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Abstract: Computational models of embedded control systems often combine continuous-time
with discrete-event behavior, mathematically representing hybrid dynamic systems. An essential
element of numerical simulation of a hybrid dynamic system is the generation of discrete events
from continuous variables that exceed thresholds. In particular, the occurrence of such an event
has to be detected and the point in time where the threshold is first exceeded has to be located.
This paper presents a number of problems that are encountered in event detection and location
when using existing techniques. Solution strategies that balance efficiency and robustness are
presented to address: (i) repeated detection of a zero-crossing event at consecutive time steps,
(ii) masked zero-crossing events because of multiple zero-crossing functions, and (iii) chattering

and Zeno behavior.
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1. INTRODUCTION

Modern engineered systems have reached a level of com-
plexity that necessitates the use of computational mod-
els for their design. Models of system dynamics come in
a variety of forms. They reflect physical behavior (e.g.,
power consumption and performance of hydraulic actua-
tors) as well as controller behavior (e.g., controller output
of discretized and scheduled computations realized in fixed
point computation). So, the comprehensive behavior of an
embedded control system inherently consists of two parts:

e A controller operates in a time discretized manner,
often abstracted into a discrete-event representation.
e A plant operates based on principles of physics such
as conservation of energy and continuity of power and
is often best represented by continuous-time models.

The mathematical representation of models with continuous-

time behavior and discrete-event behavior is referred to
as a hybrid system or hybrid dynamic system (e.g., Vaan-
drager and van Schuppen [1999], Lynch and Krogh [2000],
Benedetto and Sangiovanni-Vincentelli [2001]).

For dynamic systems, many analyses rely on numeri-
cal simulation. Simulation of continuous time, differen-
tial equation based models is well understood. The same
holds for the simulation of discrete event models. The
combination of these in hybrid dynamic systems, however,
results in a number of idiosynchratic issues in the inter-
action that require dedicated facilities in the simulation
engine (Mosterman [1999]).

In the most widely used paradigm (e.g., Guckenheimer and
Johnson [1995]), continuous behavior operates in a mode,
X, and is governed by a set of differential equations, f,
or & = fy(z,u,t), where the dot operator represents the
derivative with respect to time; z is the vector of state
variables; u is the vector of exogeneous variables; and
t is the independent variable, time. The discrete event
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behavior can be represented by a finite state machine,
¢, a four tuple ¢ =< «,9, x0,x >, in which events 6,
cause changes of the state, y, and generate actions, «,
while the initial state is given by xo. Interaction then
takes place by generating events § from the continuous
variables by a relation ¢ (i.e., g(z,u,t) — §) and by
changes in the differential equation, f,, because of discrete
event state changes, x. In some hybrid dynamic systems
paradigms, the discrete event state change may also cause
discontinuous changes in the continuous state variables,
ie., T = hy(x,u,t), where z* is the new value and h,
the function that specifies the change when the discrete
state x is reached.

Efficient simulation has to be explicitly concerned with the
nature of the separate parts that comprise hybrid dynamic
system behavior (Mosterman and Biswas [2002]):

e The continuous behavior is best described by differ-
ential equations, often in an explicit ordinary differ-
ential equation (ODE) form. Numerical integration
routines solve these ODEs to generate trajectories of
continuous behavior.

e The discrete event behavior is most efficiently han-
dled by event-based simulators.

e Upon startup, a set of values has to be available
to initialize the system state. Furthermore, whenever
events occur, the state vector of the continuous-time
model may change (in value and in dimension) and
new initial values may have to be computed.

e Discrete events have to be generated from variables
that represent behavior on a dense domain, typically
based on threshold crossings. This requires a robust
approach to detect if and when a threshold crossing
occurs.

This paper concentrates on the part that generates discrete
events from continuous variables. The presented technol-
ogy will enable efficient modeling and accurate simulation
of large models of physical systems that exhibit hybrid be-

10.3182/20080706-5-KR-1001.3498



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

havior such as the electro-hydraulic components in aircraft
and power electronics systems. These systems tend to have
a large number of modes (typically in the thousands) that
are modeled using continuous signals that generate events.

Generating these events is generally implemented using
relational operations (e.g., ‘larger than’). For accurate
simulation, the point in time at which these relations
change their truth value has to be located within a
small tolerance. To this end, a zero-crossing function of
the general form g(z,u,t) = 0 can be used to identify
the boundary at which the change takes place. Existing
techniques for zero-crossing detection and location are
inefficient and inaccurate when faced with handling such
a large number of zero-crossing functions. For example, on
many occasions the location mechanism is triggered twice:
first when the zero-crossing function becomes 0 and second
when the zero-crossing becomes nonzero. Furthermore,
presently employed methods to handle zero crossings are
susceptible to classes of pathological behaviors. This paper
presents an approach to address these inefficiencies and to
eliminate two classes of pathological behaviors.

Section 2 introduces the basic technology of zero-crossing
detection and location. In Section 3 detection inefficiencies
and methods to address these are presented. In Section 4
classes of behavior that are difficult to handle because of
accurate event location are introduced and a solution is
given. In Section 5 a benchmark case study illustrates the
results obtained with the introduced solution. Section 6
provides conclusions of this work.

2. FUNDAMENTALS

The use of thresholding to model the interaction between
the continuous time and discrete event model parts is
intuitive and studied extensively (Cellier [1979], Shampine
et al. [1991], Park and Barton [1996]). In this setup,
continuous behavior is generated based on a differential
equation & = fy(x,u,t) while a subset of the state,
input, and independent variables is used as argument
to an indicator function g, (z,u,t). When this indicator
function changes sign (i.e., its result changes from positive
to negative or vice versa), a discrete event, 4, is generated.
The event of the function changing its sign is referred to
as a zero-crossing. A simple example of this setup can be
written as:

S-C:{fl(x)ug(xvtvu)zo (1)

where g(x,t,u) is called a guard function, indicator func-
tion, or zero-crossing function.

Cellier [1979] introduced the discontinuity locking method
to properly simulate systems with abrupt changes in
continuous-time behavior. In general, this method contains
the following stages, as depicted in Fig. 1:

(1) Discontinuity Locking Integration algorithms are typ-
ically based on the assumption that the states and
their derivatives are continuous. As such, when a
discontinuity occurs, special provisions must be taken
to ensure the assumption holds true. This is imple-
mented by not revealing the discontinuity to the in-
tegration algorithm until the discontinuity is located.

The simulation step from T,,_1 to ¢, is a trial step.
At t,,, & should switch to the value of fo. However, to
ensure the above assumption holds, f; is used till the
integration step is accepted.

(2) Zero-Crossing Detection Checking the sign of the zero
crossing function ¢ at time 7,1 and t,. If g,—1 X
gn <0, an event ¢ is detected unless ¢g,—1 = g, = 0.

(3) Zero-Crossing Location Once a zero crossing has been
detected, it must be located within a tolerance. A
direct approach computes the sensitivity of the zero
crossing function with respect to the integrator step
size (Esposito et al. [2001]). For linear systems, this
allows direct computation of the point at which the
Z€ro Crossing occurs.

In many cases, the functions required for this sen-
sitivity computation are not explicitly available. The
most robust indirect method in this case is a bisec-
tional search as it finds the correct zero crossing if two
functions g1 and go each have a zero crossing in the
same interval. More efficient approaches (e.g., Moler
[1997]) use sophisticated iteration schemes such as
Newton-Raphson and to balance robustness and ef-
ficiency, different approaches may be combined.

During the search process, the zero crossing func-
tion g should be computed and thus the values of state
z are needed. Usually these values are computed by
interpolation, using the value X,,_; and x,,. Because
of the nature of finite precision arithmetic on digital
computers, the time that the event occurred can only
be located within an interval [Tp,Tg| that corre-
sponds to machine precision. During each iteration,
the zero-crossing function is evaluated twice: at the
left and the right side of the reducing interval.

(4) Event Handling After the event is bracketed by T,
and Tgr, the ODE solver first advances integration
time from the previous time step T,_1 to TL. The
solver is then reset before advancing to T followed
by switching the mode (in Fig. 1, switching the & to
f2). In doing so, the assumption of continuity holds
throughout the numerical integration.

When faced with a large number of zero crossings, several
issues associated with the above stages may arise. These
issues and solution strategies are discussed next.

3. ISSUES WITH ZERO-CROSSING DETECTION

An important set of problems pertains to properly detect-
ing whether a dense variable has exceeded a threshold and
which of a potential set of variables achieves this first in a
strict time ordering.

3.1 Even Roots

The nature of zero-crossing detection is to compare the
sign of a function value, and if it changes, declare that it
crossed zero. This approach may fail if the zero-crossing
function has even zeros in between the two evaluated
points, as determined by the numerical integration algo-
rithm (see Fig. 2). In general, the zero crossing function g,
is a function of the model state, but it does not contribute
to its continuous dynamics, f. Therefore, numerical inte-
gration can proceed without taking the dynamics of g into
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Fig. 1. Zero crossing detection and location stages
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Fig. 2. Even roots problem

account, and when these are faster than the dynamics of
f, the even roots situation may arise.

One solution to this is to include the g dynamics in the
model dynamics so the numerical solver adjusts its step-
size when too large an error (this will be caused by even
zeros) is found (Park and Barton [1996]). Alternatively,

g4 )

Fig. 3. Remove double zero crossing events

the sensitivity of the zero crossing function against the
discrete step size can be computed and used to drive the
step-size selection (Esposito et al. [2001]). In both cases,
additional computations are required during the numerical
integration.

Another method is to divide the intervals T;,_1 and ¢,, into
several smaller intervals and evaluate the zero crossings
at the end of each interval. This method is called zero
crossing refinement and reduces the likelihood of the even
roots problem. Although this method does not guarantee
eliminating the problem, it is in general computationally
more efficient.

3.2 Double Detection

Another issue with zero crossing detection arises when
the zero crossing function g returns exactly 0 at the
right side Tr of the bracket. Once this happens, the
solver first detects a ‘—T'00’ event ! within [T, Tr]. When
the simulation moves forwards from T, a 070+’ event
between Txr and TIJ{ may be detected. Thus, two events
(0—1o0 and doroyt) are reported consecutively, instead of
one ‘-To+ event. This is a problem if the detected event
triggers computation, because such computation will be
executed twice where it should only be executed once.

To remove ouble event detection, the event d_7,, can be
defined as:

dup =0-Tot =0_Tot | 0—700 | SoT0t (2)

where | is a logical disjunction (the OR operator). Suppose
an 0_ro+ event (for example, a rising reset) is to be
detected and if 6 o0 and dp7o4 are detected consecutively,
these two events will be combined into one ‘—To+4’ event,
as shown in Fig. 3.

3.3 Masked Even Roots
When there is more than one zero-crossing function in the

system, the even roots problem may cause a side effect
that is referred to as a masked even roots zero crossing. As

1 The notation to indicate the type of zero-crossing event first states
the original sign of the indicator function (‘-’, ‘0’, or ‘4’) then
includes the string ‘To’ and finally the new sign of the indicator
function.
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Fig. 4. Masked even roots problem

depicted in Fig. 4, there are two zero-crossing functions, g;
and go, in the system. The solver moves from 7;,_1 to t,.
During this step, because g; has two roots in the interval
[T—1,ty], the solver will detect that only g2 had an event.
Next, during the event location phase, the zero crossing
function value of both g; and g may be evaluated at ¢,
and tr in one iteration. Between t7, and ¢ g there is no even
roots problem, and §; and d5 will be located. This seems to
be good because both §; and d5 have been found. However,
suppose the system only has ¢;, it is highly possible that
61 will not be found.

This will cause the following practical problem. Suppose
that two subsystems containing ¢g; and go, respectively,
were simulated separately, and their results were recorded,
studied and used as baselines. If these two subsystems are
integrated into one system, the output of each subsystem
may be different from the results in isolation, because of
the masked zero crossing problem. Therefore, if a masked
zero crossing is detected, the user should be informed.
The option to avoid this is to increase the zero crossing
refinements to reduce the chance of even roots to happen.

4. ISSUES WITH ZERO-CROSSING LOCATION

Three classes of pathological behaviors of hybrid dynamic
systems can be identified: (i) a loop of discrete state
changes may emerge, (ii) repeated switching between two
modes with infinitesimal time spent between may occur,
and (iii) discrete events may occur increasingly close in
time, converging against a limit point. In all of these
cases, numerical simulation effectively stops progressing in
logical time. A solution strategy to the latter two classes
is proposed.

The case of repeated switching between modes arises when
the gradient of continuous-time behavior in each of the
modes is directed towards the switching surface between
the two modes. When in either of the modes on the
switching surface, an infinitesimal step causes a mode
change. In the new mode, the gradient directs behavior
to the previous mode and after another infinitesimal step
a change to the previous mode occurs. This behavior is
sometimes referred to as chattering.

While the infinitely fast switching between modes occurs,
a relatively slow motion along the switching surface may
emerge. Dedicated simulation algorithms have been devel-
oped to derive the slow behavior by simulation while elim-

inating the fast chattering (e.g., Mosterman et al. [1999]).
These algorithms have limited applicability, however.

The case of a series of events that converge against a
limit point is sometimes referred to as Zeno behavior
(e.g., Johansson et al. [1999], Zheng [2006]). In models that
exhibit such behavior, an event occurs at an increasingly
smaller distance in time. For example, if a new event occurs
after half the time between the two previous events, a series
of events emerges that, after n events, has moved in time
according to Y ,_, zik This series converges against 1 in
the limit of n — oc.

Although analytically distinctly different, the effect of
chattering and Zeno behavior during numerical simulation
is similar; the simulation appears to come to a halt. This
is illustrated in Fig. 5 for the two cases. Figure 5(a) shows
how chattering causes the previous Ty to become the T, of
the next time step, and the integration will move with the
minimum step size allowed. Figure 5(b) shows how Zeno
behavior causes a mode switch to occur at each simulation
time step. In other words, each major integration step is
at one end of an interval that locates an event.

3, o ) 0, 0,

il T
Time Time

One time step

(a) Chattering (b) Zeno

Fig. 5. Classes of pathological behavior

A solution strategy to regularize these two classes of patho-
logical behaviors is proposed. The results are illustrated
using a variant of an extensively studied system with Zeno
behavior, the bouncing ball model (Johansson et al. [199%,
Zhang et al. [2000], Ames et al. [2006]). The Simulink
(Simulink [2007]) diagram of this model is shown in Fig. 6.
The ball velocity is integrated into a position. The corre-
sponding position integrator is initialized with a positive
value. This causes the ball to fall and bounce off the ground
repeatedly where each collision causes a loss of energy. The
collision event is detected by the <= 0 block. Numerically,
an event is located immediately (at machine precision)
after the ball passes the ground level. Upon location, the
output of the <= 0 block becomes true and a ‘0704’ event
is generated on the rising trigger reset port of the velocity
and position integrator blocks.

When the bounce of the ball is close to the ground, the
system is close to the Zeno point, and the simulation will
not be able to progress. One way to solve this is to add a
‘Stop’ state in the model that is entered when the system
is near the Zeno point. The model that exhibits the Zeno
behavior is considered incomplete and completing it by
adding an extra state allows simulation to move beyond
the Zeno convergence point (Zheng [2006]). This requires
extra effort from the modeler, however, and at times the
completing state may be difficult to determine.

Alternatively, to execute the system past the Zeno point,
approximate simulation can be used. Several approximate
methods exist, such as regularizing the original system (Jo-
hansson et al. [1999]).
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Fig. 7. Dynamic zero crossing location

In this paper, the dynamic zero crossing location method
is applied. Fig. 7 illustrates how this method dynamically
enables and disables zero crossing location when simulat-
ing the system in the neighborhood of a Zeno point, and
re-initializes the system from that point on. By doing so,
the transition time between two events can be adjusted,
thereby eliminating the Zeno dynamics. The key elements
of this method are: (i) criteria to define a Zeno neigh-
borhood; (ii) how to treat the events detected within the
neighborhood of Zeno point; and (iii) what to do after the
Zeno point is passed.

To approximate the behavior of the system around the
Zeno point, a neighborhood around the Zeno point must
first be defined. In this method, two conditions are identi-
fied to determine if the system is in the neighborhood of
the Zeno point:

(1) At the first trial when the integration advances from
T,_1 to t,, if at both ends T;,_1 and t, all the zero
crossing function values are within a tolerance e.

(2) If before T;,_1 the simulation already exceeds a cer-
tain number of consecutive zero crossings.

If either of these conditions is satisfied, the interval
[Th—1,tn] is defined as a Zeno neighborhood.

It is important to note that the first condition only takes
effect at the first trial step from T,,_1 to t,,, but not in the
iterative search process. This is because during the search
process, when the time interval to locate the event time
is reducing to a small tolerance, so do the zero-crossing

Ball2 IC
0=30 jp =25

Balll IC
0 =30 ;=14

' 1

\ Groundl dropped | Ground2 dropped
! from y=30 to y=10 i from y=30 to y=10
, att=20 | att=25

Fig. 8. Double bouncing ball system

values at both ends of the interval. These values will be
less than € whenever an event is found, even if the system is
not a Zeno system. Furthermore, using the first condition
only is insufficient because some zero-crossing functions
are boolean functions and only return —1 and 1.

Next, if the system is in a Zeno neighborhood, the location
of the event will be dynamically disabled. It means the
interval [T},_1,t,] will be used as the final interval at
this step. This step is to regulate the transition time
and identify the Zeno status of the system. Note the
difference between this method and some existing methods
that disregard the zero crossings when their magnitude
remains below the tolerance level. In the latter case, events
occurring in that interval are ignored, which may result in
incorrect simulation results.

The next stage accepts the trial integration step ¢,, as a
major step T}, and simulation proceeds by solving for the
regular dynamics of the system.

5. BENCHMARK: DOUBLE BOUNCING BALL

A solution strategy was prototyped in Simulink and tested
on a benchmark example; a double bouncing ball system.
Figure 8 shows the two balls that bounce together. They
start from the ground level with different initial vertical
velocities up and their ground levels change at different
times, comparable to two balls bouncing off a staircase.
This system has the following unique features beyond the
standard bouncing ball example:

(1) This system experiences several Zeno points at dif-
ferent times, either caused by the dynamics of an
individual ball or by the combined dynamics of both
balls. This illustrates the robustness of the algorithm
to handle multiple zero-crossing functions.

(2) The ground level changes after the system has reached
a Zeno point. This illustrates the ability of the algo-
rithm to dynamically enable and disable zero crossing
location, depending on the system dynamics.

For this model, if the conventional zero-crossing algorithm
is used, the simulation will effectively halt around 14.14
logical seconds, which is when the first ball approaches its
Zeno point. No behavior can be generated after this point.

Figure 9 shows a simulation using the method presented in
this paper. Several intervals where the designed algorithm
is active can be observed. The first one is where the 1°¢ ball
has reached a Zeno point and the 2"¢ ball is still bounc-
ing. This illustrates that for systems with multiple zero-
crossing functions, the algorithm individually disables the
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detection of specific zero-crossing functions. This allows
the simulation to progress beyond the first Zeno point
while the events of ball 2 are still located accurately. When
the ground level of ball 1 is lowered, the ball is moved
away from its Zeno point. Simulation of the dynamics
proceeds with the events located accurately. The algorithm
responds to the change of system dynamics and enables
and disables zero crossing location accordingly. At the end
of the simulation, both balls have reached their Zeno point
with simulation still progressing in logical time.

6. CONCLUSIONS

The generation of behaviors for systems that intersperse
continuous-time behavior with discontinuities is notori-
ously difficult. This paper first studies issues arising from
the need to accurately detect discrete event from continu-
ous variables exceeding threshold values.

Next, issues arising from the need to accurately locate
an event are studied, concentrating on discrete events
following each other closely in time. Emphasis is put on
the problem of discontinuities occurring at an increasing
rate which ultimately results in the behavior converging
to a limit point in time, so-called Zeno behavior.

A method for event detection and location is presented
that: (i) prevents detection of the same zero crossing event
twice at consecutive time steps, (ii) detects masked even
roots zero crossings caused by the presence of multiple
zero-crossing functions, and (iii) dynamically enables and
disables zero-crossing location to address chattering and
Zeno behavior.

Future work aims to concentrate on the analysis of the
proposed regularization and to provide error bounds on
the numerically generated behaviors.
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