
Design Technique For Multi-Rate Linear Systems

M. Cimino ∗ P.R. Pagilla ∗

∗ Department of Mechanical and Aerospace Engineering, Oklahoma State
University, Stillwater Oklahoma 74078 USA (e-mail:

pagilla@ceat.okstate.edu)

Abstract: In this paper a design technique for multi-rate, linear digital control systems is described.
This technique takes into account all the sampling rates involved in the system, and generates a multi-
rate system that mimics the dynamics of a desired single-rate closed-loop system. The desired closed-
loop system is referred to as an ideal single-rate system (ISRS) since it operates at the fastest sampling
rate present in the system. The multi-rate system is designed to achieve state-matching, at the fastest
rate, with the ISRS, and to exhibit a ripple-free response with zero steady-state error in response to a
step reference signal. Unlike prior work in the literature, which is applicable only to static feedback
ISRS, the proposed state-space design procedure is applicable for any LTI dynamic feedback ISRS. The
proposed design is successfully implemented on a hard disk drive (HDD) platform for seek control of
the read-write (R/W) arm. A representative sample of the experimental results are shown and discussed
to highlight the proposed multi-rate technique.Copyright c©2008 IFAC
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1. INTRODUCTION

Multi-rate digital systems are widely used in many industries.
They have been studied for many decades, and many methods
are available in literature for their analysis and control design.
Systematic procedures to model and control single-rate digital
systems are described in many texts Ogata [1987], Franklin
et al. [1990]. Due to the simplicity in the analysis and design
of single-rate digital control systems, the frequency decom-
position and switch decomposition methods were developed
by Coffey and Williams [1966], Kranc [1957a,b], Boykin and
Frazier [1975] to model multi-rate systems as single-rate dig-
ital systems. Both the approaches lead to the generation of a
unique discrete-time transfer function which models the overall
multi-rate system. The main drawback of these two methods
is the increase in the complexity of the procedure when the
ratio of two of the involved sample rates increases. In the
early years there was considerable interest in using the state-
space approach to model and control multi-rate systems. A
state-space technique that simplified the modeling of multi-
rate systems involving non-multiple sample rates was intro-
duced in Araki and Yamamoto [1986]. However, this procedure
led to potentially higher dimensional state-space systems. The
problem of reducing the high dimensionality of the resulting
state-space system was solved by Godbout et al. [1990], Jordan
and Apostolakis [1991]. The state-space approach to design
controllers for multi-rate systems has been mainly restricted to
static feedback controllers. A procedure to design optimal static
time-varying feedback controllers which minimize a certain
functional was developed in Jordan and Apostolakis [1991]. A
solution to the pole placement problem by using static feedback
controllers is given in Jordan and Apostolakis [1991]. In Lee
[2006], a procedure to design a static feedback multi-rate con-
trol system achieving a similar step response to a pre-defined
single-rate static feedback control system is given.

There are numerous applications in large-scale manufacturing
where multi-rate digital control systems are employed. One

such application where multi-rate systems are found is in con-
trol of the R/W arm of the hard disk drive (HDD). The data on
hard-disk drive platters are stored along thousands of concentric
circular tracks. Each track is divided into sectors, which are
usually the smallest addressable units containing the data stored
on the hard-disk drive. Each sector stores a certain amount
of user data, while additional bytes are reserved for control
and management purposes of the drive. Those additional bytes
are usually stored at the beginning of the sectors and include
the sector ID information. The sector ID is useful for locating
the sector on the disk when certain data have to be retrieved
or stored. The angular position of the R/W magnetic head is
obtained every time the R/W head passes through the part of
the sector containing the sector ID information. Therefore, the
angular position is obtained at different rates depending on
the rotational speed of the platters. The control input current
to the Voice-Coil Motor Actuator (VCMA), which drives the
arm containing the R/W head, is provided by the digital board
installed on the back of the HDD. Modeling the HDD as a
multi-rate system is justified by the fact that the discrete-time
control action provided by the digital board updates at a rate
much faster than the available angular position feedback update
rate. Therefore, a multi-rate control structure can be used to
improve and optimize the performance of the overall system.

It is well known that decreasing the sampling time in a single-
rate system leads to a better inter-sample behavior. Therefore,
the reference model is taken as a single-rate system operating
at the fast control update rate. The designed discrete-time con-
troller is provided with time-varying gains periodically chang-
ing within every measurement sampling period. The controller
gains are designed with the twofold target of guaranteeing no
ripples in the steady-state response to a step reference signal,
and achieving state matching with the reference model, at each
control update instant. The proposed design technique is ap-
plied to seek control of the R/W arm of a hard-disk drive.
Experimental results on the HDD platform show that increasing

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15191 10.3182/20080706-5-KR-1001.3441



the ratio between the measurement and control update rate leads
to an improvement in the inter-sample behavior.

The contribution of this work consists of a new state-space
approach to design dynamic controllers for multi-rate systems
such that the closed-loop system response matches the response
of any given Ideal fast Single-Rate LTI System (ISRS). The
proposed design technique leads to a multi-rate system achiev-
ing state-matching with the ISRS, at the fastest rate involved.
Moreover, it is shown that the response to a step reference
change is ripple-free with zero steady-state error if the ISRS is
at least a type-one system. A systematic procedure for obtaining
the time-varying gains of the multi-rate controller is given. In
addition, the proposed design technique has been successfully
implemented on a HDD platform.

The remainder of the paper is organized as follows. Section
2 gives the problem formulation. Description of the multi-rate
design technique is given in Section 3; details on the selection
of gains with pertinent discussions are also given. In Section 4,
experimental platform is described together with a discussion of
the experimental results. Conclusions of the paper and potential
future work are given in Section 5.

2. PROBLEM FORMULATION

Consider the continuous-time linear time-invariant system

ẋ = Ax + Bu
y = Cx

(1)

where x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu is the control
input vector, and y(t) ∈ R

ny is the measured output to be
regulated to a step reference signal r ∈ R

ny . The discrete-time
equivalent of the plant (1) with the sampling time Tu is given
by

x(i + 1) = Φcx(i) + Γcu(i)

y(i) = Ccx(i) (2)

where

Φc = eATu , Γc =

∫ Tu

0

eA(Tu−t)Bdt, Cc = C. (3)

Assume that a linear time-invariant digital controller, operating
at the sampling time Tu, can be designed to achieve certain
closed-loop performance criteria. Let this controller be given
by

η(i + 1) = Aηη(i) + Bηe(i)

u(i) = Cηη(i) + Dηe(i) (4)

where η ∈ R
nη is the controller state vector, e = r − y

is the regulation error, which is the input to the controller,
and the matrices Aη , Bη, Cη and Dη are known. Notice that,
in the definition of controller (4), the feedback measurement
e is assumed to be available at the same rate as the control
update rate, 1/Tu. This assumption is intrinsic to any single-
rate feedback control system. Denote with

ζ(i + 1) = Fζ(i) + Gr

y(i) = C̄cζ(i) (5)

the discrete-time closed-loop system, formed by (2) and (4),
where ζ(·) = [xT (·), ηT (·)]T is the closed-loop state vector.
In many practical applications, the plant output y(t) is not
available at the control update period Tu, but only at a longer
period Ts = qTu (where q is any positive integer). This may
be due to the measurement hardware limitations or to some
physical limitations of the controlled model. In these cases it is

common practice to directly design the controller at the longer
measurement period Ts. However, increasing the control update
period, from Tu to Ts, has a negative effect on the inter-sample
behavior of the closed-loop response. Moreover, by adopting
a controller operating at the longer sampling time Ts we do
not take advantage of the available digital hardware. In order to
keep track of both the sampling periods, Ts and Tu, the notation
(k, i) will be used in the rest of the paper to refer to the time
instant t = kTs + iTu, with i = 0, 1, . . . , q − 1. By adopting
this notation, the discrete-equivalent (2) (at the sampling period
Tu) of the continuous-time plant (1) can be rewritten as

x(k, i + 1) = Φcx(k, i) + Γcu(k, i)

y(k, i) = Ccx(k, i) (6)

where the matrices Φc, Γc and Cc are given in (3). Similarly,
the single-rate closed-loop system (5) can be rewritten in the
form

ζ(k, i + 1) = Fζ(k, i) + Gr

y(k, i) = C̄cζ(k, i) (7)

The closed-loop system (7), where the measurement period
equals the short control update period Tu, can be considered
ideal since it is obtained assuming a measurement rate faster
than the one practically obtainable. With the aim of reproducing
the same response as that of the ISRS (7), and to avoid the
presence of inter-sample ripple in the closed-loop response, we
propose a multi-rate digital control system where the controller
operates at the faster rate 1/Tu, and the feedback measurement
is available at the slower rate 1/Ts, which are constrained by

the integral relationship q , Ts/Tu, q ∈ N
+.

The proposed controller has the following form:

ϕ(k, i + 1) = Kϕ(i)ϕ(k, 0) + Kx(i)x(k, 0) + L(i)r

u(k, i) = Cϕϕ(k, i) (8)

where the unknown matrices Kϕ, Kx and L change at every
control update period Tu, and the controller state vector ϕ has
the same dimension as η (i.e., dim(ϕ) = nη). Notice that the
controller (8) utilizes the state feedback x(k, 0) only at every
sampling period Ts, while the controller output updates at every
sampling period Tu. The additional feed-forward term, L(i)r,
is utilized to eliminate the steady-state regulation error and
to guarantee a ripple-free closed-loop response. The problem
addressed in this paper consists of developing conditions under
which it is possible to find a set of periodically varying matrices
Kϕ(i), Kx(i), L(i), i = 0, 2, . . . , q − 1, to achieve closed-
loop state matching, at the faster rate 1/Tu, with the ISRS (7).
Moreover, the matrices Kϕ(i), Kx(i) and L(i) must be de-
signed in order to exhibit a ripple-free closed-loop response to
a step reference. By “ripple-free” it is meant that the regulation
error, e(t) = y(t) − r, has to be zero at steady-state within two
consecutive control update instants, or in other words

lim
k→∞

∫ (k+1)Tu

kTu

eT (t)e(t)dt = 0.

A summary of the problem statement is the following. Given
the continuous-time system (1), and the discrete-time controller
(4), let Tu and Ts be the control and measurement update period
respectively, such that Ts = qTu for a positive integer q. It is
desired to design a controller of the form (8) to achieve closed-
loop state matching, at the faster rate 1/Tu, with the ISRS (7)
which represents the given ideal model. Moreover, it is desired
to achieve a ripple-free closed-loop response with no steady-
state error to a step reference change.
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3. MULTI-RATE CONTROL DESIGN

The discrete-time system (6) and the proposed time-varying
controller (8) can be rewritten in the following compact form:

ξ(k, i + 1) = Φ̄cξ(k, i) + Γ̄cw(k, i)

y(k, 0) = C̄cξ(k, 0) (9)

where ξ(k, i) , [xT (k, i) ϕT (k, i)]T is the extended state
vector, the matrices Φ̄c, Γ̄c, C̄c are given by

Φ̄c ,

[

Φc ΓcCϕ

0nη×nx
0nη×nη

]

, Γ̄c ,

[

0nx×nη

Inη×nη

]

C̄c ,
[

Cc 0ny×nη

]

,

and the pseudo-input w(k, i) is given by

w(k, i) , K(i)ξ(k, 0) + L(i)r (10)

where

K(i) , [ Kx(i) Kϕ(i) ] .

Notice that the closed-loop system (9)-(10) is a multi-rate
system since it involves signals sampled at different rates. In
fact, even though the pseudo-input w(k, i) is updated at every
period Tu, it depends on the feedback ξ(k, 0) which is updated
at the measurement period Ts.

3.1 Discrete-time lifted systems

The lifting technique described by Godbout et al. [1990] can
be used to evaluate the behavior of a discrete-time system at
a slower sampling time. As explained in the following, this
technique can also be utilized to convert a multi-rate time-
varying system, such as the one formed by (8) and (6), into
a single-rate time invariant-system. This technique is applied to
the closed-loop system formed by (9) and (10). Notice that the
value of ξ(k, i) within two consecutive measurement instants
(i.e., in the interval [kTs, kTs + (q − 1)Tu]) can be obtained by
recursively applying (9):

ξ(k, 1) = Φ̄cξ(k, 0) + Γ̄cw(k, 0)

ξ(k, 2) = Φ̄2
cξ(k, 0) + Φ̄cΓ̄cw(k, 0) + Γ̄cw(k, 1)

. . .

ξ(k + 1, 0) = Φ̄q
cξ(k, 0) +

q−1
∑

j=0

Φ̄j
cΓ̄cw(k, q − 1 − j). (11)

Notice also that the state ξ(k, 0), at the measurement instant
t = kTs, carries information about the system evolution in
between two consecutive measurement instants. In fact, all the
other inter-sample states ξ(k, i), i = 1, . . . , q − 1, can be
rewritten in terms of ξ(k, 0) and w(k, j), j = 0, . . . , i − 1.
Therefore, there is no need to keep track of the first (q − 1)
equations in (11), and the evolution of the system (9), at the
measurement period Ts, can be described by the last equation
in (11):

ξ(k + 1, 0) = Φ̃cξ(k, 0) + Γ̃cw̃(k, 0)

y(k, 0) = C̃cξ(k, 0) (12)

where

Φ̃c , Φ̄q
c , Γ̃c ,

[

Φ̄q−1
c Γ̄c Φ̄q−2

c Γ̄c Φ̄q−3
c Γ̄c · · · Γ̄c

]

,

C̃c , C̄c, w̃(k, 0) ,







w(k, 0)
w(k, 1)
· · ·

w(k, q − 1)






. (13)

The system (12) is usually referred to as a simplified lifted
model of the original system (9). Similarly, the extended input

vector w̃(k, 0) is referred to as the lifted pseudo-input. By
closing the loop, through (10), the lifted pseudo-input w̃ takes
the form

w̃(k, 0) = K̃ξ(k, 0) + L̃r (14)

where

K̃ ,







K(0)
K(1)
· · ·

K(q − 1)






, L̃ ,







L(0)
L(1)
· · ·

L(q − 1)







are two constant matrices. The result is that the multi-rate
time-varying closed-loop system formed by (8) and (6), is now
equivalently described by the lifted single-rate time-invariant
system formed by (12) and (14). Hence, the problem of finding
the set of periodically time-varying matrices Kx(i), Kϕ(i), and
L(i), i = 0, . . . , q − 1, reduces to that of designing the static

time-invariant feedback gain matrix K̃, and the feed-forward

constant gain matrix L̃, for the simplified closed-loop system
formed by (12) and (14).

The lifting technique can be similarly applied also to the closed-
loop ISRS (7) to evaluate its evolution at the slower measure-
ment sampling time Ts. In this case, the lifted ISRS takes the
form

ζ(k + 1, 0) = F̃ ζ(k, 0) + G̃r

y(k, 0) = C̃cζ(k, 0) (15)

where

F̃ = F q, G̃ =

q−1
∑

i=0

F iG, C̃c = C̄c

3.2 Design of the gain matrices K̃ and L̃

The simplified lifted closed-loop system formed by (12) and
(14) fully describes the dynamics of the closed-loop system
formed by (6) and (8). Therefore, the problem of designing the
time-varying matrices K(i) and L(i), i = 0, 1, . . . , q − 1, can

be converted into that of designing the constant matrices K̃ and

L̃ for the lifted closed-loop system (12) and (14).

To achieve state matching with the ISRS (7), the lifted closed-
loop system formed by (12) and (14), given by

ξ(k + 1, 0) = (Φ̃c + Γ̃cK̃)ξ(k, 0) + Γ̃cL̃r

y(k, 0) = C̃cξ(k, 0), (16)

must match the lifted ISRS (15). This corresponds to requiring
the state variable ξ be equal to the state variable ζ at every
control update period Tu (notice that ξ and ζ have the same

dimension by construction). This is possible if the matrices K̃
and L̃ are designed such that

Φ̃c + Γ̃cK̃ = F̃ (17)

Γ̃cL̃ = G̃. (18)

If a solution (K̃,L̃) exists for (17) and (18), it is given by

K̃ = Γ̃+
c (F̃ − Φ̃c) (19)

L̃ = Γ̃+
c G̃ (20)

where Γ̃+
c is the left pseudo-inverse of the matrix Γ̃c. Therefore,

if the solution (19)-(20) exists, the closed-loop system formed
by (6) and (8) exhibits discrete-time state matching at the
control update period Tu with the ISRS (7). The existence of the
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solution (19)-(20) depends only on the existence of the pseudo-

inverse Γ̃+
c . Notice that Γ̃c can be rewritten as

Γ̃c =

[

RS 0nx×nη

0nη×nη(q−1) Inη

]

where S is defined as a diagonal matrix with (q − 1) blocks

Cϕ on the diagonal and R , [Φq−2
c Γc, · · · , ΦcΓc, Γc]. For

Γ̃+
c to exist, Γ̃c must have full row rank. This corresponds to

requiring the product RS to be full row rank, i.e., nx. Notice
that, by choosing Cϕ as any full row rank matrix (this is always
possible as explained in Remark 2), the matrix S will be full
row rank. Therefore, the rank of RS is same as the rank of R.
The dimension of the matrix R is nx × nη(q − 1). Therefore,
a necessary and sufficient condition for RS to be full row rank
is that R is full row rank. As long as the number of rows of
R is less than the number of its columns, i.e., nx ≤ nu(q −

1), the controllability of the couple (Φc, Γc) ensures that the
matrix R has full row rank. Notice that in the opposite case,
i.e., nx > nu(q − 1), it is obviously impossible for R to be
full row rank. Therefore, sufficient conditions for RS to be full
row rank are: 1) nx ≤ (q − 1)nu, 2) the couple (Φc, Γc) is
controllable. If these conditions are satisfied, the gain matrices

K̃ and L̃ can be obtained as in (19)-(20). Notice that the first
condition poses a lower limit on the number q of inter-samples
that can be chosen. In fact, for a given plant (i.e., the values of
nx and nu are known), the proposed controller can be applied
only if q ≥ 1 + nx/nu.

Remark 1. (On the eigenvalues of F )

If the gain matrix K̃ was directly chosen to place the eigen-

values of (Φ̃c + Γ̃cK̃) at a desired location, it may result in
a complex valued closed-loop multi-rate system. Even for a

real valued K̃, the matrix (Φ̃c + Γ̃cK̃)1/q may have complex
entries. This would jeopardize the achievement of the state
matching condition. As far as this problem is concerned, it
has to be pointed out that even by using (19), the resulting
closed-loop system can be complex valued if the matrix F has
any eigenvalue on the negative real axis of the complex plane.
Instead, if the controller (4) is chosen such that the matrix F
has all distinct eigenvalues, not on the negative real axis, then

(Φ̃c + Γ̃cK̃)1/q has a real solution, as given by Astin [1967],
and that solution equals F through (19). Therefore, under the
assumption that F does not have any eigenvalue on the negative
real axis, or any coincident eigenvalues, (19) can be used to
achieve closed-loop state matching at the control update period
Tu.

Remark 2. (On the choice of Cϕ)

In the process of designing the gain matrices K̃ and L̃ through
(19)-(20), the controller matrix Cϕ influences the existence of

the left pseudo-inverse Γ̃+
c . However, there is no restriction on

the choice of Cϕ but that of being full row rank. With regard to
this, notice that it is always possible to choose a full-row rank
matrix Cϕ for the proposed controller (8). Two cases have to be
distinguished: nu ≤ nη and nu > nη . In the case that nu ≤ nη

it is obviously always possible to choose a full row rank matrix
Cϕ. In the opposite case, let nu = nη + m, m ∈ N

+. There
are exactly m scalar entries in the vector u which are linearly
dependent on the remaining nη . Therefore, there exists a gain
matrix V such that the control signal u can be reordered as
u = [uT

nη
, V uT

nη
]T , where dim(unη

) = nη. Correspondingly,

the matrix Γc can be reordered as Γc = [Γnη
, Γm] where Γnη

is
related to uη, and Γm is related to V uη. Therefore, by replacing
the matrix Γc with the new matrix Γc,new = Γnη

+ ΓmV , the

dimension of the controller output would become nη , the plant
dynamics would not change, and it would be possible to choose
a full row rank matrix Cϕ for the proposed controller.

Remark 3. (On the structure of the controller (8))
It is important to point out that the final result would not
change if the feedback of the controller state in (8) was taken
at the control update rate. This is due to the fact the there is
no information of the plant behavior within two consecutive
measurement update periods.

3.3 Ripple-free and zero steady-state error

Now it remains to be shown that the system exhibits a ripple-
free response to a step reference signal. With regard to the
regulation problem, the given ISRS must be at least a type
one system in order to exhibit zero steady-state error to a
step reference signal. Therefore, there exists a matrix M ∈

R
(nx+nη)×ny such that ζr , Mr is the constant reference for

the state vector ζ of the ISRS (7). Let us assume that there also
exists a matrix N ∈ R

nη×ny such that

Γ̄cL(i) = Γ̄c(N − K(i)M). (21)

Then, after lifting both the sides of (21), we get

Γ̃cL̃ = Γ̃c(Ñ − K̃M)

where Ñ = [NT , NT , . . . , NT ]T is made of q blocks, each one
corresponding to the matrix N . Therefore, the dynamics of the
closed-loop lifted system (16) can be rewritten as

ξ(k + 1, 0) = (Φ̃c + Γ̃cK̃)ξ(k, 0) + Γ̃c(Ñ − K̃M)r

= Φ̃cξ(k, 0) + Γ̃c

[

K̃(ξ(k, 0) − ζr) + Ñr
]

(22)

Hence, if the condition (21) holds, the lifted pseudo-control
(14) can be rewritten as

w̃ = K̃(ξ(k, 0) − ζr) + Ñr. (23)

Inverting the lifting process, the lifted pseudo-control (23)
reduces to the following

w(k, i) = K(i)(ξ(k, 0) − ζr) + Nr. (24)

Notice that, when the state of the ISRS ζ approaches ζr (this is
possible because the ISRS is at least type one), then by the state
matching condition ξ approaches ζr, and the pseudo control w
becomes constant within two consecutive measurement update
instants. Therefore, the output of the multi-rate system is ripple
free.

Now the existence of the matrices M and N such that (21) holds
is investigated. Let us choose M and N in order to satisfy the
following conditions:

(

Φ̄c − I
)

Mr + Γ̄cNr = 0

r − C̄cMr = 0. (25)

These conditions can be rewritten in the following compact
form

P

[

M
N

]

=

[

0(nx+nη)×ny

Iny×ny

]

, (26)

where P is given by:

P ,

[ (

Φ̄c − I
)

Γ̄c

C̄c 0ny×nη

]

. (27)

Therefore, the matrices M and N can be uniquely determined if
the left pseudo-inverse of the matrix P exists, which translates
to the full row rank condition of P . Recall that the system
matrix of the system (Φ̄c, Γ̄c, C̄c, 0) is given by

Σc(z) =

[

(Φ̄c − zI) Γ̄c

C̄c 0ny×nη

]

(28)
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Since P = Σc(1), we can conclude that M and N can be
determined if and only if z = 1 is not an invariant zero of
the discrete-time system (9). This corresponds to requiring that
z = 1 is not an invariant zero of the plant (6) which can be seen
considering that P is full row rank if and only if the matrix
product

[

(Φc − I) Γc

Cc 0

] [

I 0
0 Cϕ

]

(29)

is full row rank. The second matrix in the above product is
full row rank and the first matrix is full row rank if the system
matrix of (2) does not have an invariant zero at z = 1.

Notice that if M and N are chosen in order to satisfy (25), then
the closed-loop system formed by (9) and (24) exhibits zero
steady-state regulation error. Therefore, by lifting the closed-
loop system formed by (9) and (24), it is straightforward to
show that the matrices M and N obtained from (25) satisfy
the following equation as well

(

Φ̃c − I
)

Mr + Γ̃cÑr = 0 (30)

From (17) and (30), we have

Γ̃c(Ñ − K̃M) = Γ̃cÑ − Γ̃cK̃M

= (I − Φ̃c)M − Γ̃cK̃M

= (I − Φ̃c)M − (F̃ − Φ̃c)M

= (I − F̃ )M.

Assuming that the ISRS (7) is a type one system, at steady-state
the following holds for the lifted ISRS

(F̃ − I)M + G̃ = 0.

Since, from (18), G̃ = Γ̃cL̃,

Γ̃c(Ñ − K̃M) = (I − F̃ )M = Γ̃cL̃.

Therefore, there exist matrices M and N such that (21) holds,
and hence the designed closed-loop multi-rate system exhibits
a ripple-free response to a step reference change as long as the
ISRS is at least a type one system.

The results can be summarized as follows. Given any continuous-
time system (1), let Tu and Ts be the control and measure-
ment update periods, respectively, such that Ts = qTu for a
positive integer q. Let (Aη, Bη, Cη, Dη) be a given controller
designed to achieve the desired performance criteria for the
desired closed-loop ISRS. If the ISRS system is designed in
order to achieve a zero steady-state error to a step reference
signal, and if

- nx ≤ (q − 1)nu,
- the couple (Φc, Γc) is controllable,

then it is possible to design a periodically time-varying con-
troller of the form (8) in order to achieve closed-loop state
matching with the ISRS at the faster rate 1/Tu, and a ripple-
free response converging to the step reference value.

4. EXPERIMENTS

4.1 Experimental setup

Experiments were conducted on a hard disk drive platform,
which is shown in Figure 1. A third order model has been
utilized to describe the VCMA dynamics as shown by Ratliff

and Pagilla [2005]. Choosing the state vector x = [θ, θ̇, i], and

defining u = Vs as the control input, the VCMA dynamics can
be described by the state space equation

ẋ =









0 1 0

0 0
Kt

J

0 −
Kt

L
−

R

L









x +







0
0
1

L






u (31)

where J is the arm inertia, Kt is the torque factor, Vs is the
voltage input to the coil with resistance R and inductance
L, and i is the current in the coil. The parameters values
J = 1.26e−07kg-m2, Kt = 5.5e−03N-m/A, R = 14Ω and
L = 1.1mH, were obtained by identification. The experimental
setup is shown in Figure 1. Since we do not have the proprietary

Fig. 1. Sketch of the experimental platform with laser sensor.

software to obtain arm position measurement from the platters,
a laser distance sensor has been used to get the angular position
feedback of the HDD R/W head. The laser is an LMI LDS90/40
triangulation sensor providing an analog output up to 100 kHz,
and a resolution of 0.02 degrees. As shown in the figures, the
platters have been removed from the HDD, and the frame of
the HDD has been modified in order to avoid any obstruction
for the laser beam generated by the laser sensor. A velocity
feedback is computed by measurement of current, through the
equation:

θ̇ ≈
u − Ri

Kt
(32)

obtained from the electrical dynamics by neglecting the term
involving the derivative of the current. As discussed by Ratliff
and Pagilla [2006], (32) provides a good approximation of the
angular velocity of the arm. The voltage Vs is supplied to the
coil through a KEPCO bipolar operational power supply.

4.2 Experimental results and discussion

The controller update period Tu was chosen equal to 50 µs,
and the values q = 4, 14 were chosen to test the proposed
algorithm. This corresponds to the measurement update periods
Ts = 200, 700 µs respectively. Notice that nx = 3, therefore
q = 4 corresponds to the smallest integer that satisfies the
condition nx ≤ (q − 1)nu. The controller (4) was chosen in
order to achieve a gain margin greater than 50 dB, a phase
margin greater than 40 deg, and a bandwidth of at least 20
rad/s. This resulted in the matrices Aη = 1, Bη = 19.53e−04,

Cη = 25.6e−04, Dη = 0.1, for the controller (4). The first
two plots of figure 2 show the behavior of the closed-loop
ISRS for step reference changes from 5 deg to 25 deg, and
vice versa. When the multi-rate scheme is adopted the HDD
R/W head position profile does not change. The last two plots
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of figure 2 show the control action for the multi-rate control
scheme in the cases q = 4 and q = 14, for the same step
reference changes. The designed multi-rate system exhibits a
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Fig. 2. Experimental results for step reference changes.

ripple-free response that resembles the ISRS response in both
the cases q = 4, q = 14. Even though the identified values
of the HDD model parameters may not be precise, and the
VCMA dynamics is affected by a nonlinear term due to the flex
bias that was not taken into account during the design process,
the proposed design leads to satisfactory results. The main
difference between the ISRS response and the multi-rate system
response is the presence of high frequency content in the control
action of the multi-rate scheme. This feature is highlighted in
Figure 3 where the voltage input to the coil is shown in a
larger time scale for the case q = 14. The oscillations in the
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Fig. 3. Zoom of the last plot of Figure 2.

controller output are mainly due to the time varying nature of
the controller. However, the control action gets smoother and
its magnitude decreases if the value of q increases. This is
reasonable considering that an increment of the measurement
sampling period Ts acts like a filtering action against possible
disturbances or measurement noises. However, even though
an increment of q has positive effects on the shape of the

control action, it might have a negative effect on the closed-
loop performance if the uncertainty on the model dynamics is
larger. Therefore, the lower is the uncertainty of the plant to be
controlled, the more similar are the multi-rate system and ISRS
responses.

5. CONCLUSIONS

A state-space approach to design discrete-time controllers for
multi-rate systems has been developed. The proposed design
can be applied not only to single-loop systems where the mea-
surement and the control update rate are different, but also
to multi-loop control structures where each loop operates at
a different sampling rate. The resulting multi-rate closed-loop
system achieves state-matching with the fast single-rate refer-
ence model, and exhibits ripple-free response with zero steady-
state regulation error if the reference model is at least a type
one system. Despite the presence of un-modeled resonance dy-
namics, and flex bias effect, the experiments show satisfactory
results. Future experiments will take into account also the non-
linear windage effect due to the rotation of the platters. Future
research should also concentrate on the design of a multi-rate
controller when full state feedback is not available.
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