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Abstract: Some models of dynamic cognitive maps with linearly ordered qualitative scales of factors 
values are considered. Notions of vague values and increments in such scales and operations with them are 
defined. Main effects of behaviour in these models are described. Sources and forms of decrease of data 
certainty in these models, the means of monitoring of this phenomenon, limits of the modelling process 
reliability are defined. 

 

1. INTRODUCTION 

The cognitive maps are widely used at the analysis of 
economic, sociological and sociopolitical problems (Axelrod, 
1976; Roberts, 1976; Eden, 1988; Kosko, 1992). The static 
cognitive maps are used for determination of power, sign and 
paths of mutual influence of factors of the considered 
situation. The dynamic cognitive maps are used for 
forecasting the development of the considered situation in the 
model time. The models of dynamic cognitive maps of 
Roberts (1976) and Kosko (1992) are most widely known. 

In these models the mutual influence of factors is defined by 
the transfer coefficient (the weight of influence) with the sign 
“+” or “-“. The weights of influence are expressed by real 
numbers, which accuracy is not limited. We shall name 
therefore such models of cognitive maps exact. Exact models 
have the following flaws. 
• Exact values of weights could not be received. These 

values are appointed by an expert, who can specify them 
only approximately.  

• In exact models can occur the complicated effects of 
behavior which nature can vary at minor alterations of 
parameters of the model. These effects mismatch the 
human intuition. Therefore the events in such system are 
difficult to explain. 

In this connection a problem arises, is it correct to use exact 
cognitive models with inexact data, to what extent we can 
rely upon the forecast received on the basis of such models. 
This problem can be resolved by execution in the model the 
approximate calculations according to accuracy of initial 
data. However it creates the problems itself. It is known that 
inaccuracy of numerical data can only increase during the 
approximate calculations. Loss of accuracy at long 
calculations can lead to loss of interest to obtained results. 

At the same time the problems, to which decision the 
cognitive maps are applied (research of "weakly structured ", 
"soft" systems (Checkland and Scholes, 2003)), basically do 

not require great accuracy. It is enough only to catch a 
general tendency of development of the considered situation. 
A natural approach in this case is to use the qualitative 
models of cognitive maps. All parameters in such models are 
expressed in finite qualitative scales. Qualitative models have 
greater stability in comparison with quantitative models. The 
complicated, difficultly explainable processes are impossible 
in qualitative models. For the user the qualitative scales form 
a natural language, in which he defines a model, sets data for 
it, and receives all explanation in the process of modelling.  

2. QUALITATIVE SCALES OF FACTOR VALUES  

Various definitions of qualitative scales are possible. The 
general feature of such scales is the linear order of the values. 
Non-numerical character of qualitative scales creates 
difficulty for their use in the computing process together with 
quantitative numerical data. Therefore sometimes 
“algebraized” qualitative scales are used. Such scales 
represent only names of numerical values, with which 
arithmetic operations are carried out without any restrictions 
(Averkin, et al., 2006). The qualitative scales often are 
considered as fuzzy reflection of some numerical domain. 
Such scales are known as "linguistic" (Zadeh, 1975). 

However there is also a wide class of qualitative scales, 
which have no fuzzy binding to any numerical domain. The 
scale of school marks, presented in Table 1, may be 
considered as a typical example of qualitative scale of this 
kind. The marks are ordered, but it is not defined exactly how 
far they are located from each other.  

Table 1.  Qualitative scale of school marks 
Failing Unsatisfactory Average Good Excellent 

F D C B A 
1 2 3 4 5 
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An attempt to reveal main effects of behavior in some models 
of qualitative cognitive maps (QCM), based on qualitative 
scales of similar type is presented below. The values of each 
factor in QCM are defined in its own qualitative scale. Values 
from different scales are incomparable. Qualitative scale S = 
{s1, …, 

Sns } is a linearly ordered set of symbolical values si. 
Any symbol can be used for designation of value si, and 
index i in particular. A priori scale S has no metrics. However 
we consider admissible to use the "natural" integer metrics, in 
which the distance between si and sj is defined as ρ(si, sj) = |j 
– i|. The increment from si to sj is defined as δ(si, sj) = j – i, 
where δ ∈ Sδ = {– (nS – 1), …, 0, …, nS – 1}. The increments 
can be summarized with each other and with values of scale 
S, regarding the limited ranges of the scales S and Sδ. 
Summation of values of the scale S is not allowed. 

At practical use of qualitative scales it is difficult to do 
without intermediate values. In the scale of school marks 
such values can be expressed by modifiers “+” or “-”. 
However, because of absence of metrics, it is impossible to 
define the exact position of intermediate values in scale S. 
We define the intermediate value v, located between two next 
values si and si+1, as fuzzy sum µv(i)/i + µv(i+1)/(i+1), where 
µv(i) and µv(i+1) reflect a measure of similarity of value v to 
the values si and si+1 respectively. 

2. VAGUE QUALITATUVE VALUES AND 
INCREMENTS 

As a result of decrease of data accuracy in QCM, the vague 
qualitative values can appear. The reason of it is inexactness 
of definition of QCM or conflicts of influence on a factor 
from another factors arising in the modelling time. A vague 
value is characterized not by one value si∈S, but by some set 
of such values, each with own degree of certainty.  

A vague value v in scale S is defined as fuzzy sum  

v = ,  
1

( ) /
Sn

i

i iµ
=
∑ v

where µv(i)∈[0, 1] is understood as a degree of certainty, that 
si belongs v. The nonzero members of value v we name its 
components. The value µv(i) we name  weight of  the 
component si. Unlike the vague values, we name the values 
si∈S basic or exact. The value vex = (1, 0, 0.3, 0, 0, 0, 0.5) 
may be considered as an example of a vague value for nS = 7. 

A vague increment in scale S is defined as fuzzy sum 

δ  = 
1

( 1)
( ) /

S

S

n

i n
µ i i

−

=− −
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Although summation of basic values is illegal, the summation 
of vague values is allowed and is defined by the scheme of 
fuzzy OR. 

u + v = 
1

( ) /
Sn

i
µ i i

=
+∑ u v ,    (1) 

where µu+v(i) = max (µu(i), µv(i)). Note that operation (1) can 
give the vague result even at exact arguments. 

The arithmetic operations with vague values and increments 
are defined by analogy to operations with fuzzy numbers 
(Dubous, et al., 1978), taking into account the limits of 
scale range: 

v + δ =
=1

( ) /
Sn

i

µ i i∑ v+δ ,   (2) 

where µv+δ(i) = maxk,l min(µv(k), µδ(l)), provided that 
i = max(1,min(nS, k + l)). 

δ1 + δ2 = 1 2

1

( 1)
( ) /

S

S

n

i n
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−

=− −
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where 
1 2

( )µ i+δ δ = maxk,l min( , ), provided that 
1
( )kµδ 2

( )lµδ
i = max(–(nS –1), min((nS –1), k + l)). 

The definitions (1)-(3) show that the scale borders have 
absorbing effect: all values beyond the scale range are 
mapped into its borders. 

The efficient increment δ’, which value v receives as a result 
of operation (2), can differ from the increment δ due to the 
absorbing effect of borders. The true value δ’ can be obtained 
from next formula 

 δ’ = ,     (4) 
1

( 1)
' /( )

S

S

n

i n
iiµ

−

=− −
∑ δ

where µδ’ (i) = maxk,l min (µv(k), µδ(l)), provided that  i = 
max(1, min(nS, k + l)) − k. At such definition δ’ = 0, if δ = 0. 

Intermediate value of scale S is a special case of the vague 
qualitative value. Other special cases are a basic value si and 
the fuzzy singleton µi/i, µi ∈[0, 1] . 

Vague qualitative value contains two types of uncertainty: on 
distribution of components in a scale and on their weights. At 
the operations with vague values, just as with inexact 
numbers, there is a tendency of lessening of the data 
accuracy. This tendency is expressed in the increase of 
number of components and in the reduction of their weights. 
However, because of the absorbing effect of the scale 
borders, the result of individual operation can, both to 
increase, and to decrease vagueness of data. 

3. DEFAZZIFICATION OF VAGUE VALUES 

A vague qualitative value v finally requires defazzification - 
choice of a single value d(v)∈S (defazzifier), which presents 
value v as a whole. Basically, for this purpose can be used 
any concept of center of fuzzy set (centroid, median, center 
of maxima, etc.) rounded to nearest basic value. 

However, presentation of a multi-component vector v by a 
one-component object d(v) entails loss of information, hence 
such representation can be only approximate. To not “forget” 
the vagueness of value v at defazzification it is desirable not 
only to assign d(v), but also to estimate a measure of its 
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conformity to value v as a whole. With this aim we consider 
the result of defazzification of value v in the form of fuzzy 
singleton d(v) = µ(v)/d(v), where µ(v) is understood as the 
integrated estimation of certainty of vague value v. The 
estimation µ(v) should take into consideration the set of all 
components of value v, their weights and allocation. We 
suppose that µ(v) meets the next requirements: 
• the more closely the components of value v are located 

on the scale, the more µ(v) is,  
• µ(v) weakly depends from small components of v, 
• µ (v) ≤ max(v), where max(v) = maxi µv(i), and in 

particular: 
 µ (v) = µi, if v is a singleton µi/i, 
 µ (v) < max(v), if v is not a singleton.   

Taking these requirements into consideration, we define 
function µ (v) in the next form: 

µ (v) = max(v)⋅(1 –
( ) 1

S

w

n

−v
), 

where w(v) ∈ [1, nS] – width of value v, which estimates the 
distribution of its components on scale S. The definition of 
w(v) below reflects a measure of consolidation of 
components around some center с∈S. At first we define the 
radius rс of value v regarding с as 

rс  = 

1

1

( )

( )
S

S

n

i
n

i
µ i
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=

=

− ⋅

∑

∑

v

v

.     

Radius rс reflects the average nearness of the components of 
value v to the center с. Therefore the width wс(v) regarding 
center с can be defined as 

wс(v) = 2⋅ rс + 1     
The definition of wс(v) is suitable for any type of center с. 
However it allows to define one more concept of center of the 
value v as a point сm(v)∈S, which radius rсm(v) is minimal. 
The center сm may not coincide with centroid or median. For 
instance, for the value vex centroid =3, median =2, and cm =1. 

Further we consider the defazzificator d(v) in the form of 
d(v) = µ(v)/cm(v), where 

µ (v) = max(v)(1 – ( )2 cm

S

r
n

v ).  (5) 

For example,  

d(vex) = µ(vex)/d(vex) = 0,47/1.  (6) 

The more µ(v), the more certain is vague value v. In 
particular, if µ(v) = 1, then v is exact value of the scale S. 
This property allows us to use µ(v) as a criterion of certainty 
of vague data during all process of calculations in QCM.  

4. QUALITATIVE FUNCTIONS OF INFLUENCE  

The numerical coefficients used in exact cognitive maps for 
expression of influence power, is not applicable to qualitative 
values. Therefore in QCM the functional representation is 
used for this purpose. Functional representation is the 
universal form for expression of influence, which, basically, 
allows to express influence of both qualitative, and numerical 
factors. A typical example of QCM is presented on Fig.1. 
 

 S 3

f 3 
 
 
 
 
 
 
 
 
 

Fig.1 Qualitative cognitive map. 

Let f1, …, fN be the factors of a QCM model M and S1, …, SN 
the scales of their values. The influence of factor fi on factor fj 
is expressed by function Fij, associated with the edge directed 
from input node fi to output node fj. The function Fij maps a 
value of scale Si into a value of scale Sj. In the simplest case 
function Fij maps a basic value of scale Si to a basic value of 
scale Sj. If it takes place we name scales Si and Sj consistent. 
However such consistency of the scales is not always 
possible. So in general we suppose that function Fij maps a 
basic value of scale Si into a basic or an intermediate value of 
scale Sj.   
The power of influence corresponds to the “speed” of change 
of the function Fij depending on change of argument. The 
sign of influence corresponds to the type of change: the 
increase or the decrease. 

Table 2.  Qualitative function of influence 

 1 2 3 4 5 6 7 

1     0,35 0,65  

2     0,90 0,35  

3    0,45 0,55   

4    1,00    

5   0,55 0,45    

6  0,35 0,90     

7  0,65 0,35     
 

Formally, the function Fij is defined by the matrix Fij = 

||fij(k,l)||, where k = 1, Si
n , l = 1, S j

n , fij(k,l) ∈ [0,1]. The value 

vj of factor fj, depending on the value vi of factor fi, is 
calculated as matrix product  
 vj = vi ⋅ Fij,  

f1

f 4 f 5

f 6

f 2

F13S1
F 35

F 43 S 5F 14
F 54

F 24 S 4

F 56F 64

S 2 F 26
S 6
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or, componentwise, in the form of 

 , 
1

( ) ( ) ( , )
Si

j ij
k

i

n

l k fµ µ
=

= ⋅∑v v k l

where multiplication is the fuzzy AND (min), and sum is the 
fuzzy OR (max).  

An example of “negative” influence function F for nS  = 7 is 
presented in Table 2. Zero entries are omitted. The function 
F, for example, maps the value vex into the value vex’ = 
F(vex): 

 vex’ =  (1, 0, 0.3, 0, 0, 0, 0.5) ⋅F  
       = (0, 0.5, 0.35, 0.3, 0.35, 0.65, 0). (7)   

This example shows, that operation v⋅F can decrease max(v). 

Inconsistency of scales is one of the reasons of appearing the 
vague values in QCM. Other reason - the disagreement of 
mutual influences of factors upon each other. 

5. GENERAL ASPECTS OF BEHAVIOUR IN QCM  

The values vi of factors fi, i =1, N , form the state s = {vi} of 
QCM model M. Initial state of model M represents the initial 
situation. We suppose that initial values of factors are the 
basic or the intermediate values of the corresponding scales. 
In each step of the model time the state s is recalculated 
according to mutual influence of the factors. The transient 
process begins with initial state and terminates in case of 
stabilization of the state, cycling, or loss of accuracy, when 
the certainty of data falls below an admissible limit. As a 
criterion of certainty of state s as a whole we use the value 
µ(s) = maxi(vi), i =1, N . 

We consider the disagreement of influences on a factor from 
another factors, exerted in the same step of the modelling 
time, as a conflict in the model M. At occurrence of the 
conflict the following variants of behaviour are possible: 
1. To cease further modelling, considering such situation as 

erroneous. 
2. To integrate the disagreed influences, considering this 

disagreement simply as a new addition to uncertainty of 
data, which was in the model due to inexact definition of 
the model, vagueness of initial data and integration of 
previous conflicts. 

Second approach is considered further. The defazzification of  
integrated vague values can be executed both in each step of 
modelling time and on the termination of calculations.  It is 
necessary to note, however, that the defazzification, executed 
in a cycle of recalculation of the model state, can change the 
course of calculations. Let’s consider for example the 
functional operation vex’ = vex⋅F. We have d(vex’) = 
µ(vex’)/d(vex’) = 0,39/4 by (5, 7). On the other hand, d(vex) =  
0,47/1 by (6). Applying function F to d(vex) we have:  

vex” = d(vex)⋅F = 0.35/5 + 0.47/6 and   

d(vex”) = µ(vex”)/d(vex”) = 0.42/6.  

Different result of the same operation is obtained. It is the 
consequence of the fact that defazzification entails loss of 
information, as it was noted in section 3. To prevent this 
effect it is preferable to keep the present vague values intact 
as long as possible, and use the defazzification only for 
supervision over the course of calculations and giving out the 
final values of factors. 

Below we consider two models of QCM, which differ in type 
of the influence functions and a way of integration their 
values. We consider the tendencies and the forms of decrease 
of data certainty in these models. 

6. MODEL V-V (value- value) 

In the V-V model M the influence function Fij maps a value of 
input factor fi into a value of output factor fj. On each entering 
edge of a factor f of the model M the instruction comes to 
replace old state of this factor on a new one. If these 
instructions differ, conflict occurs. This conflict is integrated. 
This means, that new value v of factor f is calculated as sum 
(1) of all input influences. As was noted above this operation 
can give a vague result even for exact arguments. It means 
that the vague values can appear in the V-V model even if the 
scales of all factors are consistent and initial values of all 
factors are the exact values of the corresponding scales. 

The estimate µ(v) is used as a measure of certainty of value 
v. As old state of factor f is replaced, the estimate µ(v) for 
this factor can both to increase, and to decrease. However, as 
it follows from (1), if the estimate µ(s) of certainty of entire 
state of the model M has gone down to some level, then it 
cannot rise above it any more. Therefore the lessening of data 
certainty in the V-V model occurs for the model as a whole. 
This lessening can stabilize on some nonzero level, or fall up 
to zero level. 

7. MODEL ∆-∆ (increment- increment) 

In the ∆-∆ model M the influence function Fij maps an 
increment of the input factor fi to an increment of the output 
factor fj. The increment may be positive or negative, exact or 
vague. The distinction of increments, coming on various 
inputs edges of factor fj also can be considered as a conflict. 
In the ∆-∆ model this conflict is solved automatically due to 
summation (2, 3) of the increments with each other and with 
the old value of fj. The efficient increment of factor fj is 
calculated by (4). For the model to be steady at zero 
increments, the influence functions should preserve zero 
values of the corresponding increment scales. 

In the ∆-∆ model the influence function Fij does not transfer 
explicit influence of a state on a state. However, the state of a 
factor fi has effect on the state of factor fi due to nonlinear 
character of the summation operation (2). Since in the ∆-∆ 
model the disagreement of influences is solved automatically, 
the only source of vagueness in the model is vagueness of 
initial data and inconsistency of the scales. If such vagueness 
is absent, it does not appear during calculation. However as a 
whole, the tendencies of lessening of data accuracy in the ∆-∆ 
model are more various, than in the V-V model. Besides the 
general decrease of certainty, expressed by the estimate µ(s), 
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in this model is also possible steady decrease of certainty of 
separate factors. As it follows from (2 - 4) if max(vi), for 
some factor fi has decreased to some level, then it cannot 
increase above this level any more. At significant decrease of 
max(vi) the factor fi actually loses the information on its state 
and ceases to participate in transfer of influences. Such 
"fading away" of factors is a specific type of stabilization of 
transient process in a ∆-∆ model.  

CONCLUSION 

The qualitative approach has appeared as an attempt of 
decision of the problems inherent in exact numerical models 
of dynamic cognitive maps. These problems are connected 
with inability of the expert to exactly indicate parameters of 
the model. The requirement of excessive accuracy confuses 
the expert, mentally depresses him, and forces him to be 
mistaken. In addition, complex effects of behavior 
(instability, cycles, chaotic processes, etc.), which are 
possible in exact dynamic models, create difficulties in 
understanding and explaining the processes happening in 
such models.     

In this connection the question arises, insofar it is possible to 
trust the conclusions based on exact model if its parameters 
are chosen arbitrarily in significant measure. In QCM we 
avoid the arbitrariness in the model parameters, however 
meet with a new problem - the data vagueness arising in the 
process of calculations, which can make impossible the 
forecasting the remote consequences of initial influence. 

The QCM is a rough enough, but logically consecutive 
instrument of the study. Though it cannot provide 
determination of the long-term forecast, they are quite 
suitable for determination of short-term trends of the situation 
development. The level of trust to the conclusions, based on 
QCM, is determined by the proposed estimate of certainty of 
the vague qualitative data. Even at presence of vagueness the 
correct analysis is possible before the data certainty is not 
lowered below admissible limit. The computer tests on 
various examples of QCM show that there are at least tens of 
steps before this level is achieved.  

The author is grateful to professor O.P. Kuznetsov for 
attention to the given work and useful discussion. 
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