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Abstract: The paper discusses the design of second and third order plants with two/three parallel first 
order channels i.e. second/third order system with one/two stable zeroes. The designed control respects 
input constraints and can be easily tuned by one parameter, the closed loop pole. When choosing proper 
closed loop poles one has to take into account parasitic time constants, measurement noise, plant 
uncertainty, etc. Nevertheless, in the nominal case the designed controller is able to give the dynamics 
ranging from the minimum time control to pure linear one - according to the chosen pole. The desired 
control signal has one interval at the saturation limit, then it converges to a steady value with the dynamics 
given by the closed loop pole.  

 

1. INTRODUCTION 

The control signal saturation can be considered as the 
elementary nonlinearity present in practically each control 
loop. In the 50’s and 60’s its effects have been intensively 
treated within the scope of the minimum time systems. 
Simultaneously, the demand on smooth solutions and quiet 
steady states lead to the development of the linear control 
technique called pole assignment control. Nowadays, the 
most popular techniques dealing with the input constraints 
used in practice are the MPC and anti-windup control. By 
respecting the control constraints, the new concept of the 
constrained pole assignment control combines the qualities of 
both the minimum time and of the pole assignment control. 
The paper is organized as follows: Chapter 1: introduction, 
Dynamical classes of control are introduced in chapter 2, 
control for 2nd/3rd order system with relative degree one I 
presented in chapter 3/4. 

2. DYNAMICAL CLASSES OF CONTROL 

By index of the dynamical class (DC) it is understood a non-
negative integer denoting number of possible intervals with 
the limit control signal values that can occur under the limit 
case of the constrained pole assignment control with poles 
shifted to minus infinity that is equivalent to  the minimum 
time control. With respect to the Feldbaum’s theorem 
(Feldbaum,A.A., 1965) it is possible to conclude that the PID 
control corresponds to the transient processes from the 
dynamical classes 0, 1 and 2.  

While in the DC0 the ideal control response following a 
setpoint step has also step character (Fig.1) and no saturation 
phase (therefore it can be successfully treated by the linear 
theory), the dynamical classes 1, 2 or higher (as e.g. in Fig.2) 
are already typical by a period (periods) with saturated 
control and so they are already nonlinear.  

Processes of the DC0 are typically used in situations, where 
the dynamics of transients may be neglected, i.e. it is not 
connected with a reasonable energy accumulation. Such 
processes can e.g. be met in controlling flows by valves. 
After constraining the rate of control signal changes after a 
setpoint of a disturbance step, the transition to a new control 
signal value can be an exponential one (Fig.1). 

 

Fig. 1. DC0: Control signal reaction to a setpoint step; up – 
with the rate constraints just for the disturbance step; down – 
with a rate constraint also for a setpoint step 
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Within the DC1 the control signal reaction to a setpoint step 
change can already involve one control interval with 
constrained control value (Fig.2) that is later followed by a 
monotonous transient to the new steady state value. For the 
initial phase of control it is typical accumulation of energy in 
the controlled process. This is associated with a gradual 
increase (decrease) of the controlled output variable that is 
most rapid under impact of the limit control signal value. E.g. 
by charging a container with liquid, in the first phase of 
control the input valve will be fully opened and only in the 
vicinity of the required level the input flow will decrease to a 
steady state value keeping the required level. Similar 
transients can be frequently met in speed control in 
mechatronic systems, in the temperature, pressure and 
concentration control, etc.  

After limiting the rate of changes during the transients, the 
span of the period with the limit control action decreases, but 
the total length of transient to the new steady state increases. 
When constraining also the control signal rate after a setpoint 
change, the control signal does not catch to reach the limit 
value, since the necessary control decrease to the steady state 
has to start yet before it – the length of transient growths 
further.  

 

Fig. 2. DC1: Control signal reactions to a setpoint step 
parametrized by the closed loop poles; left – without rate 
constraints for t=0; right – with a rate constraint for t=0 

 

With respect to one possible interval with constrained 
controller output for dealing with this dynamical class it is 
usually not enough to remain within the linear control. 
Typical solutions for this dynamical class are frequently 
achieved with different anti-windup (aw) controllers. 

For more information on the Constrained PID control, or 
constrained pole assignment control see e.g. (Huba, 1990, 
Huba and Bisták,, 1999, Huba2006, Huba and Simunek, 
2007). However the constrained PID control is not the only 
way how to deal with constraints. Solutions with monotonous 
output transients parametrized by the closed loop poles that 
enable to achieve any dynamics ranging from the linear pole 
assignment control up to the relay minimum time one will be 
denoted as the fundamental ones. This concept was inspired 
by the works of Åström et al. (Åström, K. J., 1998),(Åström, 
K. J., 2003) that tried to develop general parameterized 
solutions which can be relatively easily adjusted to a 
particular situation by building on parameterizations as the 
sensitivity functions, or the complementary sensitivity 
functions related to the robust control. Having clear-cut 
physical interpretation of the effect of such tuning parameters 
and clear picture of its appropriate default values, the tuning 
should be much simpler and reliable. 

However, from more general point of view of the constrained 
control the sensitivity and complementary sensitivity 
functions do not represent an optimal solution. They e.g. do 
not match the natural expectation that by decreasing the range 
of possible system and state uncertainty (parameter 
fluctuations), the effect of the non-modelled dynamics 
(parasitic delays) and the amplitude of the measurement noise 
- when there are no other specifications on the control quality 
- the achieved solutions would converge to the results of the 
minimum time control.  

Such a requirement was obviously followed using another 
way of the closed loop parameterization – the pole 
assignment method by Glattfelder and Schaufelberger 
(Glattfelder,A.H. und Schaufelberger,W., 2003). The anti-
windup PI controller they have analyzed was very close to 
the ideal control signal step reaction converging to the one 
pulse of the minimum time control. But not completely. 

In order to introduce an effective controller classification, it 
is further important to introduce new notion of “fundamental” 
controllers. Such a controller has to have following 
properties: 

1.For the nominal dynamics S(s) it must yield 
transient responses reaching from the fully linear up 
to the time optimal ones that can be simply scalable 
by the closed loop poles, (or other equivalent 
parameters as the time constants). 

2.For a reliable controller tuning that guarantees 
monotonous responses the choice of the poles has to 
be restricted by identifying the perturbation 
(parasitic) dynamics ( )sSδ  chosen usually as a dead-
time, or a time constant. 

The first point involves the requirement to generalize the two 
limit solutions – the linear pole assignment control and the 
relay minimum time control to a compact set of responses 
that can be simply modified by the closed loop poles by 
offering properties that combine basic features of both limit 
solutions. 
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The second point is related to a reliable controller tuning. It 
tells that the system has to be approximated in such a way 
that besides of the nominal dynamics it is also determined the 
always present parasitic time delay (perturbation dynamics) 
that determines borders for the closed loop poles choice 
guaranteeing the expected properties.  

Many of the known approaches do not fulfil the requirements 
on the fundamental solutions, since they do not allow to 
approach the minimum time transient responses, or they do 
not involve free design parameters at all. These approaches 
do not guarantee strictly “global” results and so they have 
reasonably contributed to the inflation of different “optimal” 
controller tuning. They further survive due to the 
conservativeness of practice despite the fact that the new 
digital controllers enable an easy dead time modelling and 
compensation. Of course, it has no sense to fight against their 
use, but it should be shown that they do not represent 
globally valid solutions. In such a way, all the ambiguity of 
solutions reported e.g. by O’Dwyer (O´Dwyer, A., 2006) can 
be reasonably reduced. 

3. SECOND ORDER PLANT 

2.1  P-PI Controller design 

Let us consider a plant with 2 modes (slow and fast). Its 
transfer function is 
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This transfer function describes e.g. the thermal plant with 
two ways of heat transmission:  

Heat radiation (fast mode) 

Heat conduction via body of the plant (slow mode) 

The output of both the blocks can be described by the 
following differential equations 
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For the output of the system  
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The value of control signal wu  which maintains the output of 
the system at the value constw =  is 
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Using the control signal (5) the outputs of the single channels 
are 
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The pole assignment control is given by 

ee α=&  (8) 
where α  is the chosen closed loop pole. Substituting in (5) 
one gets 
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which leads to the control design as the parallel structure of 
the P-P controller 
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This P-P controller can be expanded to P-PI controller by the 
I-action as the disturbance reconstruction fig.3 which 
compensates the steady state error. 
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Fig. 3. Simulink model of P-PI controller 

2.2  Thermo-optical plant (real-experiment) 

The plant used for real experiment was Measurement and 
Communication System uDAQ28/LT (fig.4.).  This product 
of several years of development offers measurement of 8 
process variables (controlled temperature and its filtered 
value, ambient temperature, controlled light intensity, its 
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filtered value and its derivative, the ventilator speed of 
rotation and its motor current). The temperature and the light 
intensity control channels are interconnected by 3 
manipulated variables: the bulb voltage (the heat & light 
source), the light-diode voltage (the light source) and the 
ventilator voltage (the system cooling). The plant can be 
easily connected to standard computers via USB, when it 
enables to work with the sampling periods 40-50 ms and 
larger.  

Within a Matlab/Simulink, or a Scilab/Scicos schemes the 
plant is represented as a single block, limiting use of costly 
and complicated software package for the real time control. 
So, the usual process-computer communication based on 
standard converter cards (that is also supported) is necessary 
just for more demanding applications requiring higher 
sampling frequencies. 

 

Fig. 4. Thermo-optical plant 

2.3  Identification of the plant 

There are several ways how to identify this plant as two 
parallel first order systems. Despite the problems reported by 
Åström et al., 1998, we have proposed simple step response 
method. For the system 
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The identification depends on the selection of the points, 
where )(),(,, 221121 tyytyytt ==  represent two points from 
the initial phase of the step response, 

)(),(,, 443343 tyytyytt ==  represent two points from the 
vicinity of the steady state. 

Fig. 5 shows, how the identification fits the measured data. 
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Fig. 5. Thermo-optical plant: Step response comparison of 
the real plant and the model. 

2.4  Simulation 

Fig. 6 shows the simulation results achieved in 
Matlab/Simulink. For the relatively “slow” poles the 
dynamics of the control signal is similar to the first order 
plants control. When choosing “fast” poles or when the 
control is close to the time-optimal one (poles are close to 
minus infinity) the control signal is obviously affected by the 
zero dynamics of the plant. One interval at the saturation 
shows that the controller belongs to the DC1. 
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Fig. 6. Control signal and the output for the “fast & slow” 
poles. 
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The experiment using the real plant described above has been 
used to verify the control design. Fig. 7 and 8 show the 
achieved results, whereby the chosen closed loop pole is 

03.0−=α . The plant has been identified as 

1610.5s
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141.9s
0.53)(

+
+

+
=sG  (17) 

Several steps of desired value have been used in the 
experiment. There was a disturbance produced by the 1V step 
on the fan voltage at the time of 2250s.  
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Fig. 7. Real experiment results 
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Fig. 8. Real experiment results 

The experiment shows that the designed control coincides 
well with the expected results. There is just a little overshoot 
during the first setpoint step, caused by the ambient 
temperature increase. The third setpoint step shows that the 
plant is non-linear (the dynamics of heating and cooling the 
plant are not the same). Nevertheless, the zero dynamics is 
suppressed and the control signal has one interval at the 
saturation then it converges to desired value with the 
dynamics given by the closed loop poles. For smaller setpoint 
steps the control signal does not attack the limit value, 
however for the larger steps it does.  

4. THIRD ORDER PLANT 

The control design used for the second order plant (P-P, P-PI 
controllers) can be easily extended to e.g. third order system. 
Let us consider the third order plant 
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Let y be the output of the system (18), then 
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where u  is the control signal and K is 

321 KKKK ++=  (20) 

For a piecewise constants setpoint signal, the control error is 
defined as 

yeywe && −=−= ,  (21) 

 

The pole assignment control is defined by the requirement of 
a regular control error decrease 

ee α=&  (22) 
In other words 
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where α  is the chosen closed loop pole. Then one can write 
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So the control is 
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which is the parallel P-P-P controller with parameters  
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In practice there will be mostly measured just the system 
output. Therefore, the reconstruction of the auxiliary outputs 

32 , yy  is necessary. There are two easy ways to obtain these 
outputs. They can be reconstructed from the output of the 
system, or from the control signal. In this case the 
reconstruction from the system output will be used again. 

The simulation results show that by choosing appropriate 
closed loop poles the control gives the results ranging from 
the pure linear control to the time optimal one. It could be 
shown that the achieved controller represents a fundamental 
solution. The control required by given application is usually 
specified somewhere between the two limit cases. The 
desired control signal has one phase at the saturation and then 
it converges to the steady value with the dynamics given by 
the closed loop pole. In all cases the output of the system is 
monotonous and the controller does not need an additional 
anti-windup circuitry. 
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Fig. 9. The simulation results for the »fast« & »slow« poles. 
The blue curves represent the output and the green ones 
represent the control signal. 

Nevertheless the P-P-P controller can be expanded to P-P-PI 
controller by adding the observer based disturbance rejection.  
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