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Abstract: Since the mid-90’s, State-Dependent Riccati Equation (SDRE) strategies have emerged as 
general design methods that provide a systematic and effective means of designing nonlinear controllers, 
observers, and filters. These methods overcome many of the difficulties and shortcomings of existing 
methodologies, and deliver computationally simple algorithms that have been highly effective in a variety 
of practical and meaningful applications. In a special session at the 17th IFAC Symposium on Automatic 
Control in Aerospace 2007, theoreticians and practitioners in this area of research were brought together to 
discuss and present SDRE-based design methodologies as well as review the supporting theory. It became 
evident that the number of successful simulation, experimental and practical real-world applications of 
SDRE control have outpaced the available theoretical results. This paper reviews the theory developed to 
date on SDRE nonlinear regulation for solving nonlinear optimal control problems, and discusses issues 
that are still open for investigation. Existence of solutions as well as stability and optimality properties 
associated with SDRE controllers are the main contribution in the paper. The capabilities, design flexibility 
and art of systematically carrying out an effective SDRE design are also emphasized. 

 

1. INTRODUCTION 

During the 1950’s and 1960’s, aerospace engineering 
applications greatly stimulated the development of optimal 
control theory, where the objective was to drive the system 
states in such a way that some defined cost function is 
minimized. This turned out to have very useful applications 
in the design of regulators (where some steady state is to be 
maintained) and in tracking control strategies (where some 
predetermined state trajectory is to be followed). Among such 
applications was the problem of optimal flight trajectories for 
aircraft and space vehicles. Linear optimal control theory, in 
particular, has been very well documented and widely 
applied, where the plant that is controlled is assumed linear 
and the feedback controller is constrained to be linear with 
respect to its input. In recent years, however, the availability 
of powerful low-cost microprocessors has spurred great 
advantages in the theory and applications of nonlinear 
control. The competitive era of rapid technological change 
and aerospace exploration now demands stringent accuracy 
and cost requirements in nonlinear control systems. This has 
motivated the rapid development of nonlinear control theory 
for application to challenging complex dynamical real-world 
problems, particularly those that bear major practical 
significance in the aerospace, marine and defense industries. 
Despite recent advances, however, there remain many 
unsolved problems, so much so that practitioners often 
complain about the inapplicability of contemporary theories. 
For example, most of the techniques developed have very 
limited applicability because of the strong conditions 
imposed on the system. Control system designers continue to 
strive for control algorithms that are systematic, simple, and 
yet optimize performance, providing tradeoffs between 
control effort and state errors. 

The State-Dependent Riccati Equation (SDRE) strategy is 
well-known and has become very popular within the control 
community over the last decade, providing a very effective 
algorithm for synthesizing nonlinear feedback controls by 
allowing nonlinearities in the system states while additionally 
offering great design flexibility through state-dependent 
weighting matrices. This method, first proposed by Pearson 
(1962) and later expanded by Wernli & Cook (1975), was 
independently studied by Mracek & Cloutier (1998) and 
alluded to by Friedland (1996). The method entails 
factorization (that is, parameterization) of the nonlinear 
dynamics into the state vector and the product of a matrix-
valued function that depends on the state itself. In doing so, 
the SDRE algorithm fully captures the nonlinearities of the 
system, bringing the nonlinear system to a (nonunique) linear 
structure having state-dependent coefficient (SDC) matrices, 
and minimizing a nonlinear performance index having a 
quadratic-like structure. An algebraic Riccati equation (ARE) 
using the SDC matrices is then solved on-line to give the 
suboptimum control law. The coefficients of this equation 
vary with the given point in state space. The algorithm thus 
involves solving, at a given point in state space, an algebraic 
state-dependent Riccati equation, or SDRE. The 
nonuniqueness of the parameterization creates extra degrees 
of freedom, which can be used to enhance controller 
performance. In Cloutier, D’Souza & Mracek (1996) and 
Mracek & Cloutier (1998) it is shown that the SDRE 
feedback scheme for the infinite-time nonlinear optimal 
control problem (with control terms that appear affine in the 
dynamics and quadratically in the cost) in the multivariable 
case is locally asymptotically stable and locally 
asymptotically optimal, and in the scalar case is optimal. It is 
also shown in the general multivariable case that the 
Pontryagin necessary conditions for optimality are satisfied 
asymptotically by the algorithm. 
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The theoretical contribution in Cloutier, D’Souza & Mracek 
(1996) and Mracek & Cloutier (1998) has initiated an 
increasing use of SDRE techniques in a wide variety of 
nonlinear control applications. These include advanced 
guidance law development (Cloutier & Stansbery, 1999a; 
Cloutier & Zipfel, 1999), autopilot design (Mracek & 
Cloutier, 1996, 1997; Cloutier & Stansbery, 2001; Menon & 
Ohlmeyer, 2004; Mracek, 2007), integrated guidance and 
control design (Palumbo & Jackson, 1999; Vaddi, Menon & 
Ohlmeyer, 2007), satellite and spacecraft control (Parrish & 
Ridgely, 1997a; Hammett, Hall & Ridgely, 1998; Stansbery 
& Cloutier, 2000), control of aeroelastic systems (Singh & 
Yim, 2003; Tadi, 2003), control of oil tanker motion (Çimen, 
to appear), process control (Cloutier & Stansbery, 1999b; 
Banks et al., 2002), robotics (Erdem & Alleyne, 2001), 
magnetic levitation (Erdem & Alleyne, 2004), control of 
systems with parasitic effects (Friedland, 1997), control of 
artificial human pancreas (Parrish & Ridgely, 1997b), ducted 
fan control (Sznaier et al., 2000; Yu et al., 2001), and various 
benchmark problems (Doyle et al., 1997; Mracek & Cloutier, 
1998). 

In a special session at the 17th IFAC Symposium on 
Automatic Control in Aerospace 2007, theoreticians and 
practitioners in this area of research were brought together to 
discuss and present SDRE-based design methodologies as 
well as review the supporting theory developed to date 
(Mracek, 2007; Friedland, 2007; Çimen, McCaffrey, 
Harrison & Banks, 2007; Salamci & Gökbilen, 2007; 
Merttopçuoğlu, Kahvecioğlu & Çimen, 2007). It became 
evident that the number of successful simulation, 
experimental and practical real-world applications of SDRE-
based designs have outpaced the available theoretical results. 

This paper focuses on the SDRE nonlinear regulator for 
solving nonlinear optimal control problems, and reviews the 
theory developed to date. Existence of solutions as well as 
optimality and stability properties associated with SDRE 
controllers are the main contribution in the paper, discussing 
issues that are still open for investigation. 

The rest of the paper is organized as follows. In Section 2, the 
formulation of the nonlinear optimal control problem, the 
concept of extended linearization and the SDRE controller 
for nonlinear optimal regulation are presented, reviewing the 
dditional degrees of freedom provided by the nonuniqueness 
of the SDC parameterization. In Section 3, the necessary and 
sufficient conditions for the existence of solutions to the 
nonlinear optimal control problem, in particular by SDRE 
feedback control, are reviewed. A theoretical study of the 
stability and optimality properties of SDRE feedback controls 
is pursued in Section 4 and Section 5, respectively. An 
overview of the capabilities, design flexibility and art of 
SDRE control is presented in Section 6, demonstrating how 
numerous systems that do not meet the basic structure and 
conditions required for the direct application of the SDRE 
technique can be systematically converted to systems having 
the proper structure and conditions. Finally, the survey is 
concluded with a discussion of issues for investigation in 
Section 7. Due to space limitations, the practical use of the 
SDRE methodology is left for congress presentation. 

2. SDRE NONLINEAR REGULATION 

2.1  Problem Formulation 

Consider the deterministic, infinite-horizon nonlinear optimal 
regulation (stabilization) problem, where the system is full-
state observable, autonomous, nonlinear in the state, and 
affine in the input, represented in the form 
 0( ) ( ) ( ) ( ), (0)t t= + =x f x B x u x x�  (1) 
where n∈x \  is the state vector, m∈u \  is the input vector, 
and [0, )t ∈ ∞ , with 1( )nC \  functions : n n→f \ \  and 

: n n m×→B \ \ , and ( ) ≠B x 0  ∀x . Without any loss of 
generality, the origin =x 0  is assumed to be an equilibrium 
point, such that ( ) =f 0 0 . In this context, the minimization of 
the infinite-time performance criterion 
 { }1

0 2 0
( , ( )) ( ) ( ) ( ) ( ) ( ) ( )T TJ t t t t dt

∞
⋅ = +∫x u x Q x x u R x u  (2) 

is considered, which is nonquadratic in x  but quadratic in 
u . The state and input weighting matrices are assumed state-
dependent such that : n n n×→Q \ \  and : n m m×→R \ \ . 
These design parameters satisfy ( ) ≥Q x 0  and ( ) >R x 0  for 
all x . Under the specified conditions, a control law 
 ( ) ( ) ( ) , ( )= = − =u x k x K x x k 0 0 , (3) 
where 1( ) ( )nC⋅ ∈k \ , is then sought that will (approximately) 
minimize the cost (2) subject to the input-affine nonlinear 
differential constraint (1) while regulating the system to the 
origin ∀x , such that lim ( )t t→∞ =x 0 . This problem forms the 
basis of the SDRE method for nonlinear regulation. 

2.2  Extended Linearization 

Extended linearization (Friedland, 1996), also known as 
apparent linearization (Wernli & Cook, 1975) or SDC 
parameterization (Cloutier, D’Souza & Mracek, 1996; 
Mracek & Cloutier, 1998), is the process of factorizing a 
nonlinear system into a linear-like structure which contains 
SDC matrices. Under the assumptions ( ) =f 0 0  and 

1( ) ( )nC⋅ ∈f \ , a continuous nonlinear matrix-valued function 
( )A x  always exists such that 

 ( ) ( )=f x A x x , (4) 
where : n n n×→A \ \  is found by mathematical factorization 
and is, clearly, nonunique when 1n > . Hence, extended 
linearization of the input-affine nonlinear system (1) becomes 
 0( ) ( ) ( ) ( ) ( ), (0)t t t= + =x A x x B x u x x� , (5) 
which has a linear structure with SDC matrices ( )A x , ( )B x . 
The application of any linear control synthesis method to the 
linear-like SDC structure (5), where ( )A x  and ( )B x  are 
treated as constant matrices, forms an extended linearization 
control method. These represent a rather broad class of 
control design methods, leading to nonlinear control laws of 
form (3) that render the closed-loop dynamics (SDC) matrix 
 ( ) ( ) ( ) ( )CL = −A x A x B x K x  (6) 
pointwise Hurwitz. 
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The recoverability of nonlinear state feedback laws using 
extended linearization control techniques has been 
investigated by Cloutier, Stansbery & Sznaier (1999). By 
recoverable it is meant that a given nonlinear state feedback 
law of form (3) can be obtained (or recovered) from a given 
control design method. Necessary and sufficient conditions 
for the recoverability of a given nonlinear state feedback 
control law by some extended linearization control technique, 
and in particular, by the SDRE method, have been provided 
by Cloutier, Stansbery & Sznaier (1999). These will be 
reviewed in Section 3.2. 

2.3  SDRE Controller Structure 

The SDRE methodology uses extended linearization as the 
key design concept in formulating the nonlinear optimal 
control problem. The underlying linear control synthesis 
method in this case is the LQR synthesis method. Motivated 
by the LQR problem, which is characterized by an ARE, 
SDRE feedback control is an “extended linearization control 
method” that provides a similar approach to the nonlinear 
regulation problem for the input-affine system (1) with cost 
functional (2). By mimicking the LQR formulation, the state-
feedback controller is obtained in the form 
 1( ) ( ) ( ) ( )T−= −u x R x B x P x x , (7) 
where ( )P x  is the unique, symmetric, positive-definite 
solution of the algebraic State-Dependent Riccati Equation 

 
1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ,

T

T−

+

− + =

P x A x A x P x
P x B x R x B x P x Q x 0

 (8) 

hence the name SDRE control. The resulting SDRE-
controlled trajectory becomes the solution of the quasilinear 
closed-loop dynamics 
 1( ) ( ) ( ) ( ) ( ) ( ) ( )Tt t−⎡ ⎤= −⎣ ⎦x A x B x R x B x P x x� , (9) 
such that the state-feedback gain in (6) for minimizing (2) is 
 1( ) ( ) ( ) ( )T−=K x R x B x P x . 
The SDRE solution to the infinite-horizon autonomous 
nonlinear regulator problem (1) and (2) is, therefore, a true 
generalization of the infinite-horizon time-invariant LQR 
problem, where all of the coefficient matrices are state-
dependent. At each instant, the method treats the state-
dependent coefficients matrices as being constant, and 
computes a control action by solving an LQ optimal control 
problem. As is evident from (8), the resulting controller relies 
on a solution, pointwise in n\ , of an ARE thereby leading to 
the SDRE terminology. There is no attempt to solve the HJB 
equation as outlined, for example, in Lukes (1969). The 
clearest benefit of the SDRE algorithm is its simplicity and 
its apparent effectiveness. When the coefficient and 
weighting matrices are constant, the nonlinear regulator 
problem collapses to the LQR problem and the SDRE control 
method collapses to the steady-state linear regulator. 

2.4  Additional Degrees of Freedom 

For scalar systems, the SDC parameterization is unique for 
all 0x ≠ , given by (Cloutier, D’Souza & Mracek, 1996) 

 ( )( ) f x
xa x = . 

For multivariable problems, however, x  has at least two 
components, 1x  and 2x . Assuming that there is a single 
scalar nonlinear term ( )if x  appearing in one of the state 
equations, then in that state equation one parameterization 
has the nonlinearity 1( )if xx  appearing as a coefficient of 1x  
while a second parameterization has the nonlinearity 

2( )if xx  appearing as a coefficient of 2x . Thus, there 
always exists at least two parameterizations. Suppose 1( )A x  
and 2 ( )A x  are two distinct SDC parameterizations, such that 

1 2( ) ( ) ( )= =f x A x x A x x . Then 
 1 2( , ) ( ) (1 ) ( )α α α= + −A x A x A x  
is also an SDC parameterization for any α , which is easily 
verified by multiplying both sides with x . Therefore, 

( , )αA x  represents an infinite family of SDC 
parameterizations contained in a line. 

The nonuniqueness of the SDC parameterization for 
multivariable systems creates additional degrees of freedom. 
In general, an SDC parameterization ( , )A x α  can be 
constructed which is the parametric representation of a 
hypersurface containing 1k +  distinct parameterizations (if 
they exist), where α  is a vector of dimension k , and 

( , )A x α  will be of the form 

 1 1
1

( , ) (1 ) ( ) ( )(1 ) ( )
kk

k k j i i
i j i

α α α+ −
= =

= − + −∑ ∏A x A x A xα , 

where 0 0α �  (Cloutier, D’Souza & Mracek, 1996). Note 
that if a hypersurface of parameterizations is formed to obtain 

( , )A x α , the solution of the SDRE will be of the form 
( , )P x α . This results in the nonlinear feedback controller 

being parameterized by α . The additional degrees of 
freedom available through α  provides design flexibility that 
can be used to enhance performance or effect tradeoffs 
between performance, optimality, stability, robustness, and 
disturbance rejection. These will be discussed in Section 6. 

The implications of the nonuniqueness of the state-dependent 
quasilinear representation (5) have been considered by Huang 
& Lu (1996), Cloutier, Stansbery & Sznaier (1999) and 
Shamma & Cloutier (2003), and will be discussed in the 
paper. It is important to realize at this point that the issue of 
nonuniqueness plays a major role in not only recovering the 
global optimal control, but also achieving global asymptotic 
stability. In general, the solution provided by SDRE control 
(7) and (8) does not recover global optimality with respect to 
the performance index (2) for some arbitrary choice of the 
SDC matrix ( )A x . Moreover, a proper choice of ( )A x  also 
plays a significant role in affecting the controllability of the 
resulting parameterized pair { ( ), ( )}A x B x . Note that the 
presence or lack of controllability of this pair need not have 
any implication on the controllability of the original 
dynamics given in (1). These issues have been considered in 
Hammett, Hall & Ridgely (1998). 
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3. EXISTENCE OF SOLUTIONS 

3.1  HJB Eq., Lagrangian Manifolds and Viscosity Solutions 

Let us first make some comments about the existence of the 
dynamic programming solution to the infinite-time horizon 
nonlinear optimal control problem (1), (2) in order to justify 
the later hypotheses. Suppose that f , B , Q , and R  are 
sufficiently smooth functions so that the value function 
defined by (Anderson & Moore, 1990) 
 

( )
( ) inf ( , ( ))

U
V J

⋅ ∈
⋅

u
x x u�  (10) 

is continuously differentiable, the inf being over the given set 
of admissible controls 2 (0, )U L∈ ∞ . Ideally, the desired 
value function V  is a stationary solution to the Cauchy 
problem for the associated HJB partial differential equation 
 

( )
( ) inf ( , , ( )) 0t U

V H V∂ ∂
∂ ∂⋅ ∈

+ =xu
x x u x , 

where H  is the Hamiltonian function. For the given infinite-
time formulation (1) and (2), the Hamiltonian is 
 [ ]( ) 1

2( ) ( ) ( ) ( )
TV T TH ∂
∂

⎡ ⎤= + + +⎣ ⎦
x

x f x B x u x Q x x u R x u , (11) 
and the HJB equation becomes 
 [ ]( ) 1

2( ) ( ) ( ) ( ) 0
TV T T∂
∂

⎡ ⎤+ + + =⎣ ⎦
x

x f x B x u x Q x x u R x u  (12) 

with boundary condition ( ) 0V =0 , since lim ( )t t→∞ =x 0 . 
One approach is to consider a family of finite-time problems, 
which is the standard approach to solving the infinite-horizon 
LQR problem, and requires stabilizability and detectability. 
This has been extended to nonlinear systems of the type 
considered in (1) by Lukes (1969) for optimal control, and by 
van der Schaft (1991) for H∞  control. The key to their 
analysis is the link between stationary solutions to (12) and 
stable Lagrangian manifolds for the corresponding 
Hamiltonian dynamics 
 ,H H∂ ∂

∂ ∂= = − xx ��
λ λ  (13) 

for state x  and adjoint variable λ  arising from the maximum 
principle, which have a hyperbolic equilibrium at the origin. 

Hypotheses 1. The linearization of (1), (2) at the equilibrium 
is stabilizable and detectable, that is, the triple 

{ }1 2( ), ( ), ( )∂
∂

f
x 0 B 0 Q 0  is stabilizable and detectable. 

Lemma 1 (Lemma 3, Doyle et al., 1989). Under Hypothesis 
1, the equilibrium is hyperbolic. Thus there exists a stable 
Lagrangian manifold L for the Hamiltonian dynamics (13)
corresponding to (1) and (2). 

Hypotheses 1 can be used to construct a smooth ( )V x  
geometrically in a neighborhood of the origin. The existence 
of a solution to the linearized problem at the origin, by this 
assumption, implies the existence of a stable Lagrangian 
manifold L  through the origin. Furthermore, it implies that 
L  locally has a well-defined projection onto state space and 
the corresponding stationary solution ( )V x  is smooth. ( )V x  
is in fact the generating function for L . This means that, for 

V= ∂ ∂xλ , L  is the set of points ( , )x λ  in phase space and 
( )dV d=x xλ  along trajectories of the Hamiltonian flow 

lying on L  (van der Schaft, 1991). It also follows that the 
optimal control is the feedback 
 ( )1( ) ( ) ( )

TVT ∂∗ −
∂= − x
xu x R x B x . (14) 

This is the nonlinear extension of the feedback that solves the 
linear problem. 

Smoothness breaks down when the optimal trajectories start 
to cross (going backwards in time). At such points, 
singularities develop in the projection of L  onto state space 
and d∫ xλ  no longer gives a well-defined function of x . 
However, the value function for the optimal control problem 
is still well-defined beyond such points and is in fact a 
stationary viscosity solution to (12), provided it is locally 
bounded. For the particular case considered here, where local 
assumptions imply the existence of a stable manifold L , Day 
(1998) has recently shown how to construct from L  a 
stationary viscosity solution ( )V x  to (12) beyond points at 
which optimal trajectories start to cross and smoothness 
breaks down. In addition to the conditions of local 
stabilizability and detectability at the origin (Hypotheses 1), 
the function ( )V x  must be locally Lipschitz in order for it to 
be a viscosity solution to (12) (Theorem 3, Day, 1998). This 
condition is formally stated in the following Hypothesis. 

Hypothesis 2. The value function ( )V x  defined by (10) in 
(12) is locally Lipschitz in a region Ω  around the origin. 

So, to summarize, Hypotheses 1 ensures that there exists a 
locally smooth optimal solution ( )V x . In addition, by 
Hypothesis 2, a larger region of the origin is assumed to exist 
on which ( )V x  is locally Lipschitz. 

In the region where ( )V x  is a smooth nonnegative solution to 
(12), the minimum is achieved by (14), so that by substitution 

( ) ( ) ( )11 1
2 2( ) ( ) ( ) ( ) ( )

TV V VT T∂ ∂ ∂−
∂ ∂ ∂− + =x x x
x x xf x B x R x B x x Q x x 0  (15) 

and the corresponding optimal cost ( )V x  is the solution to 
(15). Since ( )V∂ ∂ =0 x 0  (van der Schaft, 1991), ( )V∂ ∂x x  
can be written in the form 
 ( ) ( )V∂

∂ =x
x P x x  (16) 

for some matrix-valued function ( )P x . Also, ( )f x  can be 
given by (4) for some matrix-valued function ( )A x . 

Remark 1. For any choice of ( )A x  satisfying (4), 

( ) ( )→ ∂ ∂A x f 0 x  as →x 0 , that is, ( ) ( )∂
∂ =f 0
x A 0 . 

Consequently, it is obvious that if the Jacobian linearization 
of (1) is unstabilizable, there is no SDC parameterization 

( )A x  to satisfy Hypotheses 1 such that the pair { ( ), ( )}A 0 B 0  
is stabilizable. 

Now, substituting for ( )V∂ ∂x x  and ( )f x , (15) becomes 

1

[ ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )] 0

T T

T−

+

− + =

x P x A x A x P x
P x B x R x B x P x Q x x

 (17) 

In the linear case, the ARE is obtained directly from (17). 
However, since A  is a matrix-valued function of x , the 
quantity inside the parenthesis in (17) cannot be set to zero. 
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Unfortunately, the complexity of the HJB equation (15) 
prevents any solution except in some very simple, low 
dimensional systems. To make real-time implementation 
possible, one has to avoid solving any partial differential 
equation or two-point boundary-value problem. This has 
prompted control design engineers to search for alternative, 
suboptimal approaches to the problem, such as the SDRE 
technique. The SDRE approach provides an approximation to 
the solution of (17) (and thus the HJB equation (15)), and 
yields a suboptimal feedback control law for the infinite-
horizon optimization problem defined by (1) and (2). 
Application of the SDRE algorithm as an approximation to 
the solution of (17) involves ignoring the requirement that 

( )P x x  be the gradient of some function, and assumes instead 
that ( )P x  is symmetric. Then, at any given x , the SDRE 
algorithm consists of simply finding the symmetric positive-
definite solution ( )P x  to the algebraic SDRE (8), and 
applying, at that x , the control (7). This approach is much 
more appealing than solving the HJB equation (15). 

Remark 2. Although the heuristic derivation of the SDRE 
algorithm takes place in the region where ( )V x  is smooth, it 
can clearly be applied independently of this assumption. In 
fact, the stability analysis presented in Section 4.3 assumes 
only that ( )V x  is Lipschitz (Hypothesis 2). 

3.2  Existence of SDRE Stabilizing Feedback Controls 

Cloutier, Stansbery & Sznaier (1999) derived the necessary 
condition on ( )f x  and ( )B x  for the existence of any 
feedback gain matrix, ( )K x , that results in (6) being 
pointwise Hurwitz. First, let us state the following system-
theoretic concept definitions, pointwise in x , associated with 
the existence of SDRE stabilizing feedback controls. 

Definition 1. The SDC representation (5) is a stabilizable 
(controllable) parameterization of the nonlinear system (1) in 
a region nΩ ∈\  if the pair { ( ), ( )}A x B x  is pointwise 
stabilizable (controllable) in the linear sense for all ∈ Ωx . 

Definition 2. The SDC representation (5) is a detectable 
(observable) parameterization of the nonlinear system (1) in 
a region nΩ ∈\  if the pair 1 2{ ( ), ( )}A x Q x  is pointwise 
detectable (observable) in the linear sense for all ∈ Ωx . 

Definition 3. The SDC representation (5) is pointwise 
Hurwitz in a region Ω  if the eigenvalues of ( )A x  are in the 
open left half plane Re( ) 0s <  (that is, have negative real 
parts) for all ∈ Ωx . 

Definition 4. A 1( )nC \  control law (3) is said to be 
recoverable by SDRE control in a region Ω  if there exists a 
pointwise stabilizable SDC parameterization { ( ), ( )}A x B x , a 
pointwise positive-semidefinite state weighting matrix ( )Q x , 
and a pointwise positive-definite control weighting matrix 

( )R x  such that the resulting state-dependent controller (7) 
satisfies (3) for all x . 

Theorem 1 (Cloutier, Stansbery & Sznaier, 1999).  A 
1( )nC \  control law (3) is recoverable by SDRE control in a 

region Ω  if there exists a pointwise stabilizable SDC 
parameterization { ( ), ( )}A x B x  such that the closed-loop 
dynamics matrix (6) is pointwise Hurwitz in Ω , and the gain 

( )K x  satisfies the pointwise minimum-phase property in Ω , 
that is, the zeros of the loop gain 1( )[ ( )] ( )s −−K x I A x B x  lie 
in the closed left half plane Re( ) 0s ≤ , pointwise. 

Although Theorem 1 provides the necessary and sufficient 
conditions for recoverability of SDRE controls, it is difficult 
to apply this theorem due to the fact that there are an infinite 
number of SDC parameterizations. 

4. STABILITY ANALYSES 

4.1  Local Asymptotic Stability 

The following conditions are required for guaranteeing local 
asymptotic stability. 

Hypotheses 3. ( )⋅A , ( )⋅B , ( )⋅Q  and ( )⋅R  are 1( )nC \  
matrix-valued functions. 

Hypotheses 4. The respective pairs { ( ), ( )}A x B x  and 
1 2{ ( ), ( )}A x Q x  are pointwise stabilizable and detectable 

SDC parameterizations of the nonlinear system (1) for all x . 

Remark 3. A sufficient test for the stabilizability condition in 
Hypothesis 4 is to check that the controllability matrix 
 1( ) ( ) ( ) ( ) ( )n

C
−⎡ ⎤= ⎣ ⎦M B x A x B x A x B x" . 

has rank( )C n=M  n∀ ∈x \ . Similarly, a sufficient test for 
detectability is that the observability matrix 
 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( )n

O
−⎡ ⎤= ⎣ ⎦M Q x Q x A x Q x A x… . 

has rank( )O n=M  n∀ ∈x \ . This can be guaranteed by 
ensuring that ( )Q x  is positive-definite n∀ ∈x \ . 

Theorem 2 (Mracek & Cloutier, 1998). Consider the 
nonlinear multivariable system (1) with feedback control (7) 
applied, where n∈x \  ( 1n > ) and ( )P x  is the unique, 
symmetric, positive-definite, pointwise-stabilizing solution of 
the SDRE (8). Then, under Hypotheses 3 and 4, the SDRE 
method produces a closed-loop solution which is locally 
asymptotically stable. 

Proof. Using SDRE control, the closed-loop solution 
becomes ( )CL=x A x x� , where ( )CLA x  is the closed-loop 
SDC matrix given by (6). From Riccati equation theory, 

( )CLA x  is guaranteed to be stable at every point x . Under 
the smoothness assumptions of Hypotheses 3, ( )P x  is 

1( )nC \  and hence so is ( )CLA x . Applying the Mean Value 
Theorem to ( )CLA x  gives 

 ( )( ) ( ) CL
CL CL

∂
∂= + A z
xA x A 0 x , 
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where ( )CL∂ ∂A z x  generates a tensor, and the vector z  is 
that point on the line segment joining the origin 0  and x . By 
substitution, 
 ( )( ) CLT

CL
∂

∂= + A z
xx A 0 x x x� , 

which gives 
 ( ) ( , )CL= + ⋅x A 0 x x z x� ψ , 

where ( )1( , ) CLT ∂
∂

A z
xxx z x x�ψ , such that 0lim ( , )→ =x x z 0ψ . 

Hence, in a neighborhood about the origin, the linear term 
which has a constant stable coefficient matrix ( )CLA 0  
dominates the higher-order term, yielding local asymptotic 
stability.                                                                                   

Theorem 2 presents the rather mild conditions that guarantee 
local asymptotic stability of the SDRE closed-loop solution. 
Since the characterization of the resulting SDRE controller 
has a similar structure to the LQR problem, in order that the 
SDRE (8) have a positive-semidefinite solution for all x , it is 
sufficient that 1 2{ ( ), ( ), ( )}A x B x Q x  be pointwise stabilizable 
and detectable for all x . The SDRE algorithm then gives a 
smooth feedback. 

4.2  Global Asymptotic Stability 

Global asymptotic stability of the closed-loop system implies 
that it is possible to regulate the states to the origin regardless 
of the initial conditions. This is obviously a very desirable 
property, however, it is usually difficult to achieve and/or 
prove. Due to the nature of LQR formulation, under 
Hypotheses 1, the origin of the SDRE controlled system is 
locally asymptotically stable, that is, all eigenvalues of the 
closed-loop dynamics matrix (6) have negative real parts at 

=x 0 . However, this property is not sufficient to deduce the 
global stability of a nonlinear system. In fact, even if all 
eigenvalues of ( )CLA x  have negative real parts n∀ ∈x \ , 
global stability of a nonlinear system still cannot be 
guaranteed. 

Global stability results are now presented for two cases. In 
the first, the closed-loop coefficient matrix ( )CLA x  is 
assumed to have a special structure. The second case 
concerns scalar systems, where n∈x \  with 1n = . 

Theorem 3 (Cloutier, D’Souza & Mracek, 1996). If the 
closed-loop coefficient matrix ( )CLA x  is symmetric for all x , 
then under the conditions given by Hypotheses 3 and 4, the 
SDRE closed-loop solution is globally asymptotically stable. 

Proof. Let ( ) TV =x x x  be the candidate Lyapunov function. 
Then 

 
( )

( ) ( ) .

T T

T T
CL CL

V = +

⎡ ⎤= +⎣ ⎦

x x x x x

x A x A x x

� � �
 (18) 

Under the given assumptions, ( )CLA x  is known to be stable 
for all x . Therefore, if ( )CLA x  is symmetric, then ( )CLA x  is 

negative-definite, which implies that 0V <�  for all x .          

Theorem 4 (Cloutier, D’Souza & Mracek, 1996). In the 
scalar case ( 1n = ), the SDRE closed-loop solution is 
globally asymptotically stable. 

Proof. Global stability under SDRE feedback control can 
easily be deduced using the Lyapunov function 

0( ) ( )xV x p dτ τ τ= ∫  or 2( ) 0.5V x x= .                                     

In terms of such features as optimality, stability, and real-
time implementability, Theorem 4 on SDRE control of scalar 
systems provides the best result. While its extension to high 
order systems is possible (Qu, Cloutier & Mracek, 1996; 
Mracek & Cloutier, 1998), optimality (suboptimality) and 
global stability can only be guaranteed under several 
conditions. For second-order systems in canonical form with 
single input and constant B  matrix, Erdem & Alleyne (2004) 
have shown that the origin can be globally asymptotically 
stabilized relatively easily by arbitrary, constant, positive 
choices of 1 2diag{ , }q q=Q  and r=R . For higher-order 
systems, Langson & Alleyne (2002) have shown that the 
SDRE technique yields globally asymptotically stabilizing 
controls for a class of nonlinear systems satisfying certain 
growth conditions. Unfortunately, the global upperbound 
expressed in their proposition is very conservative, and is not 
easy to determine or enforce by using feedback control a 
priori for global asymptotic stabilization. 

4.3  A Stability Test for Estimating the Region of Attraction 

As an alternative to global asymptotic stability, which is 
usually difficult to achieve and/or prove, it is desirable to be 
able to estimate the region of attraction for asymptotic 
stability. This is the region in state space which encloses all 
initial conditions such that when the system is steered from 
them, the origin will be reached asymptotically. 

There have been very little results in the literature on the 
estimation of the region of attraction for SDRE regulated 
systems, with rather conservative results. Recently, however, 
McCaffrey & Banks (2001) proposed a stability test for 
determining the size of the region on which large scale 
asymptotic stability holds for the SDRE algorithm. The 
resulting test involves evaluating an inequality along 
trajectories of a Hamiltonian dynamical system, without the 
need to find the value function. The form of the inequality in 
question is already known and has been previously used in 
the literature to show that feedback controls sufficiently close 
to the optimal globally stabilizing feedback are themselves 
asymptotically stabilizing in the same domain. However, the 
key ingredient in such results is the proof of existence of a 
Lyapunov function corresponding to the optimal feedback, 
which has been based on the assumption that the Lyapunov 
function is smooth. These are the stable Lagrangian manifold 
arguments of Lukes (1969) and van der Schaft (1991). This 
assumption of smoothness limits the domain within which the 
Lyapunov function is known to exist to the largest state-space 
neighborhood of the equilibrium point onto which the stable 
manifold has a well-defined projection, that is, is single 
sheeted. The analysis in McCaffrey & Banks (2001) attempts 
to enlarge the region, within which the Lyapunov function is 
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known to exist, to regions of state-space over which the 
stable manifold has multiple sheets. This has been done by 
applying the geometrical construction from Day (1998) along 
with various convexity arguments to prove the existence of a 
nonsmooth Lyapunov function at a point x  in state-space 
from the fact that x  is covered by one or more sheets of the 
stable manifold. The resulting function solves the associated 
Bellman equation in a viscosity sense. A well-known 
inequality is then used on this much larger region to test the 
stability of the SDRE feedback. The resulting estimate of the 
domain of attraction for the SDRE feedback is thus likely to 
be far closer to the true domain of attraction than 
conservative estimates arising from the smoothness 
assumptions of the existing literature. 

In addition to the conditions of local stabilizability and 
detectability at the origin in Hypotheses 1, recall from the 
outset of Section 3.1 on how to construct a stationary 
viscosity solution ( )V x  to (12) from a stable Lagrangian 
manifold L , that the function ( )V x  must be locally Lipschitz 
in order for it to be a viscosity solution to (12) (Hypothesis 
2). The Lipschitz property follows from the topological 
properties of L , under the assumption that the dimension of 
L  is 5≤ . However, for the stability test in McCaffrey & 
Banks (2001), the Lipschitz property is assumed for higher 
dimensional case, which, at the very worst, holds on the 
region of the origin on which ( )V x  is smooth and, in general, 
on a larger region. Therefore, in the worst case, the stability 
arguments of McCaffrey & Banks (2001) reduce to the 
standard smooth Lyapunov-type arguments. This viscosity 
solution ( )V x  to (12) is the Lyapunov function. 

As outlined in Section 3.1 and above, suppose Hypotheses 1 
and Hypothesis 2 hold true. Under Hypotheses 1, recall the 
existence of a stable manifold L  by Lemma 1, and note that 
Ω  has to be covered by L , that is, for all ∈ Ωx  there exists 
λ  such that ( , ) L∈x λ . Assuming ( )Q x  is positive-definite 
for all ≠x 0 , it follows that ( ) 0V >x  for ≠x 0  and 

( ) 0V =0 . Note that these are basically sufficient conditions 
for asymptotic stability of the exact solution to (10). The 
proposition by McCaffrey & Banks (2001) gives a condition 
under which ( )V x  is also a Lyapunov function for the 
approximate solution given by the SDRE feedback algorithm. 
Their result is a modification of the proof that a stationary 
viscosity solution to (12) gives a Lyapunov function, with the 
additional element of using the stable manifold and convexity 
to reduce the condition to one which is more easily tested. 

From van der Schaft (1991), note that the positive-definite 
Riccati matrix ( )P 0  solving the linearized problem at the 
origin is 2 2( )V∂ ∂0 x . Since the factorization (4) satisfies 

( ) ( )= ∂ ∂A 0 f 0 x , the solution ( )P 0  to the SDRE (8) at 
=x 0  also satisfies 2 2( ) ( )V= ∂ ∂P 0 0 x . Also note that the 

points ( , ) L∈x λ  can be generated by following trajectories 
of the Hamiltonian dynamics (13) corresponding to (12) 
backwards in time from final conditions ( , )f f L∈x λ  lying 

close to the origin. For points fx  lying in a small ball 
\{0}Bε , the final conditions can be approximated arbitrarily 

closely by taking ( , )f fx λ  to lie on the tangent plane to L  at 
the origin, which is given by 
 

2

2
( ) ( )V

f f f
∂

∂
= − = −0

x
x P 0 xλ . 

The proof of the local stable manifold theorem (for instance, 
see Lukes, 1969 or any standard text on differential 
equations) shows how to obtain higher order approximations 
to L , should greater accuracy be required. In the following 
proposition let tΩ , for 0t > , be the set of all n∈x \  which 
are projections of points ( , ) L∈x λ  that can be reached in 
time t  or less along reverse trajectories of the Hamiltonian 
dynamics (13), starting from some ( , )f f L∈x λ , 

\{0}f Bε∈x . The proposed stability test essentially involves 
checking that the error between the true feedback and the 
approximation of the SDRE feedback is small in some sense, 
and can be stated as follows: 

Proposition 1 (McCaffrey & Banks, 2001). For any 0t >  
such that tΩ ⊂ Ω , ( )V x  is strictly decreasing along 
trajectories of the SDRE feedback algorithm (7)-(9) for all 

0 \{0}t∈ Ωx  provided 

 [ ] [ ]11
2

11
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

T T

T T

−

−

− −

− ≤

P x x B x R x B x P x x

x P x B x R x B x P x x

λ λ
 (19) 

for all ( , ) L∈x λ  such that \{0}t∈ Ωx . 

Since 
2

2
( )( ) V∂

∂
= 0

x
P 0 , as →x 0 , 

2

2
( )( ) V∂

∂
→ 0

x
P x x x  and 

2

2
( )V∂

∂
→ 0

x
xλ . Thus ( ) →P x x λ  as →x 0 , and so (19) will 

hold in a sufficiently small ball Bε  centered on the origin. 
The proposed stability test then involves following 
trajectories of the Hamiltonian dynamics (13) backwards in 
time from points f Bε∈ ∂x , 

2

2
( )V

f f
∂

∂
= 0

x
xλ  and estimating the 

largest t  for which (19) holds in tΩ . The SDRE feedback 
algorithm will then be asymptotically stable in the sublevel 
set { : ( ) }n V c∈ ≤x x\ , where min{ ( ) : }tc V= ∈ ∂Ωx x . 
Results in the literature indicate that asymptotic optimality of 
the SDRE feedback will then hold on the same region. This is 
reviewed in the next section. 

5. OPTIMALITY ANALYSES 

5.1  Local Asymptotic Optimality 

Since ( ) ( )→ ∂ ∂A x f 0 x  as →x 0 , ( )P x  tends to the 
solution of the ARE for the linearized problem at the origin. 
Hence, in a sufficiently small neighborhood of the origin, the 
feedback from the SDRE algorithm is arbitrarily close to the 
optimal feedback. This approximation is asymptotically 
optimal, in that it converges to the optimal control close to 
the origin as →x 0 . Mracek & Cloutier (1998) have 
addressed the optimality of the SDRE method by considering 
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the necessary conditions for optimality of the nonlinear 
regulator (1) and (2). This section presents the main 
optimality results. Throughout the analyses, the conditions 
set by Hypotheses 4 are assumed to hold, so that ( )P x  exists 
for all x . In addition, the following boundedness conditions 
are required. 

Hypotheses 5. ( )A x , ( )B x , ( )P x , ( )Q x  and ( )R x  along 

with their gradients ( )∂
∂

A x
x , ( )∂

∂
B x

x , ( )∂
∂

P x
x , ( )∂

∂
Q x

x  and ( )∂
∂

R x
x  are 

bounded in a neighborhood Ω  about the origin. 

Theorem 5 (Mracek & Cloutier, 1998). In the general 
multivariable case ( 1n > ), the SDRE nonlinear feedback 
solution and its associated state and costate trajectories 
satisfy the first necessary condition for optimality ( H∂

∂ =u 0 ) of 
the nonlinear optimal regulator problem (1) and (2). 
Additionally, if Hypotheses 5 holds, under asymptotic 
stability, as the state x  is driven to zero, the second 
necessary condition for optimality ( H∂

∂= − x
�λ ) is 

asymptotically satisfied at a quadratic rate. 

Proof. From Pontryagin’s maximum principle, the necessary 
conditions for optimality are 
 , ,H H H∂ ∂ ∂

∂ ∂ ∂= = − = −u x x0 x� �λ  (20) 
where H  is the Hamiltonian function defined in (11), and 

V= ∂ ∂xλ . Hence, using (7) and (11), 

 

[ ]

1

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

TH

T T

T

∂
∂

−

= +

= −

= −

u B x R x u

B x R x R x B x P x x
B x P x x

λ

λ

λ

 

  (21) 
Since V= ∂ ∂xλ , from (16) the costate vector satisfies 
 ( )= P x xλ , (22) 
and so substituting λ  into (21) gives H∂

∂ =u 0 . Therefore, the 
SDRE feedback solution satisfies the first necessary 
condition of the nonlinear regulator problem (1) and (2). 

Taking the partial derivatives of the Hamiltonian function 
(11) with respect to x , the second necessary condition 

H∂
∂= − x

�λ  becomes 

 ( ) ( ) ( ) ( )1 1
2 2( )

T TT T T∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= − − − − −f x B x Q x R x
x x x xu Q x x x x u u�λ λ λ . 

  (23) 
Differentiating (22) with respect to time gives 
 ( ) ( )= +P x x P x x� � �λ . (24) 
Substituting (4), (7), (9) and (24) into (23), and rearranging 
terms gives 

 
1 11 1

2 2

1 1 ,

T

T

T T T T

T T T

∂ − −∂ ∂
∂ ∂ ∂

− −∂
∂

+ + +

⎡ ⎤− + + + − =⎣ ⎦

Q R A
x x x

B
x

Px x x x PBR R B Px x Px

x PBR Px PA A P Q PBR B P x 0

�
 

where the argument x  has been dropped for notational 
simplicity. Using (8), therefore, 

 
1 11 1

2 2

1 ,T T

T T T

T T

∂ − −∂
∂ ∂

−∂ ∂
∂ ∂

+ +

+ − =

Q R
x x

A B
x x

Px x x x PBR R B Px

x Px x PBR Px 0

�
 (25) 

which is called the SDRE Necessary Condition for Optimality 
(Mracek & Cloutier, 1998). Therefore, whenever this 
condition is satisfied, the closed-loop solution satisfies all of 
the first-order necessary conditions of the maximum 
principle, since H∂

∂ =u 0  is always satisfied. 

In general, the SDRE Necessary Condition for Optimality is 
not satisfied for a given SDC parameterization ( )A x  in the 
multivariable case. However, a suboptimality property can be 
revealed as follows. Expanding P�  yields 

 
1 1

( ) ( )( )
n n

i
i CL

i ii i

x a
x x= =

⎛ ⎞∂ ∂ ⎡ ⎤= =⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠
∑ ∑P x P xP x x x x x� � , (26) 

where i
CLa  is the thi  row of the closed-loop coefficient matrix 

( )CLA x  defined by (6). Equation (26) can be rewritten as 
T

ix N x , where the elements of iN  are functions of the 

elements of ( )
jx

∂
∂
P x  and j

CLa , 1, ,j n= … . Substituting this 

result into the necessary condition (25) yields 
 T

i =x M x 0 , 
where 
 1 1 11 1

2 2
T TT T

i i
∂ − − −∂ ∂ ∂
∂ ∂ ∂ ∂+ + + −Q R A B
x x x xM N PBR R B P Px x PBR P�  

whose elements are functions of the elements of ( )A x , 
( )B x , ( )P x , ( )Q x , and ( )R x  as well as their gradients. 

Under asymptotic stability, the state trajectories will 
eventually enter and remain in Ω . From the boundedness 
assumption on the functions in Hypotheses 5, there exists a 
constant positive-definite matrix such that 
 max for T T

ii
≤ ∈ Ωx M x x Ux x . 

Thus, the ∞-norm of the left hand side of the necessary 
condition (25) is bounded above by a quadratic function of 
x . This completes the proof.                                                  

Theorem 5 represents a suboptimality property of the SDRE 
method. Since the second necessary condition for optimality 
is only satisfied asymptotically, the theorem relates only to 
the local near-optimal performance of the SDRE controller in 
the case of sufficiently small initial conditions. 

5.2  Global Optimality 

Using the following standard result reveals when the SDRE 
(8) gives the global optimal solution and the optimal cost for 
a given SDC parameterization. 

Lemma 2. Suppose a vector-valued function : nΧ →p \  is 
of class 1( )nC \ , and let 1( ) [ ( ), , ( )]T

np p=p x x x…  for 

∈ Χx . Then there exists :V Χ → \  such that ( ) ( )V∂
∂ =x
x p x  

iff 
 ( )( ) , , 1, 2, ,ji

j i

pp
x x i j n∂∂

∂ ∂= ∀ ∈ Χ =xx x … . (27) 

Moreover, if (27) holds, then V with ( ) 0V =0  is given by 

 
1

0
( ) ( )TV t dt= ∫x x p x . 

The optimality result now follows directly from Lemma 2. 
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Theorem 6 (Huang & Lu, 1996). Suppose the SDRE (8) has 
a positive-definite matrix-valued solution : n n n×→P \ \ . If 
the vector-valued function (16) satisfies (27) with 

( ) ( )=p x P x x , then (7) is the optimal state-feedback for the 
nonlinear optimal regulation problem (2) with (5). The value 
function is then given by 
 

1

0
( ) ( ) , 0TV t t dt= ≥∫x x P x x x . 

Therefore, provided that ( ( ) )∂
∂x P x x  is a symmetric matrix, 

the SDRE control (7) is in fact optimal with respect to (2). 
While this important symmetry condition is true in the scalar 
case for 1n = , it does not in general hold for higher 
dimensional systems. The next result uses this fact to 
highlight a unique property of the SDRE method. 

Theorem 7 (Mracek & Cloutier, 1998). For scalar systems 
( 1x ∈\ ), the globally asymptotically stabilizing SDRE 
feedback solution of the nonlinear optimal regulator problem 
(1) and (2) is always (globally) optimal on 1\ . 

Proof. In the case of scalar x , from Theorem 4, the SDRE 
feedback solution is globally asymptotically stabilizing, and 
the symmetry condition (27) is always satisfied. Hence the 
solution is the optimal. Alternatively, optimality can be 
deduced using the SDRE Necessary Condition for Optimality 
(25). However, this requires detailed algebraic manipulations, 
which is omitted for brevity.                                                   

Therefore, in the scalar case, even when the performance 
index (2) is nonquadratic (that is, Q  and R  are functions of 
x ), the SDRE method produces the optimal solution of the 
regulator problem (1) and (2) in feedback form. 

Corollary 1 (Mracek & Cloutier, 1998). In the case of scalar 
x , the globally asymptotically optimal stabilizing SDRE 
feedback control of the nonlinear optimal regulator problem 
(1) and (2) is given by 

 
2 2( ) ( )21

( ) ( )( ) ( ) sgn( ) ( ) b x x q x
b x r xu x f x x f x⎡ ⎤= − + +⎢ ⎥⎣ ⎦

. 

Proof. Using lower case notation, there exists only one SDC 
parameterization in the scalar case, which is ( ) ( )a x f x x= . 
Hence, the state-dependent Riccati equation (8) is given by 
 

2( ) ( ) 2
( )2 ( ) 0f x b x

x r xp p q x− + = , 
which has the positive-definite solution 

 
2 2

2 2
( ) ( ) ( ) ( ) ( )

( )( )
( ) r x f x f x b x q x

x r xb x x
p x ⎡ ⎤= + +⎢ ⎥⎣ ⎦

. 

Substituting this into (7) gives the result.                               

In Section 2.4, it is shown that the state-dependent 
parameterization is not unique, and there are an infinite 
number of representations. Huang & Lu (1996) have shown 
that there will exist a representation such that the SDRE 
feedback produces the optimal feedback control law. Before 
formally stating this property, consider the following lemma 
(Huang and Lu, 1996), whose proof is straightforward. 

Lemma 3. Suppose the function : n n→f \ \  with ( ) =f 0 0  
can be represented as ( ) ( )=f x A x x  for some continuous 
matrix-valued function : n n n×→A \ \ , then any 
representation 0( ) ( )=f x A x x  can be parameterized as 
 0 ( ) ( ) ( )= +A x A x E x , (28) 
where : n n n×→E \ \  satisfies ( ) =E x x 0 . 

Lemma 3 implies that 
 [ ]( ) ( ) ( ) ( ) ( ) ( )t t t= + +x A x E x x B x u�  
is also a representation of the original dynamics (1). Hence, 
the optimal feedback control law (3) can be given by (7), 
where ( )P x  is the positive-definite solution to the SDRE 

 
1

( )( ( ) ( )) ( ( ) ( )) ( )
( ) ( ) ( ) ( ) ( ) ( )

T

T−

+ + +

− + =

P x A x E x A x E x P x
P x B x R x B x P x Q x 0

 

for some ( )E x  that satisfies ( ) =E x x 0 . 

Theorem 8 (Huang & Lu, 1996). Under Hypotheses 3, if the 
value function ( )V x  has the gradient of the form (16) for 
some positive-definite matrix valued function : n n n×→P \ \ , 
then there always exists a parameterization (4) such that 

( )P x  is the solution of the SDRE (8) which gives the optimal 
feedback controller. 

Proof. Suppose ( )A x  is a matrix-valued function satisfying 
(4). Then, by Lemma 3, all the possible state matrices 0 ( )A x  
with 0( ) ( )=f x A x x  can be parameterized by (28) with 

( ) =E x x 0 . In this case, the HJB (15) becomes 
 ( ) 0T n= ∀ ∈x S x x x \ , (29) 
where ( )S x  is equal to the bracketed expression in (17) with 

0( ) ( ) ( )= −A x A x E x  from (28). Hence, the SDRE (8) is 
equivalent to the HJB equation (15) if and only if ( )E x  can 
be found such that 
 ( ) ( ) ( ) ( ) ( )T n+ + = ∀ ∈S x P x E x E x P x 0 x \ . 
Since ( )S x  is symmetric, ( )E x  can be parameterized as 
 [ ]11

2( ) ( ) ( ) ( )−= − −E x P x S x T x , (30) 
where ( )T x  is some skew-symmetric matrix, that is, 

( ) ( )T= −T x T x . Since ( ) =E x x 0 , from (30), ( )T x  is chosen 
such that 
 [ ]( ) ( ) n− = ∀ ∈S x T x x 0 x \ . (31) 
From (29), this is always possible. One way to construct such 

( )T x  is as follows. If =x 0 , simply choose ( ) =T 0 0 , and so 
 11

2( ) ( ) ( )−= −E 0 P 0 S 0  
from (30). The case ≠x 0  is considered in the following. 
Because ( )S x  is symmetric, the congruence transformation 
 ( ) ( ) ( ) ( )T=S x U x D x U x  
can be used to diagonalize ( )S x  for some orthogonal matrix-
valued function ( )U x  with 1( ) diag[ ( ), , ( )]nλ λ=D x x x… . 
Now letting 
 1( ) ( ) [ ( ), , ( )]T

ny y=y x U x x x x� … , 
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( )y x  cannot be zero for any ≠x 0 , since ( )U x  has full rank. 
Assuming, without loss of generality, that 0py ≠  for some 

p n≤  and 0iy =  for p i n< ≤ , (29) implies 2
1 0p

i i iyλ=∑ = . 
Let 

 ( ) =F x

1 1

2 2

1 1 2 2

0 0 0 0
0 0 0 0

0 0 0
0 0 0 0 0

0 0 0 0 0

p

p

p p

y y
y y

y y y y

λ
λ

λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

# # # # # # #
" "
" "

# # " # # " #
" "

 

so that ( )F x  is a matrix with all zero entries except the first 
p  elements on the th( 1)p +  row and column, with 
( ) ( )T= −F x F x . ( )T x  is now defined as 

 ( ) ( ) ( ) ( )T=T x U x F x U x , 
which is obviously skew-symmetric. It is easy to check that 

 

[ ] [ ]
[ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

T

T

− = −

= −

=

S x T x x U x D x F x U x x

U x D x F x y x

0

 

and thus ( )T x  satisfies (31). Therefore, ( )E x  can be 
obtained in (30) for all n∈x \ .                                              

Theorem 8 confirms that the global optimal controller can 
always be formed from the positive-definite solution to the 
SDRE (8) if the gradient of the cost function ( )V x  has the 
form ( )P x x  and the “right” ( )A x  is chosen. Though there 
are multiple solutions to an ARE, there is at most one 
solution which gives the optimal performance for both the 
original system (that is, the HJB equation) and the SDRE 
system. From the discussion in Section 3, the positive-
definite solution of the SDRE (8) gives a pointwise 
stabilizing state-feedback solution. Therefore, if ( )P x  in (16) 
is positive-definite, then with a right choice of SDC 
representation (5) for system (1), the unique positive-definite 
solution of (8), which is thus ( )P x , recovers the optimality. 

Although the representation (16) of ( )V∂
∂

x
x  is not unique, the 

following theorem essentially follows from the above 
discussion. 

Theorem 9 (Huang & Lu, 1996). If V  is a positive-definite 
solution of the HJB equation (15), then there exists at most 
one positive-definite matrix valued function ( )P x  such that 
(16) is satisfied. 

While there always exists some choice of SDC 
parameterization in which the SDRE recovers the global 
optimal, finding the “right” representation in SDC form using 
the above results is very difficult since the value function 

( )V x  is assumed known a priori in the above discussion. 
Cloutier, D’Souza & Mracek (1996) have provided an 
approach in which the nonuniqueness of ( )A x  is exploited 
by attempting to find an SDC parameterization for which the 
optimality condition holds. Unfortunately, this endeavor is by 
no means trivial. 

Typically, most SDRE controllers are simply implemented by 
choosing an ( )A x  that satisfies Hypothesis 4, and 
constructing a suboptimal and locally stabilizing controller. 
Thus far this approach has shown great promise, as evidenced 
by the growing number of application papers dealing with 
SDRE control. However, the methodology is as yet 
unsupported by proofs on how to systematically achieve 
global optimality or global asymptotic stability. 

6. CAPABILITIES AND ART OF SDRE DESIGN 

Some nonlinear control techniques are restricted to systems 
having certain structures such as cascaded systems, while 
others are not systematic and require mini-designs to be 
carried out on one equation at a time, and yet others have 
very limited applicability because of the strong conditions 
imposed on the system. In contrast, the SDRE method allows 
for the systematic design of a broad class of nonlinear 
systems, and has many capabilities that other nonlinear 
design methods do not have, at least collectively. While some 
nonlinear techniques only address stability, the SDRE 
method directly addresses performance through the 
specification of the performance index (2) in the nonlinear 
regulator problem. Furthermore, the state-dependent state and 
control weightings can be adjusted to directly affect 
performance with predictable results; for example, an 
increase in ( )Q x  results in faster regulation of the states at 
the expense of greater control effort. The extra design 
degrees of freedom that are available in the nonuniqueness of 
the SDC parameterization of ( )A x  can also be used to 
enhance controller performance. Such degrees of freedom are 
not available in traditional nonlinear control techniques. In 
addition, most practical control problems involve in one way 
or another hard constraints on states and inputs. Since there 
are very few design approaches that can handle these 
constraints a priori, the designer has to tweak the controller 
using ad-hoc “anti-windup” schemes a posteriori. On the 
contrary, the SDRE approach offers the capability of 
imposing hard bounds on the control, control rate or even 
control acceleration to avoid actuator saturation (see, for 
example, Cloutier, D’Souza & Mracek, 1996; Mracek & 
Cloutier, 1998). The technique also possesses the ability to 
satisfy state constraints (Friedland, 1998; Cloutier & 
Cockburn, 2001), and combined state and control constraints. 
The method can even be used to directly handle unstable 
nonminimum phase systems, a capability which has been 
illustrated in Mracek & Cloutier (1996, 1997) and Mracek 
(2007). More importantly, however, the SDRE method has 
the capability to preserve beneficial nonlinearities, since the 
method neither dynamically inverts nor feedback linearizes 
the nonlinear system. Because of such capabilities and the 
systematic nature of the SDRE technique, increasingly, 
control practitioners are using the method in a variety of real-
world applications, in spite of the fact that stability typically 
has to be verified via simulation. 

This section provides an overview of the capabilities of 
SDRE control and goes into detail concerning the art of 
carrying out an effective and systematic SDRE design for 
systems that both do and do not conform to the basic 
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structure and conditions required by the method (Cloutier & 
Stansbery, 2002a). In the following, a discussion is pursued 
on how the additional degrees of freedom provided by the 
nonuniqueness of the SDC parameterization can be used to 
enhance controller performance. The SDRE nonlinear 
regulator with integral servomechanism action is then 
presented to show how command following can be 
performed. Several situations that prevent a straightforward 
application of the SDRE method to the control problem at 
hand are also addressed. These include the existence of state-
independent terms, the existence of state-dependent terms 
which do not go to zero as the state vector goes to zero, the 
existence of nonlinearity (such as hard constraints) in the 
controls, the existence of state constraints, and the existence 
of uncontrollable and unstable but bounded state dynamics. 

6.1  Design Flexibility 

The weighting matrices ( )Q x  and ( )R x  are the obvious 
design parameters in the SDRE approach. However, 
performance of the controller over the domain of interest is 
dependent not only on the chosen state and control 
weightings, but also on the choice of the SDC representation 

( )A x  in (4). In a deterministic setting, the SDC 
parameterization fully captures the nonlinearities of the 
system. It is shown in Section 2.4 that although the SDC 
parameterization is unique in the case of scalar x  for all 

0x ≠ , it is not unique in the multivariable case and that the 
SDC parameterization ( )A x  itself can be parameterized as 

( , )A x α , where α  is a vector of free design parameters. The 
introduction of α  creates extra degrees of freedom that are 
not available in traditional methods. These additional degrees 
of freedom provided by the nonuniqueness of the SDC 
parameterization can be used not only to enhance controller 
performance, but also to avoid singularities or loss of 
controllability, as well as effect tradeoffs between 
performance, optimality, stability, robustness, and 
disturbance rejection, thus offering a more flexible nonlinear 
control policy. 

The flexibility in the design process for a conforming system, 
therefore, consists of the selection of the SDC matrix 

( , )A x α  together with the selection of the state-dependent 
state and control weighting matrices ( )Q x  and ( )R x . In 
order to obtain a legitimate ARE solution, ( , )A x α  must be 
chosen so that the parameterized pair { ( , ), ( )}A x B xα  is 
pointwise stabilizable in the linear sense. This also guarantees 
that the SDRE controller is locally asymptotically stable. In 
addition to satisfying the pointwise stabilizability 
requirement, a rule of thumb in selecting the state-dependent 
factorization is to place a nonzero entry in the { , }i j -element 
of the ( , )A x α  matrix if the thi  state derivative depends on 
the thj  state. For example, if 3 1 2x x x=� , two possible 
factorizations for ( ) [ ]ija=A x  are 31 0a = , 32 1a x=  and 

31 2a x= , 32 0a = . Neither one of these parameterizations 
reflect in the ( )A x  matrix the fact that 3x�  depends on both 

1x  and 2x . While both these parameterizations may work, it 
is expected that better responses can be obtained with the 
parameterizations 31 2a xα=  and 32 1(1 )a xα= −  with α  
being a free design parameter. Additionally, both of the 
previous factorizations can be tested by setting 0α =  and 

1α = , respectively. 

A complete characterization of the possible factorizations of 
( )f x  into ( , )A x xα  has been discussed in Section 2.4. 

However, to obtain the optimal feedback solution of the 
nonlinear regulator, α  may be required to vary as a function 
of the state x  (Cloutier, D’Souza & Mracek, 1996). 
Furthermore, solving for the optimal ( )xα  for given ( )Q x  
and ( )R x  weightings would require solving a partial 
differential equation, which would be as difficult as solving 
the HJB equation, and would not be real-time implementable. 
Fortunately, the real advantage of the SDRE technique is that 
there is no need to do so. Since design performance 
specifications are typically given in terms of the desired 
response characteristics (as opposed to a performance index), 
α  is normally used as a constant tuning parameter to aid in 
the achievement of the response specifications. In fact, even 
with ( )Q x  and ( )R x  a priori specified, satisfactory 
performance relative to the optimal value of the performance 
index can usually be obtained using a constant value of α . 

6.2  SDRE Integral Servomechanism 

In order to perform tracking (or command following), the 
SDRE controller can be implemented as an integral 
servomechanism as demonstrated in Cloutier & Stansbery 
(2001). This is accomplished as follows. First, the state x  is 
decomposed as [ ]T T T

R N=x x x , where it is desired for the 
vector components of Rx  to track a reference command Cr . 
The state vector x  is then augmented with Ix , the integral 
states of Rx : 

 T T T
I R N⎡ ⎤= ⎣ ⎦x x x x� . (32) 

The augmented system is given by 
 ( , ) ( )= +x A x B x u� � �� � �α , (33) 
where 

 ( , ) , ( )( , ) ( )
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

0 I 0 0
A x B x0 A x B x
� �� �α

α
, (34) 

and the SDRE integral servo controller is given by 

 1( ) ( ) ( )
I C

T
R C

N

dt
−

⎡ ⎤− ∫
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎣ ⎦

x r
u R x B x P x x r

x

� � �� � � . (35) 

Recall that in order for the SDRE to have a solution, the 
pointwise detectability condition must be satisfied. This is 
accomplished by penalizing the integral states with the 
corresponding nonzero diagonal elements of ( )Q x� � . An 
alternative, yet approximate, SDRE tracking approach has 
also been proposed in Çimen (to appear), which does not 
require increasing the state dimension. 
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6.3  Conforming to the Proper Structure and Conditions 

When the system dynamics are affine in the control and 
1( ) ( )nC∈f x \  with ( ) =f 0 0 , the system conforms to the 

basic structure and conditions required for the straightforward 
application of the SDRE method. In this case, the steps for 
carrying out an SDRE design are given by (7)-(9), and 
additionally (32)-(35) if the SDRE integral servomechanism 
is employed. However, there are many systems that do not 
conform to the structure or conditions specified in Section 
2.1, and the SDRE technique cannot be directly applied. In 
these cases, the given system must be converted to a system 
that is conforming so that an effective SDRE design can be 
performed. In the sequel, several nonconforming cases are 
presented, showing in each case the systematic procedure for 
converting the system to a conforming one. The converted, 
conforming systems can then be used to produce effective 
SDRE designs for controlling the original plants. 

The Presence of State-Independent Terms: In the presence 
of state-independent terms, referred to as bias terms, the 
condition ( ) =f 0 0  is violated. This prevents a direct 1( )nC \  
factorization of ( )f x  into ( , )A x xα . There are three ways to 
handle a bias term (Cloutier & Stansbery, 2002a), denoted as 

( )b t . First, if the bias term is constant or slowly-varying, 
then it can be modeled as a stable state 
 ( ) ( )b t b tλ= −� , 
where λ  is a small positive number. Each time through the 
controller, the actual value of ( )b t  is used in calculating the 
SDRE control using (7). Second, the bias term can be 
multiplied and divided by a state or a combination of states 
that it is known will not go to zero (Stansbery & Cloutier, 
2000). For example, in a stirred tank problem (Cloutier & 
Stansbery, 1999b), if the temperature T  is a state and is 
expressed in degrees Kelvin, then T  will not go to zero, and 
if a bias term exists, it can be factored as 
 ( )( ) b t

Tb t T⎡ ⎤= ⎣ ⎦ . 

In a missile control problem, any component of the velocity 
vector V  can go to zero, but the speed of the missile will not 
go to zero. In this case, the bias term, which may be gravity, 
can be multiplied and divided by the magnitude squared of 
the velocity vector. The bias term can then be factored as 
 ( )( )

T

T
b tb t ⎡ ⎤= ⎣ ⎦

V
V V

V . 

A third alternative is to augment the system with a stable 
state z  (Cloutier & Stansbery, 2001), such that 
 ( ) ( )z t z tλ= −�  
with 0λ > . The bias term can then be factored as 
 ( )( ) b t

zb t z⎡ ⎤= ⎣ ⎦ . 

Each time through the controller, the initial value (0)z  is 
used in the SDC matrix in calculating the control. 

The Presence of State-Dependent Terms which Exclude 
the Origin: Consider now the presence of state-dependent 
terms which exclude the origin, that is, terms which do not go 
to zero as the state goes to zero. This also violates the 

condition ( ) =f 0 0 . Like biases, these terms prevent a direct 
1( )nC \  factorization of ( )f x  into ( , )A x xα , and can be 

handled using either the second or third way discussed above 
for handling biases. However, it is more desirable to capture 
their state dependency in the proper element of the matrix 

( , )A x α . For example, suppose that 2 1cosx x=� . It is 
desirable to have a nonzero entry in the (2,1)-element of the 

( , )A x α  matrix that reflects the fact that 2x�  depends on 1x . 
This is accomplished by shifting the term so that it goes 
through the origin. This is done by adding and subtracting a 
bias to the term. For the given example, adding and 
subtracting one gives 1 1cos [cos 1] 1x x= − + . The function 

1cos 1x −  goes through the origin and can now be factored as 

 1

1

cos 1
1 1cos 1 x

xx x−⎡ ⎤− = ⎣ ⎦ . 

The bias term created, which in this case is 1, can then be 
accounted for using one of the bias handling techniques 
above. This shifting procedure can be used for any state-
dependent term which does not go through the origin. It is 
also desirable to shift state-dependent factors which exclude 
the origin even though they are embedded in a term which 
goes to zero as the state goes to zero. For example, consider 

1
2 3

xx e x=� . Obviously, this term goes to zero as 3x  goes to 
zero and can be factored as 21 0a =  and 1

23
xa e= . But this 

factorization does not reflect the fact that 2x�  depends on 1x  
within the pointwise LQR structure since 21 0a =  and, during 
execution of the controller, 23a  will just be a number in the 

( , )A x α  matrix. By shifting 1xe , and writing 

 11

1

1
2 3 1 3 3( 1) 1 xx e

xx e x x x x−⎡ ⎤⎡ ⎤= − + = +⎣ ⎦ ⎣ ⎦�  

allows the system to be parameterized as 
 1 1

1

1
21 3 23, ( 1)( 1) 1x xe

xa x a eα α−⎡ ⎤= = − − +⎣ ⎦ , 

which yields the desired nonzero entry in 21a . 

Nonlinearity and Constraints in the Controls : A system 
which is nonlinear in the control (such as hard bounds on the 
control and/or its rate and acceleration) can be represented as 
 ( ) ( , )= +x f x g x u� . 
Such a system can be brought to the required structure given 
in (1) by introducing integral control (Cloutier & Stansbery, 
2001; Cloutier & Stansbery, 2002b): 
 = +u Cu Du� � . 
In its simplest form, =C 0  and =D I . The augmented 
system is then given by 

 
( ) ( , )+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x f x g x u 0
u

u Cu D
�

�
�

, 

which conforms to the required structure, being affine in the 
pseudo-control u� . If the condition ( ) =f 0 0  is not satisfied in 
the augmented system, then the techniques discussed above 
on handling bias and shifting state-dependent terms to the 
origin can be employed. 

State Constraints: Extension of the SDRE method to 
regulation of systems described by (1) with state constraints 
has been considered in Cloutier & Cockburn (2001). Suppose 
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 1{ : ( ) , ( ) , ( ) ( )}p nC= ≤ ∈ ⋅ ∈x h x 0 h x h\ \X  (36) 
is a set of allowable states, and the objective is to design a 
state feedback controller of form (3), such that the closed-
loop system is stable and , 0t∈ ∀ >x X . Thus, any feasible 
trajectory of the closed-loop system must not cross the 
boundary of X , ∂X , defined as 
 1{ : ( ) , ( ) , ( ) ( )}p nC∂ = = ∈ ⋅ ∈x h x 0 h x h\ \X . (37) 
A sufficient condition to characterize state constraints (for x  
to remain in X ) is introduced by ( )∇ =h x x 0� . Equivalently, 
 ( )[ ( ) ( ) ]∇ + =h x f x B x u 0 . (38) 
A controller that satisfies (38) forces the closed-loop 
trajectories to follow level sets of X . This condition has 
been exploited in Cloutier & Cockburn (2001) in the design 
of SDRE nonlinear regulators that render X  invariant. The 
SDRE nonlinear regulator design strategy with state 
constraints is based on the enforcement of the sufficient 
condition (38) when the states are close to the boundary ∂X , 
and total relaxation of condition (38) when the states are far 
from ∂X . SDC representation of the left hand side of (38) is 
 ( )[ ( ) ( ) ] ( ) ( )∇ + = + =z h x A x x B x u C x x D x u 0� , (39) 
where p∈z \  is a fictitious output, with ( ) ( ) ( )∇C x h x A x�  
and ( ) ( ) ( )∇D x h x B x� . Assuming that x  is close to ∂X , 
the state-feedback law that satisfies the algebraic equation 

=z 0  is 
 ( ) ( ) ( )′= −u x D x C x x . (40) 
where 1( ) ( )[ ( ) ( )]T T −′D x D x D x D x�  is the right inverse of 

( )D x , such that ( ) ( )′ =D x D x I . This right inverse exists 
provided that ( )D x  has full row rank for all x . 

The control law (40) can be asymptotically recovered by 
solving a state-dependent nonlinear regulator problem that 
minimizes 1

02 ( )TJ dt∞= ∫ z W x zX , ( ) >W x 0 , subject to (5). 
Thus, 

{ }1
0 2 0

( , ( )) ( ) 2 ( ) ( )T T TJ dt
∞

⋅ = + +∫x u x Q x x x S x u u R x uX X X X , (41) 

where 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

T

T

⎫
⎪
⎬
⎪
⎭

Q x C x W x C x

R x D x W x D x

S x C x W x D x

�
�
�

X

X

X

 (42) 

and ( ) p p×∈W x \  is a diagonal weighting matrix, such that 
its ith element is large when x  is close to the boundary of the 
ith constraint, and small otherwise. 

In general, the minimization of (41) leads to singular 
regulators (for example, ( )R xX  not invertible) and makes the 
level sets of X  positively invariant (Cloutier & Cockburn, 
2001). However, the regulation objective is to derive the 
states to a desired equilibrium while remaining in the set X . 
This can be achieved by minimizing the augmented cost 
functional 
 0 0 0( , ( )) ( , ( )) ( , ( ))oJ J J⋅ = ⋅ + ⋅x u x u x uX , 
where 
 { }1

0 2 0
( , ( )) ( ) ( )T T

o o oJ dt
∞

⋅ = +∫x u x Q x x u R x u , 

Therefore, 
 { }1

0 2 0
( , ( )) ( ) 2 ( ) ( )T T TJ dt

∞
⋅ = + +∫x u x Q x x x S x u u R x u , (43) 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

T
o o

T
o o

T

+ = +

+ = +

=

Q x Q x Q x Q x C x W x C x

R x R x R x R x D x W x D x

S x S x C x W x D x

�
�
�

X

X

X

 

The state-feedback gain matrix that minimizes (43) is 

 
1( ) ( )[ ( ) ( ) ( )]
( ) ( )

T T

o

−= +
= +

K x R x B x P x S x
K x K xX

 (44) 

with 

 
1

1

( ) [ ( ) ( ) ( ) ( )] ( ) ( )

( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( ),

T T
o o

T T
o

−

−

+

+

K x R x D x W x D x B x P x

K x R x D x W x D x D x W x C x

�
�X

 

and ( ) ≥P x 0  satisfies the SDRE 

 
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

T

T−

+

− + =

P x A x A x P x

P x B x R x B x P x Q x 0

� �

��  (45) 

Dropping the dependence on x  for notational simplicity, the 
coefficients of the SDRE (45) become 

 

1 1

1 1

[ ]

[ ( ) ]

.

T T T
o

T T T T
o o

T
o

− −

− −

− = − +

− = + − +

= +

A A BR S A B R D WD D WC

Q Q SR S Q C W WD R D WD D W C

R R R D WD

� �
� �
� �

 

The control law (44) that results from solving the SDRE 
nonlinear regulator problem with state constraints exhibits an 
additive multi-objective structure of the state-dependent gain, 
with the interpretation that ( )oK x  is designed for 
stabilization and performance, whereas ( )K xX  is designed to 
satisfy the state constraints (38). The objective then becomes 
choosing ( ) >W x 0  such that (38) is enforced as x  
approaches ∂X , and →x 0  asymptotically. 

A simple choice for the weighting ( )W x  is based on the 
distance of x  to the boundary ∂X . For each fixed x , let 
 

( )2

2

1

( )
( ) , 1, ,Ni

i i
i h

i p
ε

φ
+

= =
x

x …  

with iN ∈] , 1iN >  and 0 1iε< < . Then, defining 
 1( ) diag( ( ), , ( ))pφ φ=W x x x… , (46) 

as → ∂x X , ( ) 0ih →x  and thus 2
1( ) Ni

i
i ε

φ =x . The tuning 

parameters, iN  and iε , can be selected to make ( )iφ x  as 
large as necessary as x  approaches ∂X . 

Another weighting strategy for SDRE design of nonlinear 
regulator systems with state constraints was considered in 
Friedland (1998), and is based on state penalty. Let I  
denote the set of all the states to be penalized, and define 

=z Cx , where 1diag( , , )nκ κ=C …  and 1i iκ = ∀ ∈ I  and 0 
otherwise. For the particular case of symmetric state 
constraints ( ) ,i i ih x B i= − ∈x I , 

 ( )2
( )

i
i

i i

Nx
i Bνφ =x , 

where 0 1iν< ≤ . In this case, the weight ( )W x  is also given 
by (46) with p n= . Clearly, as → ∂x X , ( ) 0ih →x  (that is, 
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i ix B→ ) and thus 21( ) ( ) i

i

N
i νφ =x  for some i , and as 

→x 0 , ( ) 0iφ →x . The satisfaction of the state constraints 
can then be guaranteed by a suitable choice of iN  and iν . 

Uncontrollable and Unstable but Bounded State 
Dynamics: A state of the system having uncontrollable and 
unstable but bounded dynamics results in the parameterized 
pair { ( , ), ( )}A x B xα  not being pointwise stabilizable, which 
in turn means that a legitimate Riccati equation solution is 
not obtainable. This situation can be handled by simply 
adding a stabilizing term to the dynamics of the unstable state 
(Hull et al., 1998; Cloutier & Stansbery, 2001). For example, 
if 1x  is the unstable state, the term 1xλ−  with 0λ >  is added 
to the dynamics. 

7. ISSUES FOR INVESTIGATION 

7.1  Implementation 

In implementing the SDRE approach, the most desirable 
option is to solve the state-dependent Riccati equation (8) 
using a symbolic software package. This may be possible for 
some systems having special structures, such as sparseness or 

( ) =Q x 0 . In general, however, an analytical solution cannot 
be obtained, and the second option is to solve the SDRE on-
line at a relatively high rate. The step length between 
successive solutions of (7)-(9) can be set by a simple Euler or 
by the Runge-Kutta routine. 

Computational implementation is an important practical 
consideration. Implementing the SDRE algorithm, at least for 
simulations, is relatively straightforward and can be easily 
mechanized using commercially available software. On-line 
computation of SDRE feedback controls makes the technique 
ideal for real-time implementation, so that the controller must 
perform all operations in “real-time”. The computational 
simplicity of this control algorithm together with the current 
advances in technology make these features practically 
realizable (Menon & Ohlmeyer, 2004) as demonstrated in 
numerous papers, such as the real-time experiments on the 
Nonlinear Benchmark problem in Langson & Alleyne (2002), 
magnetic levitation experiments in Erdem & Alleyne (2004), 
control of the control actuation system of a guided missile in 
Merttopçuoğlu et al. (2007), control of small autonomous 
helicopters in Bogdanov & Wan (2007), and control of large 
tankers in Çimen (to appear). 

Computational cost has been a drawback of the SDRE 
method, especially for on-line control of high order systems. 
However, a study on real-time execution of SDRE controls 
by Menon, Lam, Crawford & Cheng (2002) showed that an 
SDRE autopilot with six states and three controls could be 
executed at a rate of up to 2 kHz with commercial off-the-
shelf processors. Since the computational complexity is only 
of polynomial growth rate with state dimension, with faster 
computers the impact of this issue is slowly diminishing as 
evidenced by several application papers on real-time 
implementation, testing the feasibility of calculating the 
solution to the SDRE on-line. 

7.2  Stability 

Although numerous examples over the past dozen or so years 
have demonstrated the effectiveness of the SDRE method, a 
number of issues remain, most notably the issue of global 
asymptotic stability. As with all suboptimum control 
methods, stability is an issue in extended linearization 
techniques. These methods only guarantee local asymptotic 
stability (Mracek & Cloutier, 1998), provided that 1( ) C⋅ ∈K  
as shown in the paper. Much criticism has been leveled 
against the SDRE method because it does not provide 
assurance of global asymptotic stability. For instance, 
feedback linearization, when applicable, does provide such a 
proof since it effectively converts the nonlinear dynamic 
system to a linear system but, in so doing, ignores the 
consequences on the control signals, and hence on the 
performance criterion. It may result in the requirement of 
large control signals which, if undesirable, the suboptimum 
control methods seek to avoid. Surprisingly, however, 
empirical experience shows that in many cases the domain of 
attraction of extended linearization techniques may be as 
large as the domain of interest (see, for example, Mracek & 
Cloutier, 1996,1997 and 1998). Nevertheless, given the lack 
of an a priori guarantee of global asymptotic stability and 
given the wealth of well-understood and theoretically 
supported nonlinear synthesis methods such as feedback 
linearization, extended linearization control techniques are 
usually not the method of choice when the only concern is to 
stabilize the system. However, the situation changes 
significantly when, in addition to stability, the goal involves 
minimizing the cost given by a performance index such as  
(2). In this case, a workshop on nonlinear control (Doyle et 
al., 1997) illustrated the fact that the performance of 
commonly used nonlinear design techniques (such as 
feedback linearization, control Lyapunov functions, and 
recursive backstepping) is highly problem dependent, 
ranging, for any given method, from near optimal to very 
poor. The greatest advantage offered by SDRE control is the 
opportunity to make tradeoffs between control effort and 
state errors by “heuristically tuning” the corresponding 
weighting matrices as functions of the state. Furthermore, the 
system to be controlled need not satisfy a very restrictive 
form of the state equations, as is the case for other nonlinear 
control methods such as backstepping. 

There are situations in which global asymptotic stability 
cannot be achieved (for example, systems with multiple 
equilibrium states). In some applications, especially in 
aerospace, estimating the region of attraction may be more 
important. In these cases, the suboptimum methods have 
some promise. For the SDRE method, in particular, a method 
for estimating the size of the region of attraction is available, 
and can be automated easily with software like MATLAB®. 

7.3  Optimum Factorization 

The factorization of the original nonlinear dynamics, that is, 
( ) ( )=f x A x x , is not unique for systems of order greater than 

1. This being the case, it is apparent that the choices of 
parameterizing the nonlinear dynamics lead to different 
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control laws, and hence, different performance. It has been 
shown that, under mild conditions, an optimum factorization 
exists, in the sense that the SDRE control actually achieves 
the minimum performance value. However, a method of 
determining this factorization is not yet known. 
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