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Abstract: Many of the systems in process and aerospace industry can be modeled as a three tank system. LMI 
and NLMI based controller design methods have been applied to three tank system in literature. Nonlinear me-
thods suffer from lack of ease for implementation, on the other hand, LMI based methods have to be unduly 
robust to cater for significant uncertainties arising from linearization around an equilibrium point. This paper 
presents an LMI based controller design method, which specifically uses second or higher order terms of nonli-
near three tank model, thus resulting in a robust controller with no compromise on performance. A second de-
gree error model is derived using small signal linearization method about an arbitrary operating point. A set of 
LMI’s are formulated for each polytopic region and solved to obtain the corresponding state feedback controller 
gains for that particular polytopic region. The series of designed controllers drives the system states from start-
ing point to the desired state through a series of connected polytopic regions.  The controller is robust with re-
spect to parameter variations due to the combined polytopic-LMI problem formulation. The effects of parame-
tric variations and disturbances are accounted for in such a formulation via appropriate bounds. The perfor-
mance of the designed controller is also compared with LMI based H∞ controller.  
 

1. INTRODUCTION 
 
Three tank system represents a typical process system in 
chemical industry, fuel management systems of air planes 
and space vehicles. Many of the systems can be modeled as 
a three tank system. Most of the three tank system parame-
ters for example flow coefficients are uncertain because of 
change of liquid or liquid density and aging effects (corro-
sion, scaling etc). Linearization techniques also introduce 
approximation errors. It is generally well known that a pa-
rametric model does not exactly describe the physical sys-
tem due to un-modeled dynamics and uncertainty in para-
meters. These un-modeled dynamics and parametric uncer-
tainties are handled by robust control schemes. Robust con-
trol laws cover larger regions of systems around an operat-
ing point. Robust control theory utilizes available informa-
tion about model uncertainties, performance and stability 
requirements. Many recent works have developed controls 
for linear and nonlinear systems including three tank system 
which may contain uncertain parameters, see for example 
(Cedric and Ramirez 2005), (Hahn et al, 2004), and (AlS-
wailem, 2004) and the references therein.  
 
A relative new area for control of linear as well as nonlinear 
systems is based on representing the systems in terms of 
Linear Matrix Inequalities (LMIs) and solving these LMI’s 
using convex optimization techniques (Boyd et al, 1994),  
(Scherer and Weiland, 2005). A number of LMI based ap-

proaches for the control and observer design of three tank 
system and other nonlinear systems are discussed in (Rodri-
gues, 2005), (Armeni, 2004), (Rajamani and Cho, 1995), 
(Uthaichana, et al. 2003). In (Rodrigues, 2005) an active 
Fault Tolerant Control (FTC) strategy is developed for three 
tank system described by multiple linear models to prevent 
the system deterioration by the synthesis of adapted control-
ler gains through LMIs. A Polytopic Unknown Input Ob-
server (PUIO) is synthesized for actuator fault estimation 
and controller gains are adjusted to preserve the system per-
formances over a wide operating range (Rodrigues, 2005). 
Nonlinear three tank system is represented by multiple 
models (Abdelkader et al, 2003), where a part of its inputs is 
unknown. The state variables are estimated by the synthesis 
of a multiple observer based on the elimination of the un-
known inputs. The gains of the local observers are deter-
mined as a solution to a set of LMIs. (Rajamani and Cho, 
1995) LMI based observer design methodology is presented 
for nonlinear system.  In (Armeni, 2004) FDI filter based on 
residual generation with fault sensitivity constraint is pro-
posed. An integrated controller and observer for LTI sys-
tems with model uncertainties and linear parameter varying 
is designed. FDI scheme is proposed based on solving a 
family of LMI optimization problems, which guarantees 
detection and isolation of smaller fault signals with good 
disturbance attenuation, in the presence of multiple simulta-
neous faults. 
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LMI and NLMI based controller design methods have been 
applied to three tank system in literature. Nonlinear methods 
suffer from lack of ease for implementation, on the other 
hand, LMI based methods have to be unduly robust to cater 
for significant uncertainties arising from linearization 
around an equilibrium point. In this paper an LMI based 
polytopic controller design method (Soren et al, 2002)  is 
employed which specifically uses second or higher order 
terms of nonlinear three tank model, thus resulting in a ro-
bust controller with no compromise on performance. A 2nd 
degree nonlinear perturbation model is derived about each 
operating point in a small region bounded by a polytope. A 
chain of overlapping small regions of the state space is 
formed so that each region contains an equilibrium point 
common to the next polytopic region in the chain (Figure 2). 
It is assumed that these consecutive polytopic regions are 
continuous. Each vertex of this polytope corresponds to a 
2nd degree nonlinear system. Lyapunov stabilizing method is 
applied to each polytopic region, a feedback controller and a 
desired ellipsoidal domain of attraction is obtained by solv-
ing a set of LMIs. The designed controller moves the state 
through the associated region to an operating point common 
to the domain of attraction of the current region and the next 
region along the chain. The controller for the next equili-
brium state is invoked when the system is sufficiently close 
to the preceding equilibrium state. This technique for the 
synthesis of controller is good in the sense, that at any par-
ticular operating point we have more than one controller 
available, which can be used to meet the appropriate per-
formance measures. This paper is organized as following: 
Three tank system is explained in section 2. Section 3 de-
scribes LMI method for stabilization of polytopic nonlinear 
system and polytopic controller design. Simulation results 
are discussed in section 4 and concluding remarks are in 
section 5. 
 

2.   THE THREE TANK SYSTEM 
 
A Three Tank System shown in Figure 1 is a benchmark 
system for the development, experimentation and analysis 
of complex linear as well nonlinear control and diagnosis 
algorithms. The mathematical model of the three tank sys-
tem (Cedric and Ramirez 2005) is obtained by “mass bal-
ance” equations by: 
 
 ܵ ௗ௅భௗ௧ ൌ ଵݍ െ ܵ  ଵଷݍ ௗ௅మௗ௧ ൌ ଶݍ ൅ ଶଷݍ െ ܵ ଶ଴                        (1)ݍ ௗ௅యௗ௧ ൌ ଵଷݍ െ   ଷଶݍ
 

where ݍ௜௝ represents the water flow rates from tank i to j., 

which, is given by ݍ௜௝ ൌ ௜ܮሺ݊݃ݏ௜ܵ௣ߤ െ ௜ܮ௝ሻට2݃หܮ െ  ,௝ห,  iܮ

j=1,2,3 and ݍଶ଴ is the outflow rate with ݍଶ଴ ൌ ,௜ߤ ,ଶܮଶܵ௣ඥ2݃ߤ ܵ௣ are the flow coefficients and cross sectional areas of 
interconnecting pipes, ܮ௜  are water levels in tanks, ݍଵ and ݍଶare flow rates into tank 1 and tank 2 respectively. The full 
system model is then obtained as follows: 
 

ሶଵݔ ൌ ଵݔሺ݊݃ݏଵܥ െ ଵݔ|ଷሻඥݔ െ |ଷݔ ൅ ሺ௤భା௪భሻௌ ሶଶݔ          ൌ ଷݔሺ݊݃ݏଷܥ െ ଷݔ|ଶሻඥݔ െ |ଶݔ െ |ଶݔ|ଶሻඥݔሺ݊݃ݏଶܥ ൅ ሺ௤మା௪మሻௌ ሶଷݔ   ൌ ଵݔሺ݊݃ݏଵܥ െ ଵݔ|ଷሻඥݔ െ |ଷݔ െ ଷݔሺ݊݃ݏଷܥ െ ଷݔ|ଶሻඥݔ െ ଵݕ  |ଶݔ ൌ ଶݕ ,ଵݔ ൌ ଷݕ ,ଶݔ ൌ  ଷ                        (2)ݔ

where ݔ௜ሺݐሻ is the liquid level in tank i and ܥ௜ ൌ ଵௌ  .௜ܵ௣ඥ2݃ߤ
The two control signals are  ݍଵሺݐሻ and ݍଶሺݐሻ (input flow 
rates) respectively,  ݓଵ and ݓଶ are actuator faults/ distur-
bances which perturb the behavior of the system. These ac-
tuator faults/disturbances must be compensated for graceful 
operation of the system. The parameters ܥ௜ which includes 
flow coefficient ߤ௜  are uncertain because of change of liq-
uid or liquid density and aging effects (corrosion, scaling 
etc). These parametric variations and uncertainties must also 
be accommodated by controller. The typical parameters 
values of benchmark three tank system are given in Table 1. 
 
Since the system in (2) is inherently unstable, a controller is 
required to regulate the flow rates and levels of the tanks, to 
achieve the steady state condition in the presence of distur-
bances and uncertainties. 
 

Table 1  Typical Parameter Values 

Parameter Value 
S, Area of the Tanks 0.0154 m2  
Sn, Area of pipes, n=1,2,3 5x10-5 m2   
q1max, q2max (input flow rates) 100 ml/s 
Li-max,xi, Level in Tanks,  i=1,2,3 0.62 m 
C1 , C3  and C2 0.0072, 0.0097 
Operating point ݔଵ଴,  ଷ଴  0.60, 0.40, 0.25ݔ ଶ଴, andݔ
Initial conditions 0,0,0 

 
 

The four operating regions corresponding to combination of 
states are ݔଵ ൒ ଵݔ ,ଷݔ ൏ ଶݔ  ,ଷݔ ൒ ଶݔ ଷ andݔ ൏  ଷ. Let usݔ
introduce constants as: ݏଵଷ ൌ ଵݔሺ݊݃݅ݏ െ ଷଶݏ ,ଷሻݔ ൌ݊݃݅ݏሺݔଷ െ ଴ଶݏ ଶሻ andݔ ൌ  ଶሻ. These constantݔሺ݊݃݅ݏ
represent the signs of the differences of states. These con-
stants are not continuous functions, they act as switching 
function and switches their value between [-1, 1] depending 
upon the sign of difference of two corresponding states. For 
simplicity their values can be fixed by taking hierarchical 
cases study (for example ݔଵ ൐ ଶݔ ൐ ଵଷݏ ଷ leading toݔ ൌݏ଴ଶ ൌ ଷଶݏ ݀݊ܽ 1 ൌ െ1). Using these constants, the system 
represented by (2) can be written as: 

 
Figure. 1.  The Three-Tank System 
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ሶଵݔ  ൌ ଵݔ|ଵଷඥݏଵܥ െ |ଷݔ ൅ ሺ௨భା௪భሻௌ ሶଶݔ          ൌ ଷݔ|ଷଶඥݏଷܥ െ |ଶݔ െ |ଶݔ|଴ଶඥݏଶܥ ൅ ሺ௨మା௪మሻௌ ሶଷݔ   ൌ ଵݔ|ଵଷඥݏଵܥ െ |ଷݔ െ ଷݔ|ଷଶඥݏଷܥ െ  ଶ|                   (3)ݔ

The system (3) will be used for the synthesis of polytopic 
system based controller using small signal linearization. 
 

3. THE POLYTOPIC CONTROLLER DESIGN 
 
For a nonlinear system of the form: ݔሶሺݐሻ ൌ ,ݐሺܣ ሻݐሺݔሻݔ ൅ ,ݐሺܤ ,ሻݐሺݑሻݔ ଴ሻݐሺݔ ൌ  ଴      (4)ݔ
where the time/state dependent matrices ܣሺݐ, ,ݐሺܤ ሻ  andݔ   ሻݔ
has the following structure.  
,ݐሺܣ  ሻݔ ൌ ଴ܣ ൅ ∑ ,ݐ௜߰௜ሺܣ∆ ሻ௟௜ୀଵݔ              (5) 
,ݐሺܤ  ሻݔ ൌ ଴ܤ ൅ ∑ ,ݐ௜߰௜ሺܤ∆ ሻ௟௜ୀଵݔ              (6) 
 

where ߰௜ሺݐ, ,଴ܣ ,ݔ and ݐ ሻ scalar valued are functions ofݔ ݊ ௜ are constantܣ∆,…,ଵܣ∆ ൈ ݊ dimensional matrices and ܤ଴, ݊ ௜  areܤ∆,…,ଵܤ∆ ൈ ݉ matrices. Additionally we require 
that, whenever ԡܥ௜ݔԡ ൑ ௜ܽ ,ߦ ൑ ߰௜ሺݐ, ሻݔ ൑ ܾ௜for constant 
matrices ܥ௜, a positive scalar ߦ, constants ܽ௜ and ܾ௜, for ݅ ൌ1 … ݈, which are the sufficient LMI conditions for the sys-
tem to be uniformly exponentially stable (Soren et al, 2005).  
 
For a closed loop system ݔሶሺݐሻ ൌ ሺܣሺݐ, ሻݔ ൅ ,ݐሺܤ  ሻݐሺݔሻܭሻݔ
is obtained from (4) with the linear state feedback ݑሺݐሻ ൌݔܭሺݐሻ ൌ  ሻ, the origin is uniformly exponentiallyݐሺݔଵିܵܮ
stable equilibrium point with Ω ൌ ൛ݔ א ܴ௡: ݔଵି்ܵݔ ൏  ଶൟ ifߦ 
the matrices L and a symmetric positive definite S and the 
scalar ߦ satisfy 
ܵܣ  ൅ ்ܣܵ ൅ ܮܤ ൅ ்ܤ்ܮ ൏ 0               (7a) ்ܥܵܥ ൑  ܫ
for all  ܥ א ሼܥ௜|݅ ൌ 1, … , ݈ሽ                 (7b) 
 

And matrix pairs 
 
 ሺܣ, ሻܤ ଴ܣ൛൫א ൅ ∑ ,ݐ௜߰௜ሺܣ∆ ሻ௟௜ୀଵݔ ൯, ൫ܤ଴ ൅ ∑ ,ݐ௜߰௜ሺܤ∆  ሻ௟௜ୀଵݔ ൯|߰௜ ൌܽ௜ ݎ݋ ܾ௜, ݅ ൌ 1, … ݈ൟ                     (7c) 
 
 

This gives a family of LMI’s and will be used to derive a 
linear state feedback for the 2nd degree model of Three Tank 
System. The existence of L and S and ߦ  in the LMI (7) pro-
vides state feedback that is sufficient for stability. Theoreti-
cal, sufficient conditions in terms of system structure gua-
ranteeing the existence of solution to the family of LMI’s 
remains an open question (Soren et al, 2005).  
Two more constraints are imposed on L and S for feasible 
solution to our control problem. The 1st constraint allows the 
inclusion of a starting pointݔ଴, the initial water level in a 
tank, in the invariant ellipsoid Ω centered at ݔଵௗ, and can be 
expressed as an LMI using the Schur’s complement (Scher-
er and Weiland, 2005): ሺݔ଴ െ ଴ݔଵௗሻ்ܵିଵሺݔ െ ଵௗሻ்ݔ ൏ ଶߦ ฻ ቈ ଶߦ ሺݔ଴ െ ଴ݔଵௗሻ்ሺݔ െ ଵௗሻ்ݔ ܵ ቉ ൐ 0  

(8) 
 

and 2nd constraint defines upper bound of the control input, ݑሺݐሻ, the water being pumped into the system, by ߛ. This ߛ 
can be chosen to impose a maximum energy constraint on ݑሺݐሻ over the interval [0, T] (Uthaichana et al, 2003). This 
bound for ݔሺݐሻ א Ω requires that for all t 
 ԡݑሺݐሻԡଶ ൌ ԡݔܭሺݐሻԡଶ ൌ ሻݐሺݔܭ்ܭሻݐሺ்ݔ ൑  ଶ     (9)ߛ

If ܭ்ܭ ൑ ఊమకమ ܵିଵ holds, then ԡݑሺݐሻԡଶ ൑  as desired. This ߛ

equation can be converted to LMI as ܭ்ܭ ൑ ܵିଵିܵܮ்ܮଵ ൑ ఊమకమ ܵିଵ ฻ ܮ்ܮ ൑ ఊమకమ ܵ         (10) 

Using Schur’s complement, this can be written as an LMI ൥ܵ ܮ்ܮ ఊమకమ ൩ܫ ൐ 0                     (11) 

The system of LMI’s formed by inequalities (7), (8) and 
(11) are used to design a gain scheduled controller. Theorem 
2 from (Soren et al, 2005) is used for the design of control-
ler for the 2nd degree nonlinear three tank system model. At 
each equilibrium point from starting point to the desired 
operating point, a set of LMI’s is generated, the solution to 
these LMI’s gives a desired controller which drives the sys-
tem states to the next region of attraction.  
 
3.1 Derivation of Nonlinear Perturbation (Error) Model  
 
A 2nd degree nonlinear perturbation model of (3) about an 
equilibrium point (ݔଵ଴, ,ଶ଴ݔ -ଷ଴ሻ using small signal linearizaݔ
tion is derived.  Generally, while linearizing, 1st order terms 
are included to ensure the linear behavior of the linearized 
system, for our case we have included 2nd order terms to 
capture 2nd order nonlinearities. Taking ݔሶଵ in (3), applying 
Taylor series expansion and rearranging, we get:  
ሶଵݔ  ൌ െ ଵܵଷܥଵඥݔଵ ൬1 െ ଵ൰ଵ/ଶݔଷݔ ൅  ሺݑଵ ൅  ܵ/ଵሻݓ

  ൌ െ ଵܵଷܥଵቂ√ݔଵ െ ଵିݔଷݔ1/2 ଵ/ଶቃ ൅ ሺݑଵ ൅   ܵ/ଵሻݓ
 

Now applying perturbation theory, we obtain, ݔሶଵ଴ ൅ ሶଵݔߜ ൌ െ ଵܵଷܥଵ ൤ ሺݔଵ଴ ൅ ଵሻଵଶെݔߜ 12 ሺݔଷ଴ ൅ ଵ଴ݔଷሻ  ሺݔߜ ൅  ଵሻିଵଶ൨ݔߜ
         ൅ሺݑଵ ൅  ܵ/ଵሻݓ
ሶଵ଴ݔ  ൅ ሶଵݔߜ ൌ െ ଵܵଷܥଵ ቎ ሺݔଵ଴ሻଵଶ ൬1 ൅ ଵ଴ݔଵݔߜ ൰ଵଶ െ 12 ଷ଴ݔ ൬1 ൅ ଷ଴ݔଷݔߜ ൰  ሺݔଵ଴ሻିଵଶ    ൬1

൅ ଵ଴ݔଵݔߜ ൰ିଵଶ   ቏ ൅ ሺ1ݑ ൅  ܵ/1ሻݓ

Using Taylor series expansion, keeping 1st, 2nd order terms, 
neglecting 3rd and higher order terms, we get after simplifi-
cation: 
ሶଵݔߜ  ൌ ଵܵଷܥଵ ቎ቐെ ଵଶ ඥ௫భబ െ ௫యబସ ට௫భబయ ቑ ଵݔߜ ൅ ଵଶ ඥ௫భబ ଷ቏ ൅ݔߜ ௨భା௪భௌ  

          ൅ ଵܵଷܥଵ ቐെ ଵ଼ ට௫భబయ െ ଷ௫యబ଼ ට௫భబఱ ቑ ଵଶݔߜ െ ଵܵଷܥଵ ଵସ ට௫భబయ  ଷ (12)ݔߜଵݔߜ
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which is 2nd order nonlinear perturbation equivalent of  ݔሶଵ in 
(3) about ݔଵ଴. Similarly, following similar steps for ݔሶଶand ݔሶଷ in 
(3), we get: ݔߜሶଶ ൌ  ܵଷଶܥଷ ቐ ଵଶ ඥ௫యబ ൅ ௫మబସ ට௫యబయ ቑ ଷݔߜ െ ൜  ௌయమ஼యଶ ඥ௫యబ ൅  ௌబమ஼మଶ ඥ௫మబൠ ଶݔߜ ൅  

             ൅ ܵଶ଴ܥଶ8 ටݔଶ଴ଷ ଶଶݔߜ ൅ ۔ە
െۓ  ܵଷଶܥଷ8 ටݔଷ଴ଷ ൅  3 ܵଷଶܥଷݔଷ଴16 ටݔଷ଴ହ ۙۘ

ۗ     ଷଶݔߜ
                       െ ௌయమ஼య଼ ට௫మబయ ଷݔߜଶݔߜ ൅ ௨మା௪మௌ           (13) 

ሶଷݔߜ   ൌ  ଵܵଷܥଵ ቎ቐ ଵଶ ඥ௫భబ ൅ ௫యబସ ට௫భబయ ቑ ଵݔߜ െ ଵଶ ඥ௫భబ   ଷ቏ݔߜ
                      ൅ ܵଷଶܥଷ ۔ە

ۓ 12 ඥݔଷ଴ ൅ ଷ଴ଷݔଶ଴4 ටݔ ۙۘ
ۗ ଷݔߜ െ  ܵଷଶܥଷ2 ඥݔଷ଴  ଶݔߜ

                          െܵଵଷܥଵ ቐ ଵ଼ ට௫భబయ ൅  ଷ௫యబ଼ ට௫భబఱ ቑ ଵଶݔߜ ൅ ଵସ ට௫భబయ ଷݔߜଵݔߜ ൅
                           ቐ  ௌయమ஼య଼ ට௫భబయ ൅ ଷ ௌయమ஼య௫మబ଼ ට௫భబఱ ቑ ଷଶݔߜ ൅ ௌయమ஼యଶ ට௫భబయ  ଷ      (14)ݔߜ ଶݔߜ

The perturbation error model given by (12) ~ (14) is used to 
develop polytopic controller in next section. 
 
3.2 Polytopic form of 2nd degree Perturbation (Error) 
Model 
 
The polytope Ω is determined by the convex hull of the set 
of matrix vertices i.e. Ω ൌ CoሼሾA୧ B୧ሿሽ. The nonlinear per-
turbation (error) model satisfies the sufficient conditions of 
polytopic form (Boyd et al, 1994). The state space represen-
tation of the linearized model represented by (12) ~ (14) can 
be written as:  
 Δݔሶሺݐሻ ൌ ݔሻΔݔሺΔܣ ൅  (15)          ݑሻΔݔሺΔܤ
 

where system matrices A, B are defined by (5), (6) and Δݔ, Δu are given as under: 
 

 Δݔ ൌ ሾ3ݔߜ   2ݔߜ   1ݔߜሿ் and Δݑ ൌ  2൧ݑ   1ݑൣ
 

 Defining the following functions: ߰ሺݐ, ሻݔ ൌ ሾ߰ଵሺݔሻ   ߰ଶሺݔሻ   ߰ଷሺݔሻሿܶ ൌ ሾݔߜଵ   ݔߜଶ   ݔߜଷሿܶ    (16) 
 

 

the matrices A,B can be written as (5),(6): 
 
,ݐሺܣ  ሻݔ ൌ ଴ܣ ൅ ∑ ,ݐ௜߰௜ሺܣ∆ ሻଷ௜ୀଵݔ           
,ݐሺܣ  ሻݔ ൌ ଴ܣ ൅ ሻݔଵ߰ଵሺܣ∆ ൅ ሻݔଶ߰ଶሺܣ∆ ൅  ሻ   (17)ݔଷ߰ଷሺܣ∆
,ݐሺܤ  ሻݔ ൌ ଴ܤ ൅ ∑ ,ݐ௜߰௜ሺܤ∆ ሻଷ௜ୀଵݔ ,ݐሺܤ           ሻݔ ൌ ଴ܤ ൅ ሻݔଵ߰ଵሺܤ∆ ൅ ሻݔଶ߰ଶሺܤ∆ ൅  ሻ  (18)ݔଷ߰ଷሺܤ∆
 

Comparing (12)-(14) with (17)-(18) the following matric-
es are obtained. 
 

଴ܣ  ൌ
ێێۏ
ێێێ
െۍ ௌభయ஼భଶ ඥ௫భబ െ ௌభయ஼భ௫యబସ ට௫భబయ 0 ௌభయ஼భଶ ඥ௫భబ0  ௌయమ஼యଶ ඥ௫యబ ൅  ௌమబ஼మଶ ඥ௫మబ ௌయమ஼యଶ ඥ௫యబ ൅ ௌయమ஼య௫మబସ ට௫యబయௌభయ஼భଶ ඥ௫భబ ൅ ௌభయ஼భ௫యబ଼ ට௫భబయ െ  ௌయమ஼యଶ ඥ௫యబ ௌయమ஼యଶ ඥ௫యబ ൅ ௌయమ஼య௫మబସ ට௫యబయ െ ௌభయ஼భଶ ඥ௫భబۑۑے

ۑۑۑ
ې
 

 

ଵܣ∆ ൌ ێێۏ
െۍێێ ௌభయ஼భ଼ ට௫భబయ െ ଷௌభయ஼భ௫యబ଼ ට௫భబఱ 0 െ ௌభయ஼భସ ට௫భబయ0 0 0െ ௌభయ஼భ଼ ට௫భబయ െ ଷௌభయ஼భ௫యబ଼ ට௫భబఱ 0 ௌభయ஼భସ ට௫భబయ ۑۑے

   ېۑۑ

 

ଶܣ∆ ൌ ێێێۏ
0ۍێ 0 00 ௌమబ஼మ଼ ට௫మబయ െ  ௌయమ஼య଼ ට௫యబయ0 0  ௌయమ஼య଼ ට௫భబయ ۑۑۑے

ېۑ
   

ଷܣ∆ ൌ ێێۏ
0ۍێێ 0 00 0 െ  ௌయమ஼య଼ ට௫యబయ ൅ ଷ ௌయమ஼య௫యబଵ଺ ට௫యబఱ0 0  ௌయమ஼య଼ ට௫భబయ ൅ ଷ ௌయమ஼య௫మబ଼ ට௫భబఱ ۑۑے

   ېۑۑ

଴ܤ ൌ ܤ ൌ ൦ଵௌ 00 ଵௌ0 0൪ ,  ܥ ൌ ൥1 0 00 1 00 0 1൩       (19) 

and ∆ܤ௜ ൌ 0, ݅ ൌ 1,2,3. Equations (17) - (19) represent the 
polytopic form of the 2nd degree model of three tank system. 
For a small ߦ ൐ 0, the constants ܽ௜ and ܾ௜ can be explicitly 
chosen such that  ܽ௜ ൑ ߰௜ሺݐ, ሻݔ ൑ ܾ௜ whenever ԡܥ௜ݔԡ ൑ߦ for ݅ ൌ 1,2,3.  The bounds ܽ௜ and ܾ௜ are obtained from the 
physical conditions of the systems. Equations (7), (8) and 
(11) specify the polytopic form of the perturbation model. 
The linear state feedback controllers ܭ௜ (∆ݑ௜ ൌ  ௜) canݔ∆௜ܭ
be obtained as a solution to system of LMI’s represented by 
equations (7), (8) and (11). 
 
This polytopic approach allows reasonable variation in plant 
states around each operating point. These variations or un-
certainties ߰௜ሺݐ,  ሻ depend on the states of the system andݔ
has local bounds ܽ௜ ൑ ߰௜ሺݐ, ሻݔ ൑ ܾ௜. These bounds double 
the vertices of a polytope represented by the set of LMI’s 
represented by (7), (8) and (11).  

Figure 2. Working principle polytopic controller design for the 
three tank system. 
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4. SIMULATION RESULTS 
 
The state feedback controller is designed for the 2nd degree 
perturbation model as a solution set of LMI’s (7), (8) and 
(11) and is evaluated for the nonlinear model of three tank 
systems. The simulation parameters used for the perfor-
mance analysis of designed controller are given in Table 1. 
A hierarchical case study for the simulations is considered 
i.e. operating conditions with system states ݔଵ ൐ ଶݔ ൐  ଷݔ
(level in tank-1 is higher than tank-2 which is higher than 
tank-3). The simulation results for tracking are given in Fig-
ure 3. These results are compared with LMI based ܪஶ con-
troller (Iqbal et al, 2008) under similar operating conditions 
of Table 1 shown in Figure 4. It is clear that the settling time 
for the case of polytopic controller is much better than the 
corresponding LMI based ܪஶ controller using multi-
objective approach. Figure 5 and Figure 6, shows the per-
formance comparison for the case of input disturbance and 
plant parametric variations (uncertainties) along with con-
trol effort. The detailed analysis shows that the disturbance 
rejection of polytopic controller in the presence of parame-
tric uncertainties is reasonably good.  
 
Different controllers were designed for different number of 
polytopic regions from starting point to the desired points.  
It is noted that, number of polytopic regions can affect the 
convergence of the solution to set of LMI’s. With larger 
polytopic regions (less number of intermediate points), the 
solution of set of LMI’s might not converge (i.e., controller 
will not be able to drive the system to desired point), for 
such case smaller step sizes in that polytopic region can be 
chosen so that feasible solution to set of LMI’s for that point 
shall converge.   The convergence time can be adjusted by 
allowing reasonable variations in control inputs, but within 
acceptable limits. This can be managed by allowing norm of 
the controllers to smaller or larger values. This gives flex-
ibility in the controller design to achieve specific perfor-
mance parameters. The associated computational issues 
using LMI toolbox in MATLAB are discussed in (Soren et 
al, 2005).  

5. CONCLUSIONS 

A polytopic system based state feedback controller is de-
signed for the 2nd degree perturbation model and evaluated 
on the nonlinear model of the three tank system. The de-
signed controller drives the states from starting point to the 
desired state through a series of connected polytopic re-
gions. A set of LMI’s are formulated for each polytopic 
region and solved to obtain the corresponding state feedback 
controller gains for that particular polytopic region. The 
feasibility of each LMI system written for each polytope 
vertex implies the existence of a stabilizing quadratic Lya-
punov function for each 2nd degree perturbation model. The 
approach amounts to a gain scheduled implementation of 
the controllers. The controller stabilizes the system about 
each operating point as none of the 2nd degree perturbation 
systems is locally stable about any of the operating points. 
Also, the controller is robust with respect to parameter vari-
ations due to the combined polytopic-LMI problem formula-

tion and solution. The effects of parametric variations and 
disturbances are accounted for in such a formulation via 
appropriate bounds. This work can be extended by imple-
menting the designed controller on the actual three tank 
system, along with LMI based observer for the sensor and 
actuator fault diagnosis.  

 
Figure 3. Performance of Polytopic Controller for regulation. The 
desired water levels to be maintained are (x1=0.65, x2= 0.4) 
 

 
Figure  4. Performance of LMI based H∞Controller for regulation. 
The desired water levels to be maintained are (x1=0.60, x2= 0.4) 
 

 
Figure 5. Disturbance rejection in presence of parametric uncer-
tainty for polytopic controller [uncertainty:  20% in c1 (flow coef-
ficient), disturbance: 10 times nominal (steady state) value of con-
trol input u1]. The desired water levels to be maintained are 
(x1=0.65, x2= 0.4) 
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Figure 6. Disturbance rejection in presence of parametric uncer-
tainty for H ∞ Controller [Uncertainty:  50% in C1 (flow coeffi-
cient), Disturbance: 10 times nominal (steady state) value of con-
trol input u1]. The desired water levels to be maintained are 
(x1=0.65, x2= 0.4) 
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