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Abstract: Recursive estimation of constrained nonlinear dynamical systems has attracted the 
attention of many researchers in recent years. For nonlinear/non-Gaussian state estimation problems, 
particle filters have been widely used. As pointed out by Daum (2005), particle filters require a 
proposal distribution and the choice of proposal distribution is the key design issue. In this paper, a 
novel approach for generating the proposal distribution based on a Constrained Unscented Kalman 
filter is proposed. The efficacy of the proposed constrained state estimation algorithm using a 
particle filter (CUPF) is illustrated via a successful implementation on a simulated gas-phase 
reactor.Copyright © 2008 IFAC. 
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1. INTRODUCTION 

State estimation of dynamic systems is an important 
prerequisite for safe and economical process operations.  The 
state estimation problem in a stochastic linear system is 
solved by the well-known Kalman filter. For linear systems, 
the Kalman filters generate optimal estimates of state 
variables from observations. The Kalman filter as a state 
estimator has become useful even for complicated real-time 
applications and has attracted widespread attention from the 
engineering community because of the relatively simple 
recursive nature of its computational scheme. The Extended 
Kalman filter (EKF) is a natural extension of the linear filter 
to the nonlinear domain through local linearization. The 
Extended Kalman filter is probably the most widely used 
nonlinear filter. While EKF formulations have been 
successful in solving many industrial problems, its 
implementation is not always simple as the state error 
covariance prediction step requires analytical computation of 
Jacobians at each time step. This can prove to be 
prohibitively complex and computationally demanding for 
high dimensional systems. Moreover, this also implies that 
nonlinear function vectors appearing in system equations 
should be smooth and at least once differentiable. Recently, 
the unscented Kalman filter (UKF) has been proposed as an 
alternative to the Extended Kalman filter where the above 
limitation has been overcome using the concept of sample 
statistics (Julier and Uhlmann, 2004). The UKF uses a 
deterministic sampling technique to select a minimal set of 
sample points (called sigma points) around the mean. These 
sigma points are then propagated through the nonlinear 
functions and the covariance of the estimate is then 
recovered.  
 

In most physical systems, states/parameters are bounded, 
which introduces constraints on the state/parameter 
estimates. One major limitation of the EKF and UKF is that 
these formulations cannot handle such bounds or constraints 
systematically. Furthermore both the EKF and UKF require 
that the noise processes that affect the process be Gaussian. 
Nonlinear dynamic data reconciliation (NDDR) (Liebman et 
al. 1992) and Moving horizon estimation (MHE) 
formulations provide systematic approaches to handling of 
bounds on states/parameters or any other algebraic 
constraints. The MHE problem is formulated as a constrained 
nonlinear optimization problem defined over a moving time 
window in the past. While MHE alleviates difficulties 
associated with constraint handling, it requires a large 
dimensional nonlinear optimization problem to be solved at 
each time step and is not suitable for on-line implementation. 
Recently, Vachhani et al. (2005) have proposed a recursive 
constrained formulation called recursive nonlinear dynamic 
data Reconciliation (RNDDR). This approach combines 
computational advantages of recursive estimation while 
handling constraints on the states. The state and covariance 
propagation steps and the updated covariance computation in 
RNNDR are identical to that of EKF. The updated state 
estimates are obtained by solving a constrained optimization 
problem formulated only over one sampling interval, which 
significantly reduces the computational burden compared 
with MHE or NDDR formulations. Vachhani et al. (2006) 
later developed a constrained version of the UKF (unscented 
recursive nonlinear dynamic data reconciliation or 
URNDDR) for state estimation and parameter estimation in 
nonlinear systems. This approach combines the advantages 
of the UKF and the RNDDR formulations. 
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The EK and UK filters can be used for nonlinear systems in 
which second order moments are sufficient to characterize 
the underlying probability density functions of state 
estimation errors. Thus, results obtained using these filters 
are satisfactory when state error probability density functions 
can be approximated as Gaussian distributions. In general, 
the distribution of {w(k)} and {v(k)} can be multi-modal and 
non-Gaussian. Thus, in many situations Gaussian 
approximation may not suffice. A new class of filtering 
technique, called particle filtering, can deal with state 
estimation problems arising from such multimodal and non-
Gaussian distributions (Arulampalam et al., 2002, Bakshi 
and Rawlings, 2006). A particle filter (PF) approximates 
multi-dimensional integration involved in the propagation 
and update steps using Monte Carlo sampling.  The selection 
of a suitable form of importance function to represent the 
true posterior density is a crucial step in the particle filter 
(Arulampalam et al., 2002).  In general, it is difficult to 
design such proposal distributions and its choice is highly 
problem dependent. As pointed out by Daum (2005), in 
almost all successful implementations of PF, the proposal 
density is a Gaussian density obtained from an EKF or UKF 
as proposal. Thus, at each sampling step, the EKF or UKF is 
used to compute the mean and covariance of the importance 
distribution for each propagated particle. 
 
If it is desired to apply particle filtering for state estimation 
when states are bounded, then EKF and UKF cannot be used 
for generating proposal densities. The main difficulty arises 
from the fact that EKF and UKF formulations are 
unconstrained state estimators and, therefore, are not suited 
for handling bounds and algebraic constraints. To deal with 
bounds and constraints in particle filtering framework, we 
have to address two issues:  
• Generate samples (particles) that are consistent with 

bounds and constraints 
• Generate proposal distributions that can explicitly 

account for bounds on states 
In this work, we develop a novel particle filtering based 
scheme that can handle bounds on states and/or parameters. 
Two salient features of the proposed constrained particle 
filtering scheme are as follows: (a) we propose to use 
URNDDR (or constrained UKF) formulation to generate the 
truncated proposal distributions required in particle filtering. 
(b) In order to deal with the requirement of generating 
particles consistent with the bounds, we draw samples from a 
truncated multivariate normal distribution. Suitable 
combinations of these two steps are used to handle 
constraints in the particle filtering framework.  While the 
URNDDR formulation can deal with the constraints, one 
limitation of the URNDDR algorithm is that it inherits the 
assumption of Gaussianity implicit in the UKF formulation. 
In other words, the URNDDR formulation cannot handle 
state and measurement noise with multi-modal distributions. 
The proposed constrained PF formulation will overcome 
these limitations when state and measurement noise 
distributions are known accurately. It may be noted that, 
most other available state estimation approaches, cannot deal 
with this scenario even when the distributions are exactly 
known. The efficacy of the proposed approach is 

demonstrated using a simulated gas-phase reactor benchmark 
problem (Rawlings and Bakshi, 2006). 
The organization of the paper is as follows. Section 2 
discusses the particle filter with proposal distribution.  The 
choice of importance distributions for constrained state 
estimation is presented in Section 3. The simulation results 
are presented in Section 4 followed by main conclusions 
reached through analysis of these results in Section 5. 

 
2. PARTICLE FILTER 

Consider a nonlinear system represented by the following 
nonlinear state space equations: 

(k)T

(k 1)T

(k) (k 1)

F[ (t), (k 1), (k 1), (k 1)]dt (1)

(k) H[ (k), (k)] (2)
−

= − +

− − − −

= −

∫

x x

x u d w

y x v

 

In the above process model,  is the system state 
vector , is known system input , 

is the unknown system input, is the state 
noise ( ) with known distribution, is the 
measured state variable ( ) and is the 
measurement noise ( ) with known distribution. 
The parameter k represents the sampling instant, 

(k)x

rR∈y

n( R )∈x
pR∈

pR∈w

u(k) m(  R )∈u

(k) y
(k) 

(k)d (k)w

v
r(k) R∈v

[ ]F . and [ ]H . are the nonlinear process model and nonlinear 
measurement model respectively. The random state noises 
can be either due to random fluctuations in the input 
variables or the inaccuracies in the system model. It may be 
noted that we are interested in the most general case whereby 
state noise and measurement noise may have arbitrary (but 
known) distributions. Also, they can influence the system 
dynamics and measurement map in a non-additive manner. 
 
2.1 Recursive Bayesian Estimation  
The objective of the recursive Bayesian state estimation 
problem is to find the mean and variance of the random 
variable  using conditional probability density 

function

x(k)

p (k) (k)|⎡ ⎤⎣ ⎦x Y  under the following assumptions:   
(i) the states follow a first-order Markov process and  
(ii) the observation are independent of given states.   
Here, denotes the set of all available measurements, i.e.  

 The posterior density 

(k)Y
{ (kY y�

kk) |

(k) ), (k 1),......}.−y

p (⎡ ⎤⎣ ⎦Yx is estimated in two stages: prediction, which is 
computed before obtaining an observation, and, update, 
which is computed after obtaining an observation 
(Arulampalam et al., 2002).  In the prediction step, the 
posterior density k 1p( (k 1)−x | )−Y at the previous time step is 
propagated into the next time step through the transition 
density { [ ]p (k) | (k 1)−x x } as follows: 

[ ]

k 1

k 1

p (k) |

p (k) | (k 1) p (k 1) | d (k 1) (3)

−

−

⎡ ⎤ =⎣ ⎦

⎡ ⎤− − −⎣ ⎦∫

x Y

x x x Y x
 

The update stage involves the application of Bayes’ rule: 
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[ ]

[ ]

k k
k 1

k 1

k 1

p (k) | (k) 1p (k) | p (k) | (4)
p (k) |

p (k) |

p (k) | (k) p (k) | d (k 1)d (k) (5)

−
−

−

−

⎡ ⎤ ⎡ ⎤= ×⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

⎡ ⎤= −⎣ ⎦∫∫

y x
x Y x Y

y Y

y Y

y x x Y x x

   

 
Combining equations 3, 4 and 5 gives 
 

[ ] [ ]
[ ]

k

k 1

k 1

p (k) |

p (k) | (k) p (k) | (k 1) p (k 1) | d (k 1)
(6)

p (k) | (k) p (k) | d (k 1)d (k)

−

−

⎡ ⎤ =⎣ ⎦

⎡ ⎤× − − −⎣ ⎦
⎡ ⎤ −⎣ ⎦

∫
∫∫

x Y

y x x x x Y x

y x x Y x x

 

 
Equation (6) describes how the conditional posterior density 
function propagates from  to . It 
should be noted that the properties of the state transition 
equation (1) are accounted through the transition density 
function 

k 1p (k) | −⎡ ⎤⎣ ⎦x Y kp (k) |⎡ ⎤⎣ ⎦x Y

[ ]p (k) | (k 1)−x x  while  [ ]p (k) |y x(k)  accounts for 
the nonlinear measurement model (2). The prediction and 
update strategy provides an optimal solution to the state 
estimation problem, which, unfortunately, involves high-
dimensional integration. The solution is extremely general 
and aspects such as multimodality, asymmetries and 
discontinuities can be incorporated (Julier and Uhlmann, 
2004). 
 
2.2 Approximate Solution through Monte Carlo Sampling  
The exact analytical solution to the recursive propagation of 
the posterior density is difficult to obtain. However, when 
the process model is linear and noise sequences are zero 
mean Gaussian white noise sequences, the Kalman filter 
describes the optimal recursive solution to the sequential 
state estimation problem. While dealing with nonlinear 
systems, it becomes necessary to develop approximate and 
computationally tractable sub-optimal solutions to the above 
sequential Bayesian estimation problem. The particle filter is 
a numerical method for implementing an optimal recursive 
Bayesian filter through Monte-Carlo simulation. Classical 
particle filters approximate the distribution , 

using a set of random samples { } together 
with associated weights{ } : 

kp (k) |⎡⎣x Y

....N

⎤⎦

i)

(i) (k) : i 1.=x
1.....Nω =i (k) : i

N
k (

i
i 1

p (k) | (k) (k) (k)
=

⎡ ⎤ ⎡≈ ω δ −⎣ ⎦ ⎣∑x Y x x ⎤⎦

⎤⎦

⎤⎦

⎤⎦

   (7) 

where enotes the Dirac delta function. The 

weights { i (k)ω n be viewed as approximations to the 
relative posterior probabilities of the particles. It should be 
noted that the posterior density ( p (  is seldom 
known. Therefore, it is not possible to draw samples from 
this distribution. For this reason, , a 
proposal density or importance density, is used. At each 
sampling instant, a sample is drawn from the proposal 
distribution generated around each particle. To compensate 
for the difference between the proposal density and the true 
posterior density, the weights are then computed as follows: 

(i)(k) (k)⎡δ −⎣x x d

} ca

kk) |⎡⎣x Y )

(i) (i)q (k) |⎡⎣x x k(k 1),− Y

 

(i) k

i (i) k

(i) (i) (i)

i(i) (i) k

p (1: k) |
(k)

q (1: k) |

p (k) | (k) p (k) | (k 1)
(k 1)

q (k) | (k 1),

⎡ ⎤⎣ ⎦ω =
⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦= ω −
⎡ ⎤−⎣ ⎦

x Y

x Y

y x x x

x x Y

�

�

(8) 

i
i N

j
j 1

(k)
(k)

(k)
=

=

∑
�

�

ω
ω

ω
                                   (9) 

The above equation provides a mechanism to sequentially 
update the weights. The updated state estimates at 
the kth sampling instant are given by 

x̂(k | k)

N
k (

i
i 1

E (k) | ) (k) (k)
=

⎡ ⎤ = ω⎣ ⎦ ∑x Y x i)        (10) 

 
2.3 Selection of Proposal Distributions for Unconstrained 
State Estimation 
The selection of a suitable form of importance function to 
represent the true posterior density is a crucial step in the 
particle filter (Arulampalam et al., 2002, Rawlings and 
Bakshi, 2006).  In general, it is difficult to design such a 
proposal and the choice of proposal distribution is highly 
problem dependent. EKF and UKF are popular choices for 
proposal distribution in particle filters (EKF-PF and UPF).  
The computational steps involved are as follows 
Arulampalam et al. (2002): 

Initialization:  At k = 0, M samples are drawn from N(0,Q)  
s: as follow

 
(i) 1/ 2 (i)

(i)

ˆ ˆx (0 | 0) x(0 | 0) Q
N(0, I)

= + ϒ

ϒ ∼
                                 

and associated weights are initialized as . i 1/ Mω =

Importance sampling: At the k’th time step, after obtaining 
measurement y(k), M observers (EKF or UKF) are used in 
parallel to compute means and covariances of the proposal 
distributions, i.e. { }(i) (i)(k | k),P (k | k)x  for each propagated 

particle (i)ˆ (k 1| k 1)− −x .The importance density is then 
approximated as  

(k) (i) (i)q (k) | (k | k),P (k | k)⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣x Y N x ⎦ and used to draw a 
sample around each particle as follows: 

 
1/ 2(i) (i) (i) (i)

(i)

ˆ (k | k) (k | k) P (k | k)

N(0, I)

⎡ ⎤= + ϒ⎣ ⎦
ϒ

x x

∼
 

Computation of weights: The weights associated with each 
particle are now computed as follows   

(i) (i) (i)

i (i)

p (k) | (k) p (k) | (k 1) 1(k)
MN (k | k),P (k | k)

ω
⎡ ⎤ ⎡ ⎤− ⎛ ⎞⎣ ⎦ ⎣ ⎦= ⎜ ⎟⎡ ⎤ ⎝ ⎠⎣ ⎦

i

y x x x

x
�     (11) 
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It may be noted that, at the end of the re-sampling step, all 
samples are assigned equal weights, i.e. i (k 1) 1/ Mω − =�

i (k)
. 

These weights are then normalized to obtain {i (k)ω� ω } 
as given by equation (9). In the special case when state and 
measurement noise signals are zero mean Gaussian white 
noise, the numerator can be computed as follows 

 
(i) (i) (i)

i

p (k) | (k) p (k) | (k 1)

ˆN H (k) , R N (k | k 1),Q

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡= ⎣ ⎦ ⎣⎣ ⎦

i

y x x x

x x ⎤− ⎦
                    

Re-sampling:  This step involves discarding samples that 
have low importance and reassigning weights to the 
remaining particles. Various approaches have been suggested 
in the literature for carrying out this step. Arulampalam et al. 
(2002) have recommended the use of residual systematic re-
sampling algorithm (RSR). At the end of this step, the 
sample set typically contains multiple replicas of important 
samples, thereby effectively increasing weight of these 
samples in the ensemble. The updated state estimate is next 

constructed as kE (k) | )⎡ ⎤⎣ ⎦x Y
M

(i)

i 1

1 (k)
M =

= ∑x . When 

compared to the conventional particle filter that uses   
(i) (i)q (k) | (k −x x k1),⎡ ⎤⎣ ⎦Y ≈ (i) (i)p (k) | (k 1)⎡ ⎤−⎣ ⎦x x  the use of 

proposal density can significantly reduce the number of 
particles required for generating accurate estimates. 

 
3. CONSTRAINED STATE ESTIMATION USING A 

PARTICLE FILTER 
In many practical problems of interest in process industry, it 
becomes necessary to account for bounds on states and 
parameters being estimated. If it is desired to apply particle 
filtering for state estimation when states are bounded, then it 
becomes necessary to modify the above algorithm. The 
selection of suitable form of importance function to 
approximate the true posterior density is a crucial step in the 
particle filter formulation for handling constraints. As 
discussed in the introduction, the EKF and the UKF 
formulations are unconstrained state estimators and, 
therefore, are not suited for handling bounds and algebraic 
constraints. In this section, we discuss how the URNDDR 
algorithm can be used to generate truncated proposal 
distributions that are consistent with bounds on the state 
variables.  
 
3.1 Unscented Recursive Nonlinear Dynamic Data 
Reconciliation  
The RNDDR approach combines computational advantages 
of recursive estimation while handling constraints on the 
states. The updated state estimates are obtained by solving a 
constrained optimization problem formulated over one 
sampling interval. When the RNDDR formulation is used to 
generate means and covariances of proposal distributions, the 
following optimization problem is solved for each particle   

  (12) T (i) 1 T 1min
(k) P (k | k 1) (k) (k) R (k)

ˆ (k | k)
− −⎡ξ − ξ +⎣ e e

x
⎤⎦

ˆ ˆ(k) (k | k 1) (k | k)ξ = − −x x [ ]ˆ(k) (k) H (k | k)= −e y x  

L U

subject to: Dynamic Model Equation (1)-(2) 
ˆ (k | k)≤ ≤x x x

 

The state and covariance propagation steps and the updated 
covariance computation in RNNDR are identical to that of 
EKF (See Vachhani et al, 2005 for details). The covariance 
propagation does not account for bounds systematically at 
propagation stage.  

Vachhani et al. (2006) later developed a constrained version 
of the UKF (unscented recursive nonlinear dynamic data 
reconciliation or URNDDR) for state and parameter 
estimation in nonlinear system. This approach combines 
advantages of the UKF (derivative free covariance update) 
and the RNDDR formulation (constraint handling ability). 
Unlike the conventional UKF where the sigma points are 
chosen symmetrically, the sigma points 

 are located asymmetrically 
around  

(i, j)ˆ{ (k 1| k 1) : j 0,1,..2n− − =x
ˆ{ (k 1 | k 1)}

}
− −x  to better approximate covariance 

information in the presence of bounds in the state. The 
corresponding weights { }: i 0,1,..., 2nγ =i associated with 
sigma points are also computed by taking into account the 
asymmetric nature of the sigma point (Ref. Vachhani et al, 
2006 for details). These sigma points are then propagated 
through the system dynamics to compute a cloud of 
transformed points  

2L
(i, j) (i, j)

j
j 0

(k | k 1) (k | k 1)
=

− = γ χ −∑x  (13) 

2n
(i, j) (i, j)

j
j 0

(k | k 1) H (k | k 1)
=

⎡ ⎤− = γ χ −⎣ ⎦∑y  (14) 

  
2n T(i) (i, j) (i, j)

j 0
P (k | k 1) ( j) (k) (k) Qγ

=

⎡ ⎤ ⎡ ⎤− = +⎣ ⎦ ⎣ ⎦∑ ε ε  (15) 

Here, jγ represents fixed weights associated with sigma 
points, which are chosen such that their sum equals unity. 
The weights are functions of N and a tuning parameter (κ). 
The tuning parameter can be used for adjusting the spread of 
the sigma points around the mean. The updated state 
estimates are obtained by solving a constrained optimization 
problem formulated over one sampling interval as follows  

(i) T 1 (i) T 1
(i)

(i)

(i) (i) (i)

L U

min
(k) P(k | k 1) (k) (k) R (k) (16)

ˆ (k | k)

ˆ(k) (k) H (k | k)

ˆ ˆ(k) (k | k 1) (k | k)
ˆsubject to:  (k | k)

− −⎡ ⎤ξ − ξ +⎣ ⎦

⎡ ⎤= − ⎣ ⎦
ξ = − −

≤ ≤

e e
x

e y x

x x
x x x

 

The update state estimate and posterior covariance are 
computed as  

2L
(i)

i
i 0

ˆ ˆ(k | k) (k | k) (17)ω
=

= ∑x x

2N T(i) (i)

i 0

ˆ ˆ ˆ ˆP(k | k) (i) (k | k) (k | k) (k | k) (k | k) (18)ω
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ x x x x  
Depending on the nature of problem at hand, either of the 
above two recursive constrained state estimation approaches 
can be used to generate proposal distributions for constrained 
particle filtering. 
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3.2 Generation of Truncated Proposal Distributions  
When states have bounds, it becomes necessary to generate 
proposal distributions that are consistent with these bounds. 
This can be achieved by using the concept of truncated 
distributions. A truncated distribution is a conditional 
distribution that is conditioned on the bounds on the random 
variable. For example, given probability density function  
f ( )ζ  and cumulative distribution function  defined 
over ( , , the truncated density function can be defined 
as follows  

( )Φ η
)−∞ ∞

 [ ] f ( )f | a b
(b) (a)

ζ
< ≤ =

Φ − Φ
ζ ζ                  (19) 

such that  

[ ]
b b

a a

1f | a b f ( )d 1
(b) (a)

< ≤ = ζ ζ =
Φ − Φ∫ ∫ζ ζ  

In particular, the truncated uni-variate normal distribution 
can be obtained as follows   

[ ]

( )2

2

2 2

1 exp
22

N , | a b
b a
2 2

⎛ ⎞ζ − ζ⎜ ⎟−
⎜ ⎟σσ π
⎝ζ σ < ζ ≤ =

⎛ ⎞ ⎛−
⎠
⎞ζ − ζ

Φ − Φ⎜ ⎟ ⎜σ σ⎝ ⎠ ⎝
⎟
⎠

⎤⎦

 (20) 

Now, if RNDDR/URNDDR is used for generating 
importance distributions for constrained state estimation, 
then  has to be a truncated 
distribution in order to be consistent with the bounds on the 
states. In this work, we draw samples from the truncated 
multivariable normal distribution 

(i) (i) kq (k) | (k 1),⎡ −⎣x x Y

(i) (i)(k | k), P (k | k)⎡⎣N x ⎤⎦  

defined over . Since  is a symmetric and 
positive definite matrix, Cholesky factorization on 

will lead to   

L H( , )x x (iP

k | k)

) (k | k)

(i)P (
(i)
11
(i) (i)

(i) 21 22
(i)
ii

(i) (i) (i) (i)
n1 n2 n1 nn

S 0 ... 0 0
S S .. 0 0

P (k | k)
. . S 0 0

S S ... S S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
It should be noted that (i) (i)(k | k),P (k | k)⎡⎣N x ⎤⎦  defined 

over can be rewritten as  L H( , )x x
(i) (i) (i) (i)(k | k) (k | k) P (k | k) (k) (21)= +x x u  

such that 
(i) (i)

L,1 1 H,1 1
(i) (i)
11 11

(i)(i) (i) (i)
1L,2 2 21 1 H,2 2
(i)(i)
222

(i)n 1
n(i) (i)

L,n n nr r
r j 1

(i)
nn

(k | k) (k | k)
S S

u (k)(k | k) S u (k) (k | k)
u (k)S

..
u (k)

(k | k) S u (k)

S

−

= −

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

x x x x

x x x x

x x

≺ ≺

(i)
21 1

(i)
22

n 1
(i) (i)

H,n n nr r
r j 1

(i)
nn

S u (k)
S

.

(k | k) S u (k)

S

(or)

−

= −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢
⎢ ⎥
⎣

∑x x

.

⎥

⎥

⎦

 

(i) (i)(i)
L,1 H,11
(i) (i)(i)
L,2 H,22

(i) (i)(i)
L,n H,nn

u (k) u (k)u (k)
u (k) u (k)u (k)

. .
u (k) u (k)u (k)

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎥⎣ ⎦ ⎣

≺ ≺

⎦

            (22) 

 
The above transformation requires that we draw samples 
recursively. Thus, we first draw  

from

(i)
1u (k)

(i) (i)
L,1 1 H,1 1

(i) (i)
11 11

(k | k) (k | k)
N 0,1| ,

S S

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x , then   from (i)
2u (k)

(i) (i) (i) (i)
L,2 2 21 1 H,2 2 21 1

(i) (i)
22 22

(k | k) S u (k) (k | k) S u (k)
N 0,1| ,

S S

⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x  and so on. 

Now, we can define n-truncated uni-variate normal 
distributions ( j) (i) (i) (i)

L, j j H, jN 0,1| u (k) u (k) u (k)⎡ ⎤< ≤⎣ ⎦ , for j=1,2, …n. 
and the sample for i’th particle can now be drawn recursively 
from the above n-truncated uni-variate normal distribution as 
follows:    

 
(i) (i) (i) (i)

(i) ( j) (i) (i) (i)
j L, j j H, j

x̂ (k | k) x (k | k) P (k | k) (23)

N 0,1| u (k) u (k) u (k) (24)

= + ϒ

⎡ ⎤ϒ < ≤⎣ ⎦∼
 

Thus, in the proposed constrained PF formulation, the 
importance sampling step is carried out as described above. 
Also, the samples generated in the initialization step have to 
be drawn from truncated normal distributions following the 
procedure outlined above. The computation of weights and 
re-sampling steps are identical to that of the unconstrained 
PF algorithm described in Section 2.  

 
4. SIMULATION STUDIES 

4.1 Gas-Phase Reactor (Rawlings and Bakshi, 2006) 
Consider the gas-phase irreversible reaction in a well mixed, 
constant volume, isothermal batch reactor . 
The governing equation for the isothermal batch reactor is as 
follows: 

12A B k 0.6→ =

 

[ ]

2A
1 A

2B
1 A

A

B

dp 2k p (25)
dt

dp k p (26)
dt

p
y 1 1

p

= −

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 

Where, [ ]A BP ;P=x  denotes the partial pressures of A and B. 
We have assumed that the random errors (Gaussian White 
noise) are present in the measurement (Total Pressure) as 
well as in the state variables. The covariance matrices of state 
noise and measurement noise are assumed as 

 .     
2

2
2

(0.001) 0
Q and

0 (0.001)
⎡ ⎤

⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎣ ⎦

R (0.1)

The sampling time has been chosen as 0.1. The initial state 
error covariance matrix has been chosen 

as
36 0

P(0 | 0)
0 36

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. The initial state for the process and 

the state estimator are chosen as [ ](0 | 0) 3 1=x and 

[ ]x̂(0 | 0) 0.1 4.5= respectively. The problem at hand is to 
generate non-negative estimates of partial pressures starting 
from given initial estimates. The lower bound and upper 
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bound values imposed on the state variables are 
and respectively. T

L [0 0]=x T
U [100 100]=x

 Vachhani, P., R. Rengaswamy, V. Gangwal and S. 
Narasimhan (2004). Recursive estimation in constrained 
nonlinear dynamical systems, AIChE J.,  pp. 946–959.   

Vachhani, P., S. Narasimhan and R. Rengaswamy (2006). 
Robust and reliable estimation via Unscented Recursive 
Nonlinear Dynamic Data Reconciliation. Journal of 
Process Control, 16, pp. 1075-1086. 

4.2 Performances of Constrained and Unconstrained UKF 
as proposals: 
  
The performance of the particle filters with constrained UKF 
as proposal (CUPF) and UKF as proposal (UPF) in the 
presence of deliberately introduced large initial plant model 
mismatch are shown in figures 1 and 2 respectively.  From 
figures 1 and 2 it can be concluded that estimates of the 
partial pressures of A and B obtained using constrained UKF 
as proposal (CUPF) are fairly accurate, whereas, the 
estimated partial pressures A and B are found to be 
significantly biased in the case of UKF as proposal(UPF) for 
the number of particles 25 and 10 respectively. In the case of 
UPF the estimated value of the partial pressure of A has been 
found to be negative. On the other hand, constraints never 
get violated when the proposed CUPF as proposal is 
employed for state estimation. 
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5. CONCLUSION 

 
In this paper, a PF with constrained UKF for generating 
distribution to obtain state estimates without violating state 
constraints has been proposed. The preliminary 
investigations demonstrate that the performance of the 
proposed CUPF is superior to that of UPF.   

      Figure 1: Evolution of true and estimated states of 
      partial pressures in Gas-phase reactor (CUPF)  
      (a) Partial Pressure of A (b) Partial Pressure of B. 
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