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Abstract: In this paper, a new fractional order IIα controller combined with a Smith predictor for 
effective water distribution in a main irrigation canal pool is designed. A new tuning method, based on 
frequency techniques, is proposed, providing to the controlled system the same nominal behavior than a 
conventional PI controller with Smith Predictor and more robustness to variations in the system gain. 

 

1. INTRODUCTION 

Water is becoming a precious and very scarce resource in 
many countries due to the increase of industrial and 
agricultural demands, as well as of the population. Irrigation 
is the main water consuming activity in the world, as it 
represent about the 80 % of the available fresh water 
consumption. There is a growing interest for the application 
of advanced management methods that prevent wastage and 
facilitate the efficient use of this vital resource (Clemmens 
and Schuurmans, 2004; Litrico, 2001).   
 
It is widely accepted that automation could lead to a better 
efficiency of water management in many irrigation systems 
with open canals, which are subject to large losses. The used 
of specific control method depends of canal construction 
properties (including slope, structures, and storage volumes), 
the rules for delivery service, the type of water delivery, the 
availability of communication between the control center and 
automatic structures, the expectation of water users and 
operation staff, and economic considerations (Kovalenko, 
1983). Automatic control of water distribution in main 
irrigation canals can be justified by improved service to 
clients, improved efficiency in water distribution, reduced 
overall operation costs, considerable decreased in water 
losses and increased safety exploitation (Malatere, 1998).  
 
Designing a control strategy leading to a practical and 
effective controller of water distribution is an arduous task 
because the hydraulic behavior of irrigation canals shows that 
these systems are distributed over long distances, with 
dynamics characterized by important varying time delays, 
strong nonlinearities, numerous interactions between 
different consecutive sub-systems and the existence of others 
dynamic parameters that change over time during operation 
(Malaterre, 1998). Thus, the whole irrigation canal has to be 
regarded as a system with complex dynamical behavior 
(Litrico, 2001).  
 

The main objective of the control strategies is to satisfy, in 
spite of uncertainties, the water demand of each consumer 
while guaranteeing a minimum discharge all along the canal 
and spending a minimum water volume from the upstream 
reservoir (Litrico, 2001). A usual solution to reach these 
control objectives has been the use of conventional PI 
controllers (Litrico X., Fromion V. Baume J.P. and Rijo M., 
2003; Baume J.P., Malaterre P.O. and Sau J., 1999). 
Nevertheless, many studies have shown that these classical 
regulators seem to be unsuitable to solve the problem of 
effective control of water distribution in main irrigation 
canals due to the difficult dynamical behavior that 
characterizes these processes (Malaterre, Rogers and 
Schuurmans, 1998; Montazar, Overloop and Brouwer, 2005; 
Rivas et al. 2002; Wahlin, 2004). 
 
Other control schemes widely proposed to modify the 
dynamics of system characterized by large time delays are 
based on the Smith predictor, which simplifies the closed 
loop transfer function of the system, removing the time delay 
of the denominator and provides robustness to system 
parameters changes (Feliu, V., Rivas R. and Castillo F.J. 
2005).Recently fractional operators have been applied by 
different authors, e.g. Podlubny, 1999, to model and control 
difficult dynamical behavior processes. An interesting feature 
of fractional-order controllers is that they exhibit some 
advantages when designing robust control systems in the 
frequency domain for processes whose parameters vary in a 
large range (Feliu, Rivas, Sanchez, 2007; Feliu, Rivas and 
Castillo, 2005). In this paper these characteristics are 
explored in order to design robust controllers to solve the 
problem of effective water distribution control in a main 
irrigation canal pool. In particular this paper is focused on the 
design of a fractional integral-integralα controller (FIIα) for a 
main irrigation canal pool. 
 
This paper is organized as follows. A model for the main 
irrigation canal pool to be controlled is proposed in Section 
II. Section III develops the method for designing the FIIα 
controller. Section IV compares the designed controller with 
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other standard ones. Finally some conclusions are drawn in 
Section V.    
 

2. MAIN IRRIGATION CANAL POOL MODEL 
FOR CONTROL 

 
An irrigation main canal is an open hydraulic system, whose 
objective is mainly to convey water from its source down to 
its final users (farmers). This system is integrated by several 
pools separated by cross structures (mainly hydraulic gates), 
which are operated for regulating the water levels (flows), 
discharges and/or volumes from one pool to the next one. 
Fig. 1 shows a schematic representation of an open irrigation 
main canal.  

 
Fig. 1. Scheme of an open irrigation main canal with gates. 

 
Physical dynamics of an open canal have traditionally been 
modeled by the Saint-Venant equations, which are nonlinear 
hyperbolic partial differential equations (a distributed 
parameters model). These equations are derived from mass 
and momentum balances and are given by (Chaudhry, 1993): 
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where A, the canal cross-section area; Q, the discharge (flow) 
across section A; q, the lateral discharge (inflow or outflow); 
x, the longitudinal abscissa in the direction of the flow; y, the 
water surface absolute elevation; g, the gravitational 
acceleration; Sf, the friction slope; t, the time variable. 
 
Nowadays different methods exist for the solution of Saint-
Venant's equations, all of them exhibiting large mathematical 
complexities. These equations are also very difficult to use 
for prediction and control. Often, an equivalent first order 
systems plus a delay are used to model the canal dynamic 
behavior (Rivas Perez et al., 2003; Weyer, 2001). 
 
The irrigation canal considered in this paper is the Guira de 
Melena Main Irrigation Canal (GMMIC), in Havana County, 
Cuba. It is a cross structure canal of 60 km long with design 
head discharge of 15 m3/s and normal water depth varying 
from 2.0 m to 1.5 m. This canal has a trapezoidal cross 
section, the bed width varies from 5 m to 3 m, and the 
average slope is 0.15 m per km. It has seven pools of 
different lengths separated by undershot gated cross 
structures. Water is delivered to the secondary network 
through 12 gated offtakes structures. The irrigated area of 
GMMIC is about 10 000 hectares. This canal is mainly 

operated in a downstream end control mode with data 
communication via a radio network. 
 
The last three pools of GMMIC supply water to three big 
reservoirs (Guira 1-Guira 3) of 20 000 cubic meters (supplier 
reservoirs). These reservoirs provide water to other five 
reservoirs (R1-R5) of smaller capacity (5 000 cubic meters). 
The reservoirs of smaller capacity are those that supply water 
to the cultivated areas. A schematic representation of these 
canal pools is shown in Fig. 2.  

Fig. 2. Schematic representation of the last pools of Guira de 
Melena Main Canal. 

 
The water level sensors are installed within offline stilling 
wells at the downstream end of the pool. These sensors are of 
float and counter-weight type, attached to a stainless steel 
tape which runs over a sprocket wheel. The wheel 
movements are transferred to a potentiometer that transmits 
the analogical inputs corresponding to the water surface to a 
PLC.   
 
The offtakes are located at the downstream end of each pool, 
approximately at 7 m upstream of the next gate. These 
offtakes can withdraw water from the main canal to supply 
their corresponding users. These flows represent the main 
external perturbation ( )(tqi ) acting on each canal pool. 
  
Considering that the downstream end water level is the 
controlled variable and the gate position the manipulated 
variable, the mathematical model for control will consider the 
water level as its output and the gate position as its input. 
The data and results reported in this paper are from the VI 
pool of GMMIC, which is one of the last pools of this canal 
and whose length is 10 km (see Fig. 2). This canal pool is 
operated by means of the downstream end water level 
regulation method (Kovalenko, 1983; Malaterre, Rogers and 
Schuurmans, 1998). The available measurements are the 
downstream end water levels (y(t)) and the gate position 
(u(t)) as sketched in Fig. 1. 
 
For water distribution control in main irrigation canal pools it 
is not necessary to know the water level variations along the 
whole pool, but only at specific points which depend on the 
canal operation method that is being used (Kovalenko, 1983). 
Considering this, a linear model with concentrated 
parameters and a time delay can adequately characterize the 
dynamical behaviour of an irrigation canal pool at specific 
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points (Clemmens and Schuurmans, 2004; Rivas Perez, 
1990).  
 
Experiments based on the response to a step like input were 
carried out in the VI canal pool of GMMIC in order to obtain 
a mathematical model that describes its dynamic behavior. 
For step test the downstream gate was kept in a fixed 
position, the upstream gate was stimulated with a step signal 
and the downstream end water level was measured with a 
level sensor. The experimental response of this canal pool to 
a step command is exhibited in Fig. 3.  
 

 
Fig. 3. Step test of the VI pool of GMMIC. 

 
Such response shows that the dynamic behavior of a single 
canal pool can be represented by expression: 
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where K  is the static gain; 21, TT  are time constants; τ  is 

the time delay. We consider that 1T  is the dominant time 
constant, associated to the dynamics of the canal pool, while 

2T  is the smaller time constant that represents the motors + 
gates dynamics, which is much faster than the canal pool 
dynamics. 
 
Experiments reported in previous works (Rivas, Feliu and 
Sanchez, 2007) on identification of this canal pool showed 
that all dynamic parameters of mathematical model (2) may 
exhibit wide and non predictable variations when the 
discharge regimes change across the gates in operation 
range ),( min axmQQ . For this reason any controller that is 
designed for this canal pool should be robust in front of the 
dynamic parameters variations. An ARMAX model structure 
was used to identify the system. The resulting nominal 
parameters of the system were the following: Kp=0.466, 
T1=550 s., T2=46.4 s. and τ=600 s. 
 

3. CONTROL DESIGN 
 

3.1 Smith Predictor Scheme. 
 
Fig. 4, represents the usual control scheme for any linear 
system. 
 

 
Fig. 4. Conventional control scheme. 

 
With this scheme, in systems with time delay of the form 
G(s)=G’(s)·e-τs, the closed loop transfer function denominator 
also presents a time delay term, becoming difficult the 
control task. 
 
As it was explained in the introduction section, a control 
scheme that improves the behavior of systems with time 
delay, as irrigation canals, is the Smith predictor (SP), which 
has been widely combined with conventional controllers 
(Owens D.H., Raya A., 1982; Marquez, Fliess and Mounier, 
2001; Kaya I., 2003).This control scheme is shown in Fig. 5. 
 
Supposing that the SP is perfectly tuned, the equivalent 
closed loop transfer function of the system is: 
 

 
Fig. 5. Control scheme of a Smith predictor. 
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where the time delay of the denominator of the closed loop 
transfer function has been removed.  
 
In the present work the R(s) controller is tuned using 
frequency specifications, that is, gain crossover frequency,  
ωc (rapidity of the system) and phase margin,  φm (overshoot). 
 
Subsequently, the tuning process is described in detail for 
both, a conventional PI controller + SP and the new FIIα 
controller + SP, proposed in this article. 
 
3.2 PI + SP tuning. 
 
Let it be the usual PI controller with the following transfer 
function, R1(s): 
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The gain crossover frequency, ωc, can be expressed in terms 
of the settling time, ts, and the time delay, τ, as follows: 
 

)/(3 τω −≈ sc t            (5) 
 
The obtained results verify that this hypothesis of design is 
correct. 
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Assuming a perfect tuning of the SP, the equivalent open 
loop transfer function we use to obtain the tuning rules for the 
controllers is: 
 

)(')()( sGsRsH =            (6) 
 
Where the equations that govern the frequency behavior are: 
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Dividing G’(s) in its real and complex parts: 
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And operating in (7), next expressions are obtained: 
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Rearranging terms in (9) and (10), the equations that 
determine the controller parameters, Kp1 y Ti1, turn out to be: 
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In this manner, controller parameters can be calculated as 
functions of the system parameters and the frequency 
specifications. 
 
3.3 FIIα + SP  tuning. 
 
In previous works, a FPIα controller + SP was used (Feliu, 
Rivas and Castillo, 2005) with the next transfer function, 
R2’(s): 
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The use of this controller presents advantages in robustness 
when the system parameters vary, nevertheless, due to the 
non integer integral action of the controller, the steady state 
error tends slowly to zero. 
With the object to avoid this undesired effect, the present 
paper proposes a FIIα controller R2(s), with an integer and a 
fractional integral action: 
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This controller has no proportional, if α≠1, or derivative 
action and, once fixed α parameter, it depends of the same 
number of parameters that a PI controller. In the case of α=1, 
R2(s) becomes to (4), the case of the PI controller, with 
Kp1=Kp2/Td2  and Td1=Td2. 
 
Using the same tuning method of the PI one, and applying 
equation (14) over the equations that establish the frequency 
behaviour (7), we can obtain the next expressions: 
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From the equations (15) and (16), it is easy to determine the 
FIIα controller parameters: 
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In this manner, controller parameters can be calculated as 
functions of the system parameters and the frequency 
specifications. 
 
3.4 FIIα controller implementation. 
 
The derivative fractional operator has been implemented 
using the numerical approximation of Grunwald-Letnikov, 
successfully applied in previous works (Feliu, Rivas and 
Castillo, 2005). The approximation used is: 
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and n is the truncation order of the numerical approximation. 
(fixed to 1000). 
 

4. COMPARISON OF CONTROLLERS 
 
The response of the open loop system exhibits a settling time 
of approximately 2500 s. As an example of controller tuning, 
a settling time of 1000 s. has been set for the closed loop 
system, becoming 2.5 times faster. By means of (5) the 
crossover frequency is set to ωc = 0.0075 rad/s. On the other 
hand, a standard phase margin has been chosen, φm = 60º, 
allowing approximately an overshoot of  25%. 
 
The transfer function of the PI controller is determined by 
(11) and (12): 
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Fig. 6. Bode diagram: PI + SP vs. FIIα + SP  

(α parameter variation). 
 
The FIIα controller tuning also depends of the selection of α 
parameter. In order to compare the results and to choose the 
best value of α parameter, Fig. 6 displays the Bode diagram 
of H(s) for PI and FIIα controllers, varying α. Fig. 6 shows 
that the frequency response fits to ωc and φm for PI controller 
and FIIα controller in a range of values of α≥αc. If α<αc FIIα 
controller becomes unstable (φm<0). In addition, when α 
parameter decreases, the phase crossover frequency, ω1, 
decreases too, increasing the gain margin. Therefore the 
value of α must be chosen to minimize the phase crossover 
frequency, ω1. Fig. 7 represents the variation of ω1 in the 
range of α∈[0,1]. Within the stability zone, the value of α 
parameter that provides the minimum value of ω1 matches 
with the results obtained by means of the Bode diagram, i.e. 
α=αc=0.495. 
 
Then, the controlled system must present the same temporal 
response in nominal conditions and an increment in the 
robustness to changes in the system gain. 

 

 
Fig. 7. Variation of ω1 (α∈[0,1]). 

 
The new FIIα controller tuned using (17) and (18) has the 
following transfer function: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= −

s
ssR 110·281.110·292.3)(

495.04
5

2
              (24) 

 
Fig. 8 shows the temporal response of both controllers, under 
nominal conditions, presenting the same settling time and 
overshoot.  
 

 
Fig. 8. Temporal response: PI + SP vs. FIIα+SP  

(nominal case) 
 

With the object to compare the robustness of the two control 
schemes proposed, Fig. 9 and 10 display the temporal 
response of both, PI+ SP and FIIα + SP schemes, 
respectively, when the system gain varies. The new FIIα+SP 
controller provides an increment of a 25% in the robustness 
of the system with respect to the PI+SP scheme. 
 

 
Fig. 9. Temporal response of PI + SP 

(system gain variation) 
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5. DISCUSSION AND CONCLUSIONS 
 

The present article has proposed a new fractional IIα 
controller without proportional action combined with a Smith 
predictor. 
 
With the new tuning method presented, the deduction of the 
controller parameters becomes straightforward once we have 
chosen a value for parameter α, which is selected in order to 
provide the maximum robustness to changes in the system 
gain.  
 
In comparison with the use of a PI controller combined with a 
Smith predictor, the same temporal behavior is provided 
under nominal conditions (same settling time and same 
overshoot), increasing the robustness to system gain 
variations. In our case of study, the VI canal pool of 
GMMIC, the robustness to changes in the system gain has 
been increased a 25% with respect to the PI+SP scheme. 
 

 
Fig. 10. Temporal response of FIIα + SP 

(system gain variation) 
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