of the Lyapunov equation

ĀTP + PĀ = −In
where In is the identity matrix. Differentiating Vζ along
the trajectories of (24) yields

V̇ζ(t)≤−ζT (t)ζ(t) + 2ζT (t)PB[∆fτ,eq(t)

−K0

0Z
−τ2

e−Aθ∆fτ,eq(t+ θ)dθ]

By assumption A2 there is a constant q1 > 0 such that
k∆fτ,eq(t)k ≤ q1τ2. Moreover,

°°e−At°° ≤ q2e
λmax(A)t,

q2 > 0 and therefore

°°°°°°K0

0Z
−τ2

e−Aθ∆fτ,eq(t+ θ)]dθ

°°°°°° ≤ q3τ2

with q3 =
q1q2

λmax(A)
kK0k (1 + e−λmax(A)τ2). Thus

V̇ζ(t)≤−(1− β) kζ(t)k2 − β kζ(t)k2

+2 kζ(t)k kPBk (q1 + q3)τ2

≤−(1− β) kζ(t)k2 , ∀ kζ(t)k ≥ μ

with

μ =
2q0τ2 kPBk

β
, 0 < β < 1 (25)

where q0 = q1+ q3. Therefore, a solution of the perturbed
system (24) is ultimately bounded by

kζ(t)k ≤
s

λmax(P )

λmin(P )
μ. (26)

The results obtained are stated as follows.

Theorem 1. Let conditions A1, A2, A3 and (15) be
satisfied. Then a solution of the system (1) closed by the
following control:

u(t) =K0ξ(t)− C̄x(t−∆)

−ρ1(x(t), x(t− τ(t)), t)
σ(t)

kσ(t)k
with (A+BK0) Hurwitz matrix, is ultimately bounded by
(26).

It should be noted that the condition A3 can be relaxed if
the system (1) can be presented in BC-form with delay.

3. DELAY BLOCK COMPENSATION

In this section, a state feedback control law is developed
for a class of system (1) which can be presented in BC-form
with delay consisting of r blocks:

ẋ1(t) = A11x1(t) + C11x1(t− τ1) +B1x2(t− τ1)

ẋ2(t) = A21x1(t) +A22x2(t) + C21x1(t− τ1)

+ C22x2(t− τ1) +B2x3(t− τ1)

ẋi(t) =
iX

j=1

Aijxj(t) +
iX

j=1

Cijxj(t− τ1) (27)

+Bixi+1(t− τ1), i = 3, ..., r − 1

ẋr(t) =
rX

j=1

Aijxj(t) +
rX

j=1

Cijxj(t− τ1)

+Br[u(t− τ1) + f̄(x(t), t)]

where x̄(t) = [x1 (t) , ..., xr (t)]
T
, rankBi = dim(xi) =

ni, i = 1, ..., r and
Pr

i=1 ni = n. The integers
n1, n2, ..., nr set the structure of the system and satisfy the
following condition m ≥ n1 ≥ n2 ≥ · · · ≥ nr. In this paper
we consider the case ni = m, i = 1, ..., r or n = r×m.

A control strategy for (27) can be designed considering
xi+1 as a fictitious control vector in the ith block and
designing an appropriate predictor for each block. This
procedure is outlined in the following.

Step 1. For notational convience let
C11x1(t− τ1) := f1(t− τ1).

Rewriting the first block of (27) as
ẋ1(t) = A11x1(t) + f1(t− τ1) +B1x2(t− τ1) (28)

and choosing fictitious control x2(t) in (28) as

x2(t) = B−11 [−f1(t) + ϕ1(t)] (29)
results in

ẋ1(t) = A11x1(t) + ϕ1(t− τ1) (30)
where ϕ1 ∈ Rm is a new variables vector. Now, defining
z1(t) = x1(t+ τ1), a predictor for the block (30) with new
fictitious control input ϕ1 is designed of the form

z1(t) = eA11τ1x1(t) +

0Z
−τ1

e−A11θϕ1(t+ θ)dθ. (31)

Thus
ż1(t) = A11z1(t) + ϕ1(t). (32)

Now, choose the fictitious control ϕ1(t) in (32) of the form
ϕ1(t) = (K1 −A11)z1(t) + z2(t) (33)

where z2 ∈ Rm is a new variables vector, and K1 is a
design matrix. Thus

ż1(t) = K1z1(t) + z2(t). (34)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15417



Remark 1. Note that in the case matrix A11 is Hurwitz,
fictitious control ϕ1(t) can be chosen as ϕ1(t) = K1z1(t)+
z2(t) to assign a desired spectrum of matrix (A11 +K1).

The algorithm (29) and (33) defines the transformation for
z2(t) as

z2(t) = B1x2(t) + f1(t)− (K1 −A11)z1(t) (35)
= B1x2(t) + C11x1(t)− (K1 −A11)z1(t).

Step 2. Taking the derivative of (35) gives
ż2(t) = Ā22z2(t) + f2(t− τ1) + B̄2x3(t− τ1) (36)

where , Ā22 = [A21 + B1A22B
−1
1 ] and B̄2 = B1B2. The

fictitious control x3(t) in (36) is chosen as

x3(t) = B̄−12 [−f2(t) + ϕ2(t)] (37)
with ϕ2(t) ∈ Rm a new variables vector. Then the block
(36) with (37) becomes

ż2(t) = Ā22z2(t) + ϕ2(t− τ1). (38)
As on the first step, a predictor for z̄2(t) = z2(t + τ) can
be designed similar to (31)

z̄2(t) = eĀ22τ1z2(t) +

0Z
−τ1

e−Ā22θϕ2(t+ θ)dθ.

Thus,
·
z̄2(t) = Ā22z̄2(t) + ϕ2(t). (39)

Now, if we choose ϕ2(t) in (39) similar to (33) as
ϕ2(t) = (K2 − Ā22)z̄2(t) + z3(t) (40)

where z3 ∈ Rm is a new variables vector, andK2 is a design
matrix, then, equation (39) with (40) takes the same form
of equation (34), namely

·
z̄2(t) = K2z̄2(t) + z3(t).

Using (37) and (40) yields
z3(t) = B̄2x3(t) + f2(t)− (K2 − Ā22)z̄2(t)

where f2(t) = Ā21x1(t + τ1) + C̄21x1(t) + C̄22z2(t) +
Ā121z1(t+ τ1).

This procedure may be performed iteratively obtaining on
the ith step, i = 3, ..., r − 1 equation for variable zi(t) as

żi(t) = Āiizi(t) + fi(t− τ1) + B̄ixi+1(t− τ1)

Choosing
xi+1(t) = B̄−1i [−fi(t) + ϕi(t)] (41)

with new fictitious input variable ϕi(t) results in
żi(t) = Āiizi(t) + ϕi(t− τ1).

Design of the predictor

z̄i(t) = eĀiiτ1zi(t) +

0Z
−τ1

e−Āiiθϕi(t+ θ)dθ

gives the following equation for predicted variable z̄i(t) =
zi(t+ τ1):

·
z̄i(t) = Āiiz̄i(t) + ϕi(t)

Next choose
ϕi(t) = (Ki − Āii)zi(t) + zi+1(t) (42)

we have the desired dynamics for z̄i(t) :
·
z̄i(t) = Kiz̄i(t) + zi+1(t)

where zi+1(t) is a new variables vector and Ki is a design
matrix.

To this end, an expression for the new variable zi+1(t) can
be now obtained from (41) and (42) as

zi+1(t) = B̄ixi+1(t) + fi(t)− (Ki − Āii)zi(t)

Thus the new variables, obtained from this procedure form
a transformation given by

z1(t) = x1(t+ τ1)

z2(t) = B1x2(t) + f1(t)− (K1 −A11)z1(t) (43)

zi(t) = B̄i−1xi(t) + fi−1(t)

− (Ki−1 − Āi−1,i−1)z̄i−1(t)

i = 3, ..., r.

where z̄i(t) = zi(t+ τ), i = 2, ..., r.

On the last step, the system (27) can be described in the
new variables zi(t), i = 1, ..., r (43) of the form

ż1(t) = K1z1(t) + z2(t)
·
z̄i(t) = Kiz̄i(t) + zi+1(t), i = 2, ..., r − 1 (44)

żr(t) = Ār,rzr(t) + fr(t) + B̄r[u(t− τ2) + f̄(x(t), t]

where Ki is a design matrix. Now redesigning the control
u(t) similar to (5), i.e., u(t) = u0(t) − u1(t) − u2(t), we
select u2(t) = −B̄−1r fr(t) that yields

żr(t) = Ār,rzr(t) + B̄r[u0(t− τ2)

+u1(t− τ2) + f̄(x(t), t)]. (45)

Designing a predictor

z̄r(t) = eĀr,rτ2zr(t) +

0Z
−τ2

e−Ār,rθB̄ru0(t+ θ)dθ

and choosing a switching function sr(t) = Gr z̄r(t)+wr(t),
sr ∈ Rm with

ẇr(t) = −Gr[Ār,rzr(t) + B̄ru0(t− τ2)] (46)

and wr(0) = Grzr(0). we have ṡr(t) = −Mr[u1(t − τ2) −
f̄(x(t), t))] where Mr = B̄T

r B̄r > 0, Gr = B̄T
r . The control

u1 is designed as

u1(t) = −ρ1(x(t), x(t− τ(t)), t)
sr(t+ τ2)

ksr(t+ τ2)k
with sr(t+ τ2) = Gr z̄r(t) + υr(t), and υr(t) = wr(t+ τ2)
satisfies the following equation:

υr(t) = wr(t)−Gr

0Z
−τ2

£
Ārrz̄r(t+ θ) + B̄ru0(t+ θ)

¤
dθ.

To force sliding mode on sr = 0, the condition (15) should
be satisfied. Once sliding mode occurs and the system is
confined to the manifold sr = 0, a SM equation with the
equivalent control u1eq(t − τ2) = f̄(x(t), t) and nominal
control

u0(t) = B̄−1r (Kr − Ār,r)z̄r(t)

with Kr ∈ Rn×n is governed by
ż1(t) = K1z1(t) + z2(t)

żi(t) = Kizi(t) + zi+1(t− τ1), i = 2, ..., r − 1 (47)

żr(t) = Krzr(t) + eAr,rτ2B̄r∆fτ,eq(t).

Theorem 2. Let conditions A4, A2 and (15) be satisfied.
Then the control
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u(t) = B̄−1r (Kr − Ār,r)z̄r(t)− B̄−1r fr(t)

−ρ1(x(t), x(t− τ(t)), t)
sr(t+ τ2)

ksr(t+ τ2)k
with Ki, i = 1, ..., r Hurwitz matrices stabilizes the system
(27), and a solution of the closed-loop system (27) and
(26) is ultimately bounded.

4. AN APPLICATION EXAMPLE

In this section, the proposed control method is applied
to control a high-speed closed air wind tunnel. The main
objective of the control is to provide a fast response so
to reduce the cost of liquid nitrogen losses during the
transient regimes. A linearized model of the wind tunnel
is given by Manitius [1984]

ẋ1(t) = a11x1(t) + b1x2(t− τ1)

ẋ2(t) = x3(t) (48)
ẋ3(t) = a31x2(t) + a32x3(t) + b3u(t− τ2) + f(t)

where the state variables x1, x2 and x3 present the Mach
number, actuator position guide vane angle in a driving
fan and actuator rate, respectively, f(t) = 2 + 2cos(0.5t),
a11 = −0.509, b1 = 0.059, a31 = −36, a32 = −96, b3 = 36
and τ2 = 0.11s. The nominal delay τ1 = 0.33s represents
the time of the transport between the fan and the test
section.

A predictor is designed for the first block of (48) similar
to (31) as

z1(t) = ea11τx1(t) +

0Z
−τ1

e−a11θb1x2(t+ θ)dθ (49)

Then

ż1(t) = ea11τ ẋ1(t) + a11

0Z
−τ1

e−a11θb1x2(t+ θ)dθ +

b1x2(t)− ea11τb1x2(t− τ)

or
ż1(t) = a11z1(t) + b1x2(t)

Introducing the desired dynamics as (a11 − k1)z1, k1 > 0,
the transformation (35) is now defined by

z2(t) = k1z1(t) + b1x2(t)

Then the first block of (48) is represented in the new
variables z1(t) and z2(t) as

ż1(t) = (a11 − k1)z1(t) + z2(t)

At the second step, taking the derivative of z2(t)
ż2(t) = k1(a11 − k1)z1(t) + k1z2(t) + b1x3(t)

Choosing the fictitious control x3(t) as

x3(t) = −b−11 [k1(a11 − k1)z1(t)− (k1 + k2)z2(t) + z3(t)]
(50)

yields
ż2(t) = −k2z2(t) + z3(t), k2 > 0.

From (50) the new variable z3(t) can be obtained as
z3(t) = ã31z1(t) + ã32z2(t) + b1x3(t), then

ż3(t) = ā31z1(t) + ā32z2(t) + ā33z3(t)

+b̄3[u0(t− τ2)− u1(t− τ2) + u2(t− τ2)] + f(t)

where where ã31 = k1(a11 − k1) and ã32 = (k1 + k2),
ā31 = ã31(a11−k1)−k1a31−a32k1(a11−k1), ā32 = (ã31−
ã32k2+ a31+ a32(k1+ k2)), ā33 = ã32+ a32 and b̄3 = b1b3.

At the last step, redesigning the control u(t) as u(t) =
u0(t)− u1(t)− u2(t), we choose first

u2(t) = −b̄−13 [ā31z1(t+ τ2) + ā32z2(t+ τ2)] (51)
that yields

ż3(t) = ā33z3(t) + b̄3[u0(t− τ2)− u1(t− τ2)] + f(t).

The predicted variables z1(t + τ2) = x1(t + τ1 + τ2) and
z2(t+ τ2) = k1z1(t+ τ2)+b1x2(t+ τ2) used in (51) can be
obtained by using the predictor (49) on the [0,−(τ1+ τ2)]
integration interval, and the predictor x2(t+τ2) = x2(t)+
0Z

−τ2

x3(t+ θ)dθ, respectively. A sliding variable is selected

as

s3(t) = ξ3(t) + w3(t)

ξ3(t) = eā33τ2z3(t) +

0Z
−τ2

e−ā33θ b̄3u0(t+ θ)dθ

ẇ3(t) =−[ā33z3(t) + b̄3u0(t− τ2)], w3(0) = ξ3(0).

Then
ṡ3(t) = eā33τ2 [b̄3u1(t− τ2) + f(t)]. (52)

Using the predictive variable

σ3(t) = s3(t) + eā33τ2 b̄3

0Z
−τ2

u1(t+ θ)dθ,

the system (52) is transformed into the following delay-free
system

σ̇3(t) = eā33τ2 [b̄3u1(t) + f(t)].
The unit control

u1(t) = −ρ3
σ3(t)

|σ3(t) + δ| , ρ3 > 0

with ρ3 > |f(t)| ensures the convergence of σ3(t) in a finite
time. Then it follows that b̄3u1eq(t) = −f(t). Selecting

u0(t) = −k3ξ3(t)
and substituting u1eq(t) = −b̄−13 f(t), in the SM equation

ξ̇3(t) = ā33ξ3(t) + b̄3u0(t) + eā33τ2 [b̄3u1eq(t− τ2) + f(t)]

yields
ξ̇3(t) = (ā33 − b̄3k3)ξ3(t) + eā33τ2∆fτ,eq(t)

where ∆fτ,eq(t) = f(t) − f(t − τ2) and ā33 − b̄3k3 < 0.
The predicted variable ζ3(t) = z3(t + τ2) can be defined
on σ3(t) = 0 as

ζ3(t) = ξ3(t) + b̄3

0Z
−τ2

e−ā33θ∆fτ,eq(t+ θ)dθ.

Then a SM motion on σ3(t) = 0 is described by

ż1(t) = (a11 − k1)1z1(t) + z2(t)

ż2(t) =−k2z2(t) + ζ3(t− τ2) (53)

ζ̇3(t) = (ā33 − b̄3k3)ζ3(t) +∆fτ,eq(t+ τ2)

−b̄3k3
0Z

−τ2

e−ā33θ∆fτ,eq(t+ θ)]dθ
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and a solution of this system is ultimately bounded. Thus,
the following resulting control law

u(t) = u0(t) + u1(t) + u2(t) = −k0ξ3(t)
−kr |σ3(t)|

1
2 sign(σ3(t))

−b̄−13 [ā31z1(t+ τ2) + ā32z2(t+ τ2)].

stabilizes the system (48). For the simulation, the values
of the control parameters k0, k1, k2 and kr are adjusted to
0.5, 1, 2 and .5, respectively.The responses of the states
with control and input control are shown in Figures 1 and
2.

5. CONCLUSIONS

The decomposition deadtime compensation method based
on the integral SM control, has been formulated for linear
time-delay systems with uncertainty. For systems which
can be presented in the BC form, the proposed predictor-
based control design procedure has step-by step character
that simplifies the solution of the problem. This method
enables to solve one of the classical problem design of pole
placement state feedback for linear systems with delayed
state and control input.
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