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Abstract: Nonlinear systems can be poorly or non-observable along specific state and output
trajectories or in certain regions of the state space. Operating the system along such trajectories
or in such regions can lead to poor state estimates being provided by an observer. Such trajectories
should be avoided if used for state-feedback control or monitoring purposes. In this paper, we
outline two possible approaches to avoid weakly observable trajectories in the frame of nonlinear
predictive control. The first approach is based on the use of a term in the cost functional that
penalizes weakly observable trajectories and thus leads to avoidance of weakly or non-observable
regions of operation. In the second approach, the observer error dynamics are directly considered
in the prediction. Large state estimation errors lead to a large penalization in the cost functional
and are thus avoided. The approaches are exemplified by considering an example system.
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1. INTRODUCTION

Observability for linear time-invariant systems is well
studied and understood and there exist several equivalent
ways to define observability (Krener (2004, 1994); Zeitz
and Xia (1997)). For nonlinear systems, however, the
question of observability, and of the design of suitable
state observers, is significantly more challenging, even in
the nominal case. One of the main differences from linear
systems is the fact that the observability of a nonlinear
system in general depends on the input applied and on
the region of operation/measured output trajectory. The
observability of the state might, for example, be lost at
points where the observability map is non-invertible for
the given state, input, and output. If such points are not
considered in the observer, they can lead to deteriorating
observer performance (Vargas (2003)). Thus, if used in
the context of state-feedback via the certainty equivalence
principle, they can cause deterioration of the performance
of the closed-loop or even instability.

In this work, we consider the questions of the avoidance
of loss of observability and of improved observer perfor-
mance along trajectories in the frame of predictive con-
trol. As shown, predictive control is well suited for such
problems, since the applied input trajectories are based
on the repeated solution of an open-loop optimal control
problem considering a (nonlinear) model of the system
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for prediction. Since the future behavior of the system is
predicted, one can penalize trajectories that would lead
to poor observability or observer performance. We are not
immediately interested in designing a stabilizing output-
feedback control scheme. Rather, we are interested in the
question of avoidance of trajectories that might deteriorate
observer performance or lead to loss of observability.

Specifically we consider two separate, but closely related,
problems. Firstly, we are interested in if weakly observable
trajectories can be actively avoided by a suitable choice of
the input signal. For this purpose, we propose to incorpo-
rate in the cost functional a term that strongly penalizes
non-observable/weakly observable trajectories. Secondly,
we are interested if the observer-error performance can be
directly considered in the predictive controller itself. To
this end, we propose to augment the predictive system
state by the observer error dynamics and to penalize tra-
jectories that lead to large observer errors.

The remainder of the paper is organized as follows. In
Section 2 we state the considered system class and provide
a motivation for the considered problems. Section 3 shortly
reviews the basics of nonlinear model predictive control.
Section 4 considers the question of avoidance of weakly
observable/non-observable trajectories in predictive con-
trol, while Section 5 presents a predictive control approach
that directly takes the observer error in the prediction
into account. The outlined approaches are exemplified by
considering an example system. Conclusions are provided
in Section 6.
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2. PROBLEM SETUP AND MOTIVATION

We consider nonlinear systems of the form

ẋ = f(x, u), x(0) = x0, (1a)

y = h(x, u), (1b)

with x ∈ R
n, u ∈ R

m and y ∈ R
p. Additionally, the system

might be subject to state and input constraints of the form

u(t) ∈ U ∀ t ≥ 0, (2)

x(t) ∈ X ∀ t ≥ 0. (3)

Here X ⊆ R
n is the state constraint set and U ⊂ R

m is
the set of feasible inputs.

For many purposes, such as state feedback control or mon-
itoring the states of the system (1) must be recovered from
the measurements. Even though that significant progress
with respect to state estimation for nonlinear systems
has been made in recent years, it is still a challenging
and difficult task. One of the key differences from state
estimation for linear systems is that observability for non-
linear systems generally depends on the inputs applied,
outputs measured, and the system state itself. The system
might be observable for certain regions in the state space,
while observability might be lost in others. As an example,
consider a system with a single output of the form y = x u.
Clearly, if the controller chooses u = 0, the state cannot be
reconstructed from the measurements (at least locally). In
practical problems, sensors might saturate far away from
their nominal point of operation, or they might deliver
deteriorated measurements. Considering this problem, the
question arises, if inputs and states that lead to a loss
of observability, or weak observability, can be avoided. We
outline in Section 4 a possible approach based on the ideas
of predictive control. In contrary to the problem of loss of
observability one might also ask, if it is possible to design
trajectories such that a given observer will achieve good
state estimates. This will be discussed in Section 5.

Before we derive suitable methods to improve observer
performance or avoid loss of observability, respectively,
we first review in the following section the principle of
nonlinear model predictive control.

3. NONLINEAR MODEL PREDICTIVE CONTROL

Many research activities have focused on nonlinear model
predictive control (NMPC) in recent years. Its ability to
explicitly deal with nonlinear systems subject to state
and input constraints gives the NMPC control method
significant advantages when compared to many other
control techniques. The basic idea of predictive control
is as follows: by solving a finite horizon optimal control
problem online based on current measurements of the
system, an optimal control trajectory is obtained. The first
part of this trajectory is applied to the system and the
optimal control problem is solved again on the basis of
new measurements at the next sampling instant. Several
NMPC approaches exist to guarantee stability of the
closed-loop system in case of state feedback NMPC, see
Mayne et al. (2000), Fontes (2000), Findeisen (2004), and
Camacho and Bordons (2007) for an overview.

Mathematical Formulation: In NMPC the future behav-
ior of the system is predicted. Therefore, we introduce
predicted states and inputs, x̄ and ū. The predicted states
may differ from the real system states x. In this paper
the cost function J , that is minimized over the prediction
horizon Tp, is for reasons of simplicity defined as

J
(

x̄(·), ū(·)
)

=

∫ tk+Tp

tk

x̄T Qx̄ + ūT Rū dτ

+ x̄T (tk + Tp)P x̄(tk + Tp),

(4)

with 0 < Q = QT ∈ R
n×n, 0 < R = RT ∈ R

m×m and
0 < P = PT ∈ R

n×n. Hence, the open-loop optimal con-
trol problem that is solved repeatedly at the sampling
instances tk is formulated as

min
ū(·)

J
(

x̄(·), ū(·)
)

, (5a)

subject to

˙̄x(τ) = f
(

x̄(τ), ū(τ)
)

, x̄(tk) = x(tk), (5b)

x̄(τ) ∈ X , ū(τ) ∈ U , ∀τ ∈
[

tk, tk + Tp

]

, (5c)

x̄(tk + Tp) ∈ Ex. (5d)

Note that the predicted states x̄ are forced to lie in the
so called terminal region Ex at the end of the prediction
horizon, which might be necessary to enforce stability.

The solution of the optimization problem leads to the
optimal input trajectory

ū⋆
(

t; x(tk)
)

= arg min
ū(·)

J
(

x̄(·), ū(·)
)

. (6)

Here ū⋆ denotes the optimal input which minimizes the
cost function J over the prediction horizon.

The control input applied to system (1a) is updated at
each sampling instant tk by the repeated solution of the
open-loop optimal control problem (5), i.e. the applied
control input is given by

u(t) = ū⋆(t; x(tk)), t ∈
[

tk, tk + δ
)

, (7)

where δ is the sampling time between each optimization
(assumed to be fixed).

The following well known lemma guarantees stability in
the sense of convergence of the closed-loop:

Lemma 1. Assume that the stated assumptions on Q, R
and P hold. Furthermore, assume that there exists a local
control law ũ = k(x) ∈ U such that

∂xT Px

∂x
f(x, ũ) + xT Qx + ũT Rũ < 0 ∀ x ∈ Ex. (8)

Then the closed-loop is stable in the sense that x → 0 as
t → ∞, if the open-loop optimal control problem is feasible
at the time instant t0.

For reasons of simplicity the detailed assumptions and
conditions for Lemma 1 are not discussed here (compare
for example Findeisen (2004) and Fontes (2000)).
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Remarks about output feedback: NMPC requires the
repeated solution of an open-loop optimal control problem
based on full knowledge of the system states. Thus, in most
cases NMPC has to be combined with an observer that
reconstructs the states of the system from the measurable
outputs. Since for nonlinear systems no general valid
separation principle exists (Teel and Praly (1994)), a
combination of a state feedback controller with an observer
does not necessarily lead to stability. By now several
results with respect to output feedback NMPC exist (see
e.g. Goulart and Kerrigan (2007); Mayne et al. (2006);
Magni et al. (2004); Findeisen and Allgöwer (2004) and
the references provided there). However, most of these
approaches consider only either systems that are uniformly
globally observable, or linear, or based on the assumption
that the observer achieves sufficiently fast observer error
convergence for all states and inputs encountered. Note
that we do not intend to provide a solution to the output
feedback NMPC problem here. We rather intend to take
the observability properties of the system, or the observer
dynamics in the NMPC controller, into account to avoid
deteriorated state estimates along nominal trajectories.

4. AVOIDING WEAKLY OBSERVABLE
TRAJECTORIES

The loss of observability along optimal trajectories can
lead to poor observer performance and therefore to severe
problems in output feedback NMPC. This section provides
an approach to overcome this problem.

Problem Description: The solution of an open-loop op-
timal control problem in general does not guarantee sys-
tem properties such as observability along the obtained
optimal trajectories. Since predictive control implies the
repeated solution of an open-loop optimal control problem,
this implies that an NMPC controlled system may be
steered to non-observable or poorly observable regions by
the controller which should in general be avoided. The
basic idea for a solution to this problem is to add a
suitable penalization term to the objective functional (4)
that penalizes weakly observable trajectories. In general,
it is hard to find a suitable observability measure. For
sake of simplicity, in the frame of this paper we limit our
attention to local observability. For this we propose the
use of the determinant of the local observability matrix,
which is based on the observability map, as a measure
of observability. One possible way to verify observability
is the consideration of the observability map q(x, u) (see
Vargas (2003) and the references provided there) for the
system (1), which is is defined as

q(x, u) = [y, ẏ, · · · , y(m−1)]. (9)

Basically, the considered system is locally observable if the
nonlinear observability matrix O, defined as the Jacobian
of the observability map q,

O(x, u) =
∂q(x, u)

∂x
, (10)

has full rank n for all x ∈ X and all u ∈ U . It is locally
observable at some point xs if O(xs, u) has full rank at
this point xs for all u ∈ U . In the following the expression
observability is used to mean local observability.

Remark 1. Note that for simplicity of presentation we
assume that the observability map does not depend on
the input derivatives.

The determinant of the observability matrix det(O) can
be used as a measure for observability of the considered
system. If det(O) = 0 holds, the rank of O is clearly
smaller than n and thus the system is not observable. Fur-
thermore, small values of det(O) imply weak observability
of the considered system since in this case the observability
matrix is close to singular. In the frame of this paper, we
consider observability along predicted trajectories x̄ and
ū. Thus, the system is observable along the considered
trajectory if the observability matrix has full rank along
the complete trajectory.

In the following an extension of the common state feedback
NMPC scheme is presented which uses the observability
matrix to avoid the fact that the system is steered to
weakly respectively non-observable regions.

Controller Modification: In general, if the solution of
an open-loop optimal control problem guarantees observ-
ability along the obtained trajectories, this clearly also
holds for state feedback NMPC trajectories based on this
optimal control problem. One solution to guarantee ob-
servability along optimal trajectories, which presents itself,
is to extend the open-loop optimal control problem (5) by
a constraint on the observability matrix O (10). Basically,
one can add the following constraint requiring that the de-
terminant of the observability matrix is always larger than
a minimum value Ωmin to the optimal control problem (5)

|det
(

O(x̄, ū)
)

| ≥ Ωmin. (11)

The resulting optimal input ū⋆ clearly assures observabil-
ity of the obtained optimal trajectory. Furthermore, the
design parameter Ωmin, if chosen large enough, even avoids
steering the system to poorly observable regions.

The main drawback of the inequality constraint (11) is
that it is difficult, in general, to guarantee satisfaction of
the constraint for all time points if the problem is solved
numerically. As an alternative, a suitable penalization
term in the cost function may be numerically easier to
handle. One possible modification of (4), depending on the
observability matrix O (10), might be

J
(

x̄(·), ū(·)
)

=

∫ tk+Tp

tk

x̄T Qx̄ + ūT Rū + ∆(x̄, ū) dτ. (12)

Here ∆(x̄, ū) is given by

∆(x̄, ū) =
α

|det
(

O(x̄, ū)
)

|
, (13)

where α is an positive design parameter.

The consideration of the determinant of the observability
matrix O(x̄, ū) in this form will lead to an increase of the
modification term ∆(x̄, ū) to infinity if |det

(

O(x̄, ū)
)

| → 0.
This implies that the solution to the open-loop optimal
control problem, with the modified cost function (12), will
avoid poorly or non-observable trajectories since those are
weighted heavily in the cost function. Therefore, the (state
feedback) NMPC controlled system will also not enter
poorly observable regions (if no disturbances are present).
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Both approaches, introduction of a further constraint
and extension of the cost function, respectively, have one
main drawback. The control objective could be such that
it is impossible to avoid steering the system through
a singularity of O(x̄, ū). To illustrate this, consider the
following simple example. The control objective is to steer
a system with a singularity of the observability matrix at
x1 = 1, i.e. det

(

O(x1 = 1)
)

= 0, from x1(0) = 2 to the
origin. This control objective cannot be satisfied without
crossing the singularity x1 = 1. In such cases the modified
constraint |det

(

O(x̄, ū)
)

| ≥ Ωmin (11) prevents the system
from crossing the singularity of the observability matrix.
In the second approach, ∆(x̄, ū) would act as a barrier
function and the solution of the optimal control problem
would lead to trajectories with x1 > 1 since the value of
the cost function (12) rises to infinity otherwise. To avoid
this, equation (13) can be extended by

∆(x̄, ū) =
α

max
{

|det
(

O(x̄, ū)
)

|, Θ
} , (14)

where the design parameter Θ is used to obtain an upper
bound for ∆(x̄, ū). This implies that non-observable or
very poorly observable trajectories can be reached by the
system, however, at the price of a very strong penalization
in the cost function (if Θ is chosen to be sufficiently small).
Thus, the system can pass non-observable regions if the
control objective demands for it, but it will only stay there
for as short a time as possible.

All of the approaches presented above guarantee observ-
ability of the considered system along the obtained optimal
trajectories.

Remark 2. (Stability)
We do not outline conditions for stability. It is clear
that the addition of the inequality constraint (11) does
not change the stability properties, e.g. if the problem
is initially feasible stability is guaranteed. Guaranteeing
stability in the case of the modified cost function (12) or
(14) is more involved. One basically has to verify that the
conditions of Lemma 1 still hold or that the penalization
factor is chosen suitably.

Example: Consider the nonlinear system

ẋ1 = x2

ẋ2 = x1 + x2 + (1 − x2
1)x3 + u

ẋ3 = −x1 + x3

y = x1.

The corresponding observability map is

q(x, u) =
( x1

x2

x1+x2+(1−x2

1
)x3+u

)

(16)

and the observability matrix becomes

O(x) =

(

1 0 0
0 1 0

1−2x1x3 1 1−x2

1

)

(17)

with the determinant det
(

O(x)
)

= 1 − x2
1. Obviously, the

system is not observable for x1 = 1 and x1 = −1. For the
given system, the modification term (14) becomes

∆(x̄, ū) =
α

max
{

|1 − x2
1|, Θ

} . (18)

The required design parameters are chosen as

R = 0.1, q1 = q2 = q3 = 1, α = 2, θ = 0.05, (19)

with Q being a unity matrix. Figure 1 shows simulation
results for x1 and the modified cost function value for
the nominal NMPC controller without considering the
penalization term and the NMPC controller with the
penalization term starting at x10 = 0.6 and x20 = −2
x30 = −0.5. As is clearly visible, the penalization approach
avoids having the system pass through x1 = −1.

As a summary, the modified approach avoids steering the
system to poorly observable regions if the control objective
allows for the avoidance of such regions.
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time

0 1 2 3 4 5 6
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−0.2

0

0.2

0.4

0.6

0.8

1

|d
e
t(

O
)|

time

Fig. 1. Solid line: classical NMPC formulation. Dashed
line: NMPC formulation with penalization of “weak
observability”.

5. GUARANTEEING GOOD OBSERVER
PERFORMANCE

Even if an NMPC controlled system is observable along
all possible trajectories, few conclusions can be drawn
concerning the observer, and overall output feedback per-
formance. For example, it still might be possible that the
observer error converges to zero very slowly although the
system is observable. In the following, we outline a min-
max based approach that guarantees the achievement of
a predefined observer error dynamics behavior along the
predicted trajectories thus guaranteeing stability of the
closed-loop system.

The observer is assumed to be given and of the form

˙̂x = f̂(x̂, y, u), x̂(0) = x̂0, (20)

where x̂ ∈ R
n.

Modified NMPC Scheme: The basic idea of the approach
is that not only the behavior of the considered system is
predicted into the future but also the observer behavior.
For this, the worst-case error dynamics are determined
via maximization of the estimation error in the prediction
horizon over the set of all possible initial estimation errors
at the time instant tk. Furthermore, a barrier function is
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employed which only allows such inputs which guarantee
that the observer satisfies desired reference error dynamics,
even with the worst-case initial estimation error. The
classical part of the NMPC scheme with the prediction
of the system states remains.

Classical output feedback NMPC schemes assume that the
certainty equivalence principle holds, i.e. x(tk) = x̂(tk),
where x represents the system state and x̂ the observer
state. As a consequence of this, these approaches use the
observer state x̂ at the corresponding time instant tk as
initial condition for the predicted system states x̄ (i.e.
x̄(tk) = x̂(tk)), in order to predict the system behavior.
However, often system and observer states differ. There-
fore, in addition to the classical prediction of x̄, the ap-
proach considers that we do not know the exact state of
the system at the beginning of the prediction horizon. It
is assumed that at the time instant tk the observer has
an estimation error ē0 ∈ E0, i.e. in order to predict the
observer error a new prediction state x̄d is introduced
with initial condition x̄d(tk) = x̂(tk) − ē0. The additional
prediction state x̄d is introduced to distinguish from the
classical variable x̄, which is predicted in parallel. The new
state x̄d leads to a predicted output ȳd = h(x̄d, ū) which
enters the observer equation and thus leads to a predicted
observer state ˆ̄xd. The prediction states of the system and
the observer define the predicted error

ē = ˆ̄xd − x̄d. (21)

With respect to the initial estimation error ē0 we only
assume that ē0 ∈ E0 holds.

The basic idea is to maximize the error (21), i.e. to find the
worst-case initial condition the real system may have (at
a certain time instant tk, state estimation x̂(tk) and for a
given input function ū), such that the observer converges
slowest to the predicted system state xd. This worst-
case initial estimation error is denoted as e⋆

0 ∈ E0. The
corresponding maximization problem 1 , which depends on
a given input function ū and on the observer state at the
time instant tk, x̂(tk), is defined by

max
e0∈E0

∫ tk+Tp

tk

ēT ē dτ,

subject to

˙̄xd = f(x̄d, ū), x̄d(tk) = x̂(tk) − e0,

ȳd = h(x̄d, ū),

˙̄̂xd = f̂(ˆ̄xd, ȳd, ū), ˆ̄xd(tk) = x̂(tk).

Together with the given input function ū, the solution of
the maximization problem,

e⋆
0 = arg max

e0∈E0

∫ tk+Tp

tk

ēT ē dτ , (23)

leads to the related worst-case trajectories of the predicted
system x̄⋆

d (with the output ȳ⋆
d), the predicted observer ˆ̄x⋆

d

and the predicted worst-case estimation error ē⋆ = ˆ̄x⋆
d −

x̄⋆
d. The initial conditions for the prediction are x̄⋆

d(tk) =
x̂(tk) − e⋆

0 and ˆ̄x⋆
d(tk) = x̂(tk).

1 Assuming for simplicity of presentation that the maximum exists
and is attained

Additionally, we introduce reference observer error dynam-
ics er that should be achieved. Basically, these can be
chosen arbitrarily and can be seen as a design parameter
for the output feedback NMPC scheme.

For simplicity, we only consider linear reference dynamics
with a fixed convergence rate 1

|λ| , i.e. er = e⋆
0e

λ(τ−tk),

where λ represents the eigenvalue of the chosen linear
error dynamics. In the cost functional the worst-case error
dynamics ē⋆ are penalized heavily if it converges slower
to zero than the reference error er and penalized weakly
if the opposite holds. Thus, the optimal input ū⋆ is such
that the observer error satisfies the requirements of the
reference error er even for the worst-case estimation error
e⋆
0 at the time instant tk. Furthermore, since the prediction

of the estimation error occurs in parallel to the classical
prediction of x̄, ū⋆ also takes the system performance
requirements into account.

The modified cost function (4) corresponding to the de-
scription above is formulated as

J
(

x̄(·), ē⋆(·), ū(·)
)

=

∫ tk+Tp

tk

x̄T Qx̄ + ūT Rū + Φ dτ

+ x̄T (tk + Tp)P x̄(tk + Tp),

(24)

with the additional observer error penalizing term

Φ =

(

ē⋆T ē⋆

eT
r er

)β

, (25)

where β ∈ N represents a further design parameter.

In summary, we obtain the following open-loop optimal
control problem

min
ū(·)

J
(

x̄(·), ē⋆(·), ū(·)
)

,

subject to

˙̄x = f(x̄, ū), x̄(tk) = x̂(tk),

˙̄x⋆
d = f(x̄⋆

d, ū), x̄⋆
d(tk) = x̂(tk) − e⋆

0

ȳ⋆
d = h(x̄⋆

d, ū),

˙̄̂x⋆
d = f̂(x̂⋆

d, ȳ⋆
d, ū), ˆ̄x⋆

d(tk) = x̂(tk),

x̄ ∈ X , ū ∈ U ,

x̄(tk + Tp) ∈ Ex, ē⋆(tk + Tp) ∈ Ee.

The solution of the min-max-optimization problem leads
to the optimal input trajectory

ū⋆
(

t; x̂(tk)
)

= arg min
ū(·)

J
(

x̄(·), ē⋆(·), ū(·)
)

. (27)

The terminal region of the presented NMPC scheme con-
sists of the classical terminal region Ex and the terminal
region Ee for the worst-case estimation ē⋆(tk +Tp) defined
as

Ee =

{

e, er ∈ R
n

∣

∣

∣

∣

∣

eT e

eT
r er

< 1

}

. (28)

The tuning parameter β allows one to use the modify-
ing term (25) as a barrier function. If β is chosen large
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enough, the additional cost function term (25) goes to
zero if ē⋆T ē⋆ < eT

r er, and to infinity if the opposite holds.
This implies that if β is large enough the barrier function
(25) restricts the set of admissible input functions u(·),
since for all input functions u(·) violating the condition
ē⋆T ē⋆ < eT

r er, the cost function takes an infinitely large
value. Furthermore, among all remaining admissible in-
put functions the desired error dynamics is satisfied and
thus (25) goes to zero. Hence, only the terms based on the
classical prediction x̄ influence the cost function. There-
fore, for all input functions u(·) satisfying the desired error
dynamics the performance of the controller is the same as
in a classical output feedback NMPC scheme.

Remark 3. (Stability)
As a consequence of the introduction of a terminal region
for the worst-case estimation error, namely Ee, the overall
terminal region of the NMPC scheme presented above
consists of Ex and Ee. The following lemma guarantees
stability of the closed-loop system:

Lemma 2. If the required assumptions and conditions on
X , U , Ex, Q, R, P , f and on the feasibility of the optimal
control problem at the time instant t0 hold, then the
closed-loop is stable in the sense that x → 0 as t → ∞,
if there exists a local control law ũ = k(x) with k(0) = 0
such that the following inequality

∂xT Px

∂x
f(x, ũ) + xT Qx + ũT Rũ +

(

eT e

eT
r er

)β

< 0, (29)

is satisfied for all x ∈ Ex and all e, er ∈ Ee with ũ = k(x) ∈
U .

We only outline the idea of the proof here: Since in the
terminal region Ee the following inequality

(

eT e

eT
r er

)

< 1, (30)

holds, it is trivial to show that there exists β large enough

such that in (29) the modified term
(

eT e
eT

r er

)β

vanishes. In

this case (8) is a suitable approximation of (29). Thus, if
Lemma 1 holds, Lemma 2 also holds.

Basically, the modified NMPC scheme has to satisfy ex-
actly the same stability conditions as a classical NMPC
controller (for sufficiently large β).

The outlined scheme guarantees stability of the closed loop
consisting of the observer and the controller.

6. CONCLUSIONS

Nonlinear systems can be poorly or non-observable along
specific state and output trajectories or in certain regions
of the state space. Operating the system along such
trajectories or in such regions can lead to poor state
estimates provided by an observer and should be avoided

if being used for state-feedback control or monitoring
purposes. In this paper we have outlined two possible
approaches to avoid weakly observable trajectories in the
frame of nonlinear predictive control. The first approach
is based on the use of a term in the cost functional
that penalizes weakly observable trajectories and thus
leads to avoidance of weakly or non-observable regions
of operation. In the second approach the observer error
dynamics are directly considered in the prediction. Large
state estimation errors lead to a large penalization in the
objective function and are thus avoided. As shown, both
approaches guarantee stability under certain conditions.
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