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Abstract: This paper presents a new algorithm for identification of NARX Hammerstein
systems using support vector machines (SVMs) to model the static nonlinear elements. The
SVM is fitted by minimizing an ε-insensitive, L-1 cost function which is robust in the presence
of outliers. Another advantage of this algorithm is that the value of the uncertainty level epsilon
can be specified by the user which gives more control on the sparseness of the solution. The
effect of this choice is demonstrated using simulations.
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1. INTRODUCTION

Having an accurate system model is important in many
control systems applications. While a priori modeling ap-
proaches can be used to develop models of simple systems,
this approach becomes impractical as the system complex-
ity increases. System identification can be used to find
a mathematical description from measured input/output
data. In either case, the resulting model will only be an
approximation to the true system.

The goal of a system identification, is to find the model,
within a selected class of models, that produces the best
predictions of the system’s output. In general, one forms a
cost function that depends on some norm of the prediction
errors, and finds the model that minimizes this cost func-
tion explicitly (Prediction Error Methods) or analytically
(Subspace Methods). Thus, system identification can be
viewed as an optimization problem.

Since the model is an approximation to the true system,
there is a trade-off between the complexity of the model,
and the accuracy of its predictions. In many cases, linear
models can be used to produce accurate predictions of
a system’s behavior, particularly, if it is restricted to
operating within a narrow region. If the model is required
to cover a broader operating region, then a nonlinear
model may be required [Schoukens et al., 2005]. Block
structured models, cascades of static nonlinearities and
dynamic linear systems, can often be used to represent
nonlinear systems. They retain much of the simplicity of
linear models, but can nevertheless be used to approximate
many nonlinear systems very accurately. The simplest
of these is the Hammerstein cascade, consisting of a
memoryless nonlinearity followed by a dynamic linear
element.

Many algorithms have been proposed to identify Ham-
merstein systems. They differ in the representations used
for the linear and nonlinear parts. If both of the parts
are parametric, then the algorithm is considered to be
parametric. If both are nonparametric (as in Greblicki

and Pawlak [1989]), then the algorithm is considered to
be non-parametric. The static nonlinearity has been rep-
resented in many ways. It has been represented as a sum
of basis functions [Hachino et al., 2004], a neural network
[Janczak, 2003], and finite number of cubic spline functions
[Dempsey and Westwick, 2004].

By expanding the mathematical model of any Hammer-
stein system, one will end up with expression involving
cross-products between the linear dynamical system pa-
rameters and the static nonlinearity parameters which in
consequence apply to the final cost function. This results
in a non-convex optimization problem. To overcome this
difficulty, some authors use an overparameterization tech-
nique, where one replaces every cross product term by a
new independent parameter, resulting in an overparame-
terized, but convex, problem. Then, a rank one approx-
imation technique, like singular value decomposition, is
used to project the overparameterized system onto the
Hammerstein model class, as suggested by Bai [1998].

Recently, support vector machines (SVMs) and least
squares support vector machines (LS-SVMs) have shown
powerful ability in approximating linear and nonlinear
functions [Vapnik, 1998, Suykens et al., 2002]. In San and
Ge [2004] and Wang and Ye [2004], the authors employed
conventional SVM and LS-SVM to model general non-
linear systems. Adaptive SVM and LS-SVM methods for
nonlinear system identification were proposed in Resendiz-
Trejo et al. [2006] and Wang et al. [2006]. In [Rojo-Álvarez
et al., 2004], the authors proposed new approaches to
linear ARX identification based on SVMs.

Moreover, some authors [Espinoza et al., 2004, Goethals
et al., 2004, 2005a,b] used LS-SVM to represent the
nonlinear part of block structured nonlinear models. In
Goethals et al. [2005a], a method for the identification of
Hammerstein models based on LS-SVMs was proposed.
The main advantage of this algorithm is that it allows for
the determination of the memoryless static nonlinearity
as well as the estimation of the model parameters of the
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dynamic ARX part. In addition, we can benefit from the
flexibility of using SVM to represent nonlinearities.

In this paper, we propose a new algorithm for identification
of NARX Hammerstein systems using support vector
machines (SVM). The proposed algorithm differs from
the algorithm proposed in Goethals et al. [2005a] in two
aspects. First, an ε-insensitive loss function is used as cost
function. This cost function is a L-1 cost function, rather
than L-2, which in consequence improves the robustness in
the presence of outliers and missing data. Second, the value
of ε is not necessarily restricted to be zero which results
in sparse solution. We will investigate the relationship
between sparseness and accuracy, as a function of ε.

The outline of this paper is as follows: support vector
machine theory will be reviewed in Section 2. In Section 3,
an algorithm for the identification of Hammerstein systems
is proposed. Section 4 presents an illustrative example to
test the proposed algorithm.

2. SUPPORT VECTOR MACHINES FOR FUNCTION
ESTIMATION

Basically, to construct a support vector machine for real-
valued function estimation problems, the input data are
mapped into a high-dimensional feature space where a
linear function is constructed. A kernel function is used
to avoid constructing this mapping explicitly.

2.1 STANDARD SVM REGRESSION

Consider the nonlinear regression model y = f (x) + v
where f : R

d → R is an unknown scalar-valued function
and v is an additive white noise term. xi is a sample value
of the input vector x and yi is the corresponding value
of the model output y. In the primal space, the following
model is assumed for f (x)

f (x) = wT ϕ (x) + b

where ϕ : R
d→ R

nH denotes a mapping to high dimen-
sional feature space which can be infinite dimensional, w
is a vector of weights in this feature space, and b repre-
sents the bias term. Before formulating the optimization
problem which is used to compute the parameters of f (x),
we need to introduce the so called ε−insensitive linear loss
function described by

ξ = |y − f (x)|ε =

{
0, if |y − f (x)| ≤ ε
|y − f (x)| − ε otherwise

Figure 1 depicts the situation graphically. It is clear from
this figure that in SVM regression, a tube with radius ε is
fitted to the data. Since the points outside the tube are the
only ones that contribute to the ε-insensitive cost function,
they are referred to as the support vectors. Now, to find an
estimate of the dependence of y on x in the standard SVM
sense, a cost function consisting of a weighted average of
ε-insensitive cost function and the L-2 norm of the weight
vector is minimized,

min J (w, ξ) =
1

2
wT w + c

N∑

i=1

((ξi) + (ξ∗i )) (1)

subject to
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Fig. 1. (Left) Tube of ε−accuracy; (Right) Vapnik
ε−insensitive linear loss function

yi − wT ϕ (xi) − b≤ ε + ξi

wT ϕ (xi) + b − yi ≤ ε + ξ∗i (2)

ξ∗i , ξi ≥ 0, i = 1, . . . , l,

where ε is the accuracy level of the approximation, c > 0
is a constant that determines the relative weighting of the
two terms, and ξi and ξ∗i are the errors in the ǫ− insensitive
cost function, shown in Figure 1, which are treated as slack
variables in the optimization problem.

The optimization of J (w, ξ) just described is the primal
problem for regression. To formulate the corresponding
dual problem, we write the Lagrangian function L. Then,
we minimize L with respect to the weight vector w and
slack variables ξ and ξ

′

and maximize with respect to the
Lagrange multipliers. By carrying out this optimization we
can write w in terms of the Lagrange multipliers. Finally,
we can substitute the value of w and simplify to get the
following dual problem

max W (α, α∗) = −
1

2

N∑

i,j=1

( (αi − α∗

i )
(
αj − α∗

j

)

×K (xi,xj))+

N∑

i=1

(αi − α∗

i ) yi −

N∑

i=1

(αi − α∗

i ) ε (3)

subject to
N∑

i=1

(αi − α∗

i ) = 0,

0≤ αi ≤ c, i = 1, . . . , N

0≤ α∗

i ≤ c, i = 1, . . . , N

where αi and α
′

i are the Lagrange multipliers. Finally, the
nonlinear function model takes the form

f (x) =

N∑

i=1

(αi − α∗

i ) K (x,xi) + b (4)

where K (xi,xj) is a kernel function used to represent the
inner product in the feature space

K (xi,xj) = ϕ (xi)
T

ϕ (xj) (5)

Kernels K (xi,xj) can be any symmetric function satis-
fying Mercer’s condition [Vapnik, 1998]. Typical exam-
ples are the use of a polynomial kernel K (xi,xj) =(
τ + xT

i xj

)d
of degree d or the RBF kernel K (xi,xj) =

exp
(
−‖xi − xj‖

2

2
/σ2

)
, where σ ∈ R

+ denotes the band-

width of the kernel.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5000



3. IDENTIFICATION OF NONLINEAR ARX
HAMMERSTEIN MODELS

The Hammerstein cascade, a static nonlinearity followed
by a linear filter as shown in Fig. 2, is often used to
represent certain higher-order nonlinear systems.

Nonlinear
Memoryless

Linear
Dynamic

u(t) x(t)

f(·)
B(z)

A(z)

v(t)

y(t)

1

A(z)

e(t)

Fig. 2. Block diagram of an ARX-Hammerstein cascade.
The investigator is assumed to have access to the
input, u(t), and the output, y(t), but not the inter-
mediate signal, x(t) or the innovation, e(t).

In this section, we are following the development in
Goethals et al. [2005a], up until the point where the LS-
SVM optimization is introduced (where we use a SVM).
The output of the NARX model is given by:

yt =

n∑

i=1

aiyt−i +

m∑

j=0

bjf (ut−j) + et (6)

Where ut, yt ∈ R, are the input and output measurements,
respectively, for t = 1 . . . N . The noise et is assumed to be
white and m and n denote the order of the numerator and
denominator in the transfer function of the linear model.
The static nonlinearity is assumed to have the following
form:

f (u) = wT ϕ (u) + d0 (7)

Hence (7) can be rewritten as follows

yt =
n∑

i=1

aiyt−i +
m∑

j=0

bj

(
wT ϕ (ut−j) + d0

)
+ et (8)

Since bj and w never appear alone in (8), they cannot be
uniquely identified. As an initial step, define wj and d as

wj = bjw; d = d0

m∑

j=0

bj

Hence, (8) can be rewritten as

yt =

n∑

i=1

aiyt−i +

m∑

j=0

wT
j ϕ (ut−j) + d + et (9)

Note that models of this form can be uniquely identified,
but this model class is more general than the Hammerstein
model, which it includes as a special case (when wj = bjw
for j = 1..m). The strategy will be to identify this model
first, and then use a low-rank projection to force the
estimated model to be a Hammerstein cascade.

So far, the development has followed the method presented
in Goethals et al. [2005a] for LS-SVMs. To use a SVM
instead, we must use the following optimization to identify
the linear and nonlinear parts

min
wj ,ξ,ξ∗

J (w, ξ, ξ∗) =
1

2

m∑

j=0

wT
j wj + c

N∑

t=r

(ξt + ξ∗t ) (10)

subject to

yt −
n∑

i=1

aiyt−i −
m∑

j=0

wT
j ϕ (ut−j) − d≤ ε + ξt

n∑

i=1

aiyt−i +

m∑

j=0

wT
j ϕ (ut−j) + d − yt ≤ ε + ξ∗t (11)

ξt, ξ
∗

t ≥ 0, t = r, . . . , N (12)
N∑

t1=1

wT
j ϕ (ut1) = 0, j = 0, . . . ,m (13)

Note that (10) is identical to the standard SVM objective,
(1). The constraints in (11) are derived by modifying (2)
to include the dynamics of the ARX model. Constraints
(13) were added to center the nonlinear functions wT

j ϕ (·) ,
j = 0, . . . ,m around their average over the training set
[Goethals et al., 2005a]. From these constraints, one can
show that

d0 =
1

N

N∑

t1=1

f (ut1)

Hence

d =

(
1

N

N∑

t1=1

f (ut1)

)
m∑

j=0

bj (14)

The Lagrangian is defined as

L (wj , d, ξ, ξ∗,a;α, α∗, β, β∗, γ) =

1

2

m∑

j=0

wT
j wj + c

N∑

t=r

(ξt + ξ∗t )

−
m∑

j=0

γj(
N∑

t1=1

wT
j ϕ (ut1))−

N∑

t=r

αt(
n∑

i=1

aiyt−i

+
m∑

j=0

wT
j ϕ (ut−j) + d − yt + ε + ξt)−

N∑

t=r

α∗

t(yt

−

n∑

i=1

aiyt−i −

m∑

j=0

wT
j ϕ (ut−j) − d + ε + ξ∗t)

−

N∑

t=r

(βtξt + β∗

t ξ∗t ) (15)

where αi, α∗

i , βi, β∗

i are non-negative Lagrange multipliers
and γj ∈ R. Setting ∂L

∂wj
to zero yields

wj = γj

N∑

t1=1

ϕ (ut1) +
N∑

t=r

(αt − α∗

t ) ϕ (ut−j) (16)

Which leads to

wT
j ϕ (u∗) = γj

N∑

t1=1

ϕ (ut1)
T

ϕ (u∗)

+
N∑

t=r

(αt − α∗

t ) ϕ (ut−j)
T

ϕ (u∗)
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= γj

N∑

t1=1

K (ut1 , u∗) +

N∑

t=r

(αt − α∗

t ) K (ut−j , u∗)

From the last expression and the centering constraints
(13), one can show that

γj

N∑

t2=1

N∑

t1=1

K (ut2 , ut1)

+

N∑

t=r

N∑

t1=1

(αt − α∗

t ) K (ut−j , ut1) = 0, j = 0, . . . ,m (17)

∂L

∂d
= 0 →

N∑

t=r

(αt − α∗

t ) = 0

(18)

∂L

∂ai

= 0 →

N∑

t=r

(αt − α∗

t ) yt−i = 0, i = 1, . . . , n (19)

∂L

∂ξt

= 0 → αt + βt = c, t = r, . . . , N

∂L

∂ξ∗t
= 0 → α∗

t + β∗

t = c, t = r, . . . , N (20)

Substituting (16) and K (xi, xj) = ϕ (xi)
T

ϕ (xj) into the
constraints (11) leads to

yt −
n∑

i=1

aiyt−i −
m∑

j=0

γj

N∑

t=1

K (ut, ut−j)

−

m∑

j=0

N∑

t=r

(αt − α∗

t ) K (ut−j , ut−j) − d ≤ ε + ξt

n∑

i=1

aiyt−i +

m∑

j=0

γj

N∑

t=1

K (ut, ut−j)

+

m∑

j=0

N∑

t=r

(αt − α∗

t ) K (ut−j , ut−j)

+ d − yt ≤ ε + ξ∗t , t = r, . . . , N (21)

From (16), and using K = ϕT ϕ, the Lagrangian, in the
minimization (15), can be written in matrix form

min
α,α∗,γ

L (α, α∗, γ) =

1

2

[
γT αT α∗

T
] [−SIm+1 0 0

0 K −K
0 −K K

][
γ
α
α∗

]

+
[
0 −yT

r:N yT
r:N

]
[

γ
α
α∗

]

+
[
0 ε · 1T

N−r+1 ε · 1T
N−r+1

]
[

γ
α
α∗

]
(22)

subject to
N∑

t=r

(αt − α∗

t ) = 0

[
YT

P −YT
P

] [ α
α∗

]
= 0,

γjS +

N∑

t=r

(αt − α∗

t ) K0 (t, j) = 0, j = 0, . . . ,m

0≤ α∗

t ≤ c

0≤ αt ≤ c

t = r, . . . , N

with

YP =





yr−1 yr · · · yN−1

yr−2 yr−1 · · · yN−2

...
...

. . .
...

yr−n yr−n+1 · · · yN−n





K (p, q) =

m∑

j=0

K (up+r−j−1, uq+r−j−1)

K0 (t, j) =

N∑

t1=1

K (ut1 , ut+r−j)

S =
N∑

t1=1

N∑

t2=1

K (ut1 , ut2)

Now to compute d and a, one has to solve the following
optimization problem which has been derived and proved
in Rojo-Álvarez et al. [2004].

min
αL,αL∗

L
(
αL, αL∗

)
=

1

2

[
αLT

αL∗
T
] [

Ry −Ry

−Ry Ry

] [
αL

αL∗

]

+
[
ε·1T

N−r+1−YT ε·1T
N−r+1+YT

] [ αL

αL∗

]
(23)

s.t.
N∑

t=r

(
αL

t − αL∗

t

)
= 0

0≤ αL∗

t ≤ c

0≤ αL
t ≤ c

t = r, . . . , N

with

Ry (p, q) =

n∑

i=1

yp+r−i−1yq+r−i−1 (24)

Y (t) = yt −
m∑

j=0

(γj

N∑

t1=1

K (ut1 , ut−j)

+

N∑

t2=r

(
αt2 − α∗

t2

)
K (ut2−j , ut−j)) (25)
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Then, ai and d are given by

ai =
N∑

t=r

(
αL

t − αL∗

t

)
yt−i (26)

d = mean
(
Y−YT

P · a
)

(27)

3.1 Separating Numerator and Nonlinearity Parameters

In this section, we return to the development in Goethals
et al. [2005a], since this material is independent of the type
of SVM employed in the model. Recall

f (u) = wT ϕ (u) + d0

Substituting d0 = 1

N

∑N
t1=1

f (ut1) into the last equation
results in

f (u) = wT ϕ (u) +
1

N

N∑

t1=1

f (ut1)

Subtracting 1

N

∑N
t1=1

f (ut1) from both sides and replacing

f (u) − (1/N)
N∑

t=1

f (ut) with f (u) gives

f (u) = wT ϕ (u)

Multiplying both sides by bj gives

bjf (u) = bjw
T ϕ (u)

Recalling wj = bjw
T , the last expression can be rewritten

as
bjf (u) = wT

j ϕ (u)

Substituting (16) and (5) into the last equation results in

bjf (u) = γj

N∑

t1=1

K (ut1 , u) +

N∑

t=r

(αt − α∗

t ) K (ut−j , u)

Based on the last expression, one can show that for
the training input sequence [ u1 · · · uN ], the following
equality holds



b0

...
bm








f̂ (u1)

...

f̂ (uN )





T

=





αN−α∗

N · · · αr−α∗

r 0
αN−α∗

N ... αr−α∗

r

. . .
. . .

0 αN−α∗

N · · · αr−α∗

r





×





K (N, 1) K (N, 2) · · · K (N,N)
K (N − 1, 1) K (N − 1, 2) · · · K (N − 1, N)

...
...

...
K (r − m, 1) K (r − m, 2) · · · K (r − m,N)





+




γ0

...
γm




N∑

t=1




K (t, 1)

...
K (t,N)





T

(28)

with f̂ (u) an estimate for f(u) = f (u) −

(1/N)
N∑

t=1

f (ut) . In consequence, estimates for bj and

the static nonlinearity f can be obtained from a rank 1
approximation of the right-hand side of (28), for example

using singular value decomposition. After obtaining the

estimates of bj , estimate for
N∑

t=1

f (ut) can be obtained as

N∑

t=1

f (ut) =
Nd
m∑

j=0

bj

hence

f (u) = f (u) + (1/N)

N∑

t=1

f (ut)

Now, using the training input sequence [ u1 · · · uN ] and
the sequence of the nonlinearity responses to this input
[ f (u1) · · · f (uN ) ], we can train a support vector ma-
chine to represent the nonlinear part of the Hammerstein
system.

4. ILLUSTRATIVE EXAMPLE

To test the proposed algorithm, the simulation example
presented in Goethals et al. [2005a] is repeated. However,
in this case the noise was uniformly distributed.

Based on validation test the regularization parameter was
set to c = 50. An RBF-kernel with σ = 1 was used.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

u

f(
u

)

LS−SVM Nonlinearity

 

 
Mean Estimate

Original function

1 STD from Mean

Fig. 3. True nonlinearity, and mean plus and minus one
standard deviation of the LS-SVM estimate. Statis-
tics are estimated from a twenty trial Monte-Carlo
simulation

Table 1. Mean absolute error and mean square
error between true and estimated nonlinearity
and the average number of Support Vectors

Method

Mean

absolute

error

Mean

Square

error

AVG

number

of SV

LS-SVM 0.0037 2.6×10-5 194

SVM with ε = 0.01 0.0048 4.5×10-5 190

SVM with ε = 0.1 0.007 1.1×10-4 115

Figure 3 shows the mean nonlinearity estimated using
the algorithm proposed in Goethals et al. [2005a] while
Figures 4 and 5 show the mean nonlinearity estimated
using the proposed algorithm with ε = 0.01. and ε = 0.1
respectively. From Table 1, it is clear that the model
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−4 −3 −2 −1 0 1 2 3 4
−1.5
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−0.5

0

0.5

1

u

f(
u

)

SVM Nonlinearity, Epslon = 0.01

 

 
Mean Estimate

Original function

1 STD from Mean

Fig. 4. True nonlinearity, and mean plus and minus one
standard deviation of the SVM estimate. Statistics are
estimated from a twenty trial Monte-Carlo simulation.
The SVM was fitted with an ǫ-insensitive loss function
with ǫ = 0.01

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

u

f(
u

)

SVM Nonlinearity, Epslon = 0.1

 

 
Mean Estimate

Original function

1 STD from Mean

Fig. 5. True nonlinearity, and mean plus and minus one
standard deviation of the SVM estimate. Statistics are
estimated from a twenty trial Monte-Carlo simulation.
The SVM was fitted with an ǫ-insensitive loss function
with ǫ = 0.1

produced by Goethals et al. [2005a] algorithm used more
support vectors to fit the nonlinearity than the proposed
algorithm. Furthermore, by increasing the uncertainty
level from ε = 0.01 to ε = 0.1, the number of support
vectors decreased by 40% but the mean absolute error and
mean square error increased. So, one has to compromise
between the number of support vectors and the estimation
error.

5. CONCLUSION

In this paper a new algorithm for identification of NARX
Hammerstein systems using support vector machines
(SVM) has been derived. It was clear from the SISO
example that increasing the uncertainty level ε decreases
the number of support vectors needed to estimate the
nonlinearity but the mean absolute error and mean square

error increases. Using this approach, one can adjust the
compromise between model accuracy and parsimony.
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