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Abstract: Based on a Neuro-Fuzzy Controller (NFC) architecture, two approaches are presented for the 
design of a Power System Stabilizer (PSS) with adaptive input scaling. In the first approach, input link 
weights (ILWs) are introduced and the NFC is made adaptive by the online modification of the ILWs and 
the consequent parameters (CPs) through the gradient descent method. In the second approach, nonlinear 
functions (NLFs) are used in the first layer of the NFC and both NLFs and CPs are modified online by 
using a hybrid adaptation process. Comparison studies on a one machine-infinite bus system and a multi-
machine power system show the ability of the proposed PSSs to improve the system dynamic 
performance. 

 

1. INTRODUCTION 

For many years, the Power System Stabilizer (PSS) based on 
a transfer function and a linear model of the plant at some 
operating point has been widely used for damping power 
system oscillations. Due to dynamic and nonlinear 
characteristics of power systems, this conventional PSS 
(CPSS) generally provides acceptable performance only over 
a limited range of operating conditions. 

To enhance the performance and stability of power systems 
for a wide range of conditions of operation, fuzzy logic (FL) 
and artificial neural nets (ANN) techniques have been 
recently proposed in the literature for PSS design.  In 
particular, the approaches that include online tuning of the 
controller’s parameters show great potential. 

A fuzzy logic controller (FLC) based on an adaptive network 
architecture provides a suitable medium to optimize its 
parameters by applying a gradient descent training algorithm 
(Jang et al., 1997). Therefore, it has been used to develop 
PSSs with enhanced performance and increased robustness 
(Hariri and Malik, 1996; You et al., 2003; Barton, 2004). The 
common practice in the designs has been the tuning of input 
membership functions (IMFs) and consequent parameters 
(CPs) of the rules. However, it is well recognized that the 
scaling factors (SFs) also play a very important role in the 
successful design of the controller (Passino and Yurkovich, 
1998). Due to their global effect on all the control rules in a 
rule base, SFs have been given the highest priority among 
various tuning parameters (Zheng, 1992; Reznik, 1997). 
Nevertheless, they have received little attention in the design 
of adaptive PSSs based on FLCs.  

In this work, based on a Neuro-Fuzzy Controller (NFC) 
architecture, two approaches are presented to design an 
Adaptive PSS with modifiable input scaling. The 

performance of these two adaptive neuro-fuzzy PSSs is 
examined over various operating conditions and disturbances 
in a single machine-infinite bus system and a multi-machine 
power system. 

2. FLC AND SFs 

From a control design point of view, SFs represent the gain 
applied to the input and output of a system. From the 
knowledge representation perspective, they provide context 
information and define the operating range of variables in a 
particular application (Gudwin et al., 1998; Magdalena, 
1997). Since the output scaling factor is generally determined 
by physical limits of the control signal applied to a specific 
plant, attention here is given to the input scaling factors 
(ISFs) as they have the most influence on basic sensitivity of 
the controller with respect to the optimal choice of operating 
ranges for the input variables (Reznik, 1997; El-Geliel and 
El-Khazendar, 2003). 

The adjustment of SFs represents a simple solution to find the 
fuzzy sets that best fit the linguistic terms they are associated 
with to obtain satisfactory models or controls (Gudwin et al., 
1998). Both linear and nonlinear scaling can be considered. 
Linear scaling provides a linear context adaptation and is 
similar to how an accordion operates. This approach does not 
change the shape or position of MFs but scales them 
proportionally by defining new bounds of the operating 
interval as shown in Fig. 1. For fuzzy concepts represented 
by base MFs in a reference universe, e.g. {-1, 1}, nonlinear 
scaling is able to keep this normalized interval by modifying 
the relative sensitivity of areas within it. Fig. 2 illustrates how 
the shape of MFs is changed by using a very simple nonlinear 
function given by: 

( ) ( ) αxxsignxfy *==  (1) 
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Fig. 1. Operating range with linear scaling. 
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Fig. 2. Operating range with nonlinear scaling. 

3. ADAPTIVE NEURO-FUZZY PSS (ANFPSS) 
ARCHITECTURE 

The proposed PSSs are based on the NFC architecture 
described by Jang et al., 1997.  For the first approach in this 
work, adaptive link weights, w1 and w2, are inserted between 
the ISFs and the input layer of that NFC architecture, as 
shown in Fig.  3 (a). For the second alternative, the NLF 
given in (1) is integrated in the first layer of the network, as 
illustrated in Fig. 3 (b).  

The inputs of the NFCs are the speed deviation ω∆  and its 
derivative ω∆ & . The output is the control signal Vpss. K1 and 
K2 are the ISFs, and K3 is the SF for the output. The MFs 
shown in Fig. 1(a) are used for each input with the commonly 
used associated fuzzy sets. The firing strength of each rule is 
calculated using the “product” operation. With seven fuzzy 
singletons for the output, the rule base is given in Table 1. 

4. CONTROL STRUCTURES 

The control system structure (CSS) for each approach is 
shown in Figs. 4 and 5, respectively. The main components 
of the CSS1 in Fig. 4 are an adaptive neuro-identifier (ANNI) 
to track the dynamic characteristics of the plant, and the NFC 
with ILWs (ANFPSS1).  The CSS2 in Fig. 5 consists of an 
ANNI, the NFC with NLFs at input layer (ANFPSS2),  a  FIS  

 
Fig. 3. NFC with: (a) ILWs and NLFs. 

Table 1.  Rule base 

 

 
Fig. 4. Control system structure 1 (CSS1). 

 
Fig. 5. Control system structure 2 (CSS2). 
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to adjust the shape of the NLFs, and an adaptation module to 
coordinate and apply the adjustments required by the hybrid 
adaptation process described in the next section. 

4.1  Adaptive Neuro-Identifier 

A neural network based plant model with online adaptation 
has the capability to cope with plant complexity, uncertainty, 
nonlinearity and variations with time (Jha and He, 2004). 
Besides, it has been proven that by using a series-parallel 
model a feed-forward network of a single layer with a finite 
number of nodes can implement any continuous nonlinear 
function (Nguyen and Widrow, 1990). For the proposed 
configurations, as the ANNI simply functions as a black box, 
there is no need to use a fuzzy system as in Hariri and Malik, 
1996. 

A feed-forward network with three layers is considered. The 
input to the ANNI is: 

.)](),...2(),1(
),1(),...,1(),([

mkVpsskVpsskVpss
nkkk

−−−
+−− ω∆ω∆ω∆  (2) 

where m=n=3. The output is the predicted speed deviation 
)(ˆ kω∆ . Applying the gradient descent method (Haykin, 

1999), the weights of the ANNI are updated to minimize the 
cost function: 
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4.2  ANFPSS 

Despite the advantages an NFC offers (Jang et al., 1997; 
Linkens and Nyongesa, 1995), its design may significantly 
hinder its application. There are many parameters that 
influence its control surface and similar effects can be 
reached by modifying different sets of parameters (Reznik, 
1998). Multiple adaptation efforts also make optimal 
regulation more difficult (Janabi-Sharifi and Liu, 2005). If a 
large number of parameters are to be adjusted directly, the 
adaptation process can involve extensive computations in 
such a way that the optimization can only be done offline. 
However, without an online self-adaptive mechanism, the 
NFC’s performance might be unsatisfactory to changes in the 
system operating conditions.  

In this work, only two sets of parameters are selected to be 
modified online and make the controller adaptive: ILWs and 
CPs for ANFPSS1, and sensitivity of NLFs and CPs for 
ANFPSS2.  

Parameters sets of the ANFPSS1 are updated according to the 
error back-propagation method and the cost function: 

[ ]22 )1(ˆ
2
1)1(

2
1)( +=+= kkekJ cc ω∆  (4) 

As for the ANFPSS2, the same adaptation method is applied 
to its CPs.  However, the sensitivity parameter α of the NLF 
in (1) is determined by a FIS with an input signal computed 
from the following expression:  

( ) ( )22
NNR ω∆ω∆ &+=  (5) 

It is clear that the intensity of disturbance is proportional to 
the value of R. Therefore, the rule base of this system is 
designed based on the following reasoning: 

• If R is very big, it means that the states are far away from 
the origin. Consequently, a relatively large control action 
is required such that the plant can be pushed back to the 
desired point. This effect can be obtained by assigning a 
small value to α  in (1), with 0.0 < α ≤ 1.0. 

• If R is getting close to the centre, a relatively small value 
of α will produce a large control signal that could induce 
oscillations around the steady-state operating point. 
Therefore, α should be big enough to reduce this 
undesired effect.  

With five triangular MFs for the input R and five fuzzy 
singletons for the output α, the rule base in Table 2 is built. 

Table 2.  Rule base for fuzzy adaptation 

 

5. PARAMETER SET-UP AND ADAPTATION PROCESS 

The ANNI is composed of 6, 8 and 1 neurons. It was first 
trained off-line and then integrated in the presented control 
schemes, where its weights are updated online. The ANNI 
provides a dynamic model of the plant to adjust parameters of 
the NFC. The ANFPSSs consist of five layers with 2, 14, 49, 
7, and 1 nodes associated with each layer. K1 and K2 are fixed 
to approximately the inverse of the maximum values 
observed in simulation for ∆ω and ω∆ & , respectively. K3 is 
set by the output limits of the controllers. CPs are initialized 
as shown in Table 1. The initial value for w1 and w2 in Fig. 3 
is 1.0. The initial value of α for the NLFs in Fig. 4 is also 1.0. 

With regard to the FIS for the adaptation of input NLFs in 
ANFPSS2, MFs for R are evenly distributed in the range {0, 
1}. Distribution of the fuzzy singletons for the output was 
determined by analyzing the influence of the parameter α in 
the controller performance. From that, a three-phase to 
ground short-circuit test and a 0.10 p.u. step change in the 
mechanical torque under an operating condition of power at 
0.90 p.u and 0.85 p.f. lag were selected to compute them. 
First, applying the reasoning depicted in Table 2 with a three-
phase short-circuit test, α is reduced to the point where the 
cost function of the controller Jc stops decreasing and then 
starts to increase. The value obtained here was assigned to 
VS. The same procedure was used with a 0.10 p.u. step 
change in the mechanical torque and the resultant value was 
given to B. Between VS and B, M and S were distributed 
evenly and the fuzzy singletons in Table 3 were determined. 
It is important to mention that the CPs of the ANFPSS2 were 
fixed to their initial values during this stage. 

5.1  ANFPSS1 Parameter Adaptation 

The adaptation process involves the following steps: 
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Table 3.  Fuzzy singletons for α 

 
 
• At time step k, sample ∆ω(k). 
• Use ∆ω(k) and )(ˆ kω∆  to update the weights of the ANNI 

and minimize Ji(k). 
• Compute the predicted speed deviation )1(ˆ +∆ kω . 
• Based on )1(ˆ +∆ kω , work with one set of parameters 

between ILWs and CPs of the ANFPSS1 to minimize 
Jc(k). For example, if ILWs are modified at time step k, 
then CPs will be updated at instant k+1.  

• Compute the output of the ANFPSS1 for time step k, 
apply it to the plant, and repeat the process. 

5.2  ANFPSS2 Parameter Adaptation 

In this case, the steps involved in the adaptation process are: 

• At time step k, ∆ω(k) is sampled and )(kω∆ & is derived. 
• Using ∆ω(k) and )(ˆ kω∆ , the weights of the ANNI are 

updated to minimize Ji(k). 
• The output of the controller is calculated using the value 

of αl (k) determined by the fuzzy adaptation system. 
• )1(ˆ +kω∆ , the predicted speed deviation, is computed. 
• The error between the desired and the predicted plant 

output is determined and then back-propagated through 
the ANNI and ANFPSS2 to update the CPs and minimize 
Jc(k). 

• The output of the ANFPSS2 for time step k is computed 
and then applied to the plant. The adaptation process will 
start over for time instant  k+1. 

 

6. SIMULATION STUDIES 

6.1 Single machine-infinite bus system (SMIBS)  

Schematic diagram of the SMIBS generating unit connected 
to a constant voltage bus through two parallel transmission 
lines is shown in Fig. 7. Differential equations for the 
seventh-order generator model, transfer functions of the 
governor, AVR, CPSS, as well as the system parameters are 
given in He and Malik, 1997.  

For comparison, a CPSS based on the phase-lead 
compensation technique (Kundur, 1994) with the following 
transfer function was designed: 
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Parameters for the CPSS are: 

Kpss=28, T1=0.021, T2=0.0021, T3=T1, T4=T2, TW = 10. 

 
Fig. 6. SMIBS configuration. 

 
Simulations results for the following operating conditions 
and disturbances are presented: 

a) P=0.70 p.u., 0.85 p.f. lag. A 0.05 p.u. step increase in 
torque is applied at 1 s and then removed at 5 s. The CPSS 
was tuned at this operating point. See Fig. 7. 
b) P=0.30 p.u., 0.90 p.f. lead. A 0.10 p.u. step increase in 
reference voltage is applied at 1 s and then removed at 5 s. 
See Fig. 8. 
c) P=0.95 p.u., 0.90 p.f. lag. A three phase to ground short 
circuit at the middle of one transmission line is applied at 1 s, 
cleared 60 ms later by the disconnection of the faulted line, 
and then successfully re-closed at 5 s. See Fig. 9. 

6.2 Multi-machine power system (MMPS)  

The MMPS configuration used for the study is shown in Fig. 
10. It can be viewed as a two-area system, with generators 
G3, G2 and G5 forming one area, and G1 and G4 forming 
another area. The two areas are connected together through a 
tie line between buses 6 and 7. System’s operating conditions 
and parameters are given in Elmetwally and Malik, 1996. 

a) Step increase in mechanical torque. With PSSs installed 
on generators G1, G2 and G3, system response to a 0.10 p.u. 
step increase in the mechanical input torque reference of G3 
at 1 s is given in Fig. 11. It shows that both local and inter-
area modes of oscillation are damped effectively. The CPSSs 
on all three generators were designed individually to match 
the characteristics of each generator; however, the same 
ANFPSS was applied to all three generators. 
b) Three phase to ground fault test. At 1 s a three phase to 
ground fault is applied at the middle of one transmission line 
between buses 3 and 6. It is cleared 90 ms later by the 
disconnection of the faulted line. Figure 12 shows the 
response of the system with PSSs installed on G1, G2 and 
G3. 

7. ANFPSS1 AND ANFPSS2 COMPARISON 

The proposed ANFPSSs are based on the online adaptation of 
input scaling and consequent parameters of the controllers. 
Some points of comparison between the two approaches are: 
• Performance. Simulations results show that the proposed 

approaches have good damping ability for different 
operating conditions and disturbances. The ANFPSS2 is 
able  to  provide  slightly  better  results  in terms of over- 
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Fig. 7. System response for test (a) in SMIBS. 
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Fig. 8. System response for test (c) in SMIBS. 
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Fig. 9. System response for test (d) in SMIBS. 

 
shoot. The settling time is practically the same for both 
alternatives. 

• Controller’s parameter adaptation process. Only the 
gradient descent technique is used to adjust both ILWs 
and CPs of the ANFPSS1. However, the adaptation 
process alternates and deals with them in such a way that 
every set of parameters is updated at different sampled 
instants. The ANFPSS2 uses a hybrid adaptation method 
by applying the gradient descent technique and a fuzzy 
inference mechanism. Both alternatives contribute  to en- 

 
Fig. 10. MMPS configuration.  
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Fig. 11. Step increase in mechanical torque. 

 
hancing the computational effort involved, which is 
important for real time applications. 

• Number of controller’s parameters. The proposed PSSs 
enable the designer to work with a small number of 
controller’s tuning parameters, regardless of the number 
and shape of input membership functions. In this regard, 
at every sampling instant a maximum of two parameters 
are updated in the ANFPSS1 and three in the ANFPSS2. 

• Design methodology. For both approaches, the ANNI 
was first trained off-line and then integrated in the 
control structures CSS1 and CSS2 for online adaptation. 
Apart from this, no more offline computations were 
required to implement the ANFPSS1. On the other hand, 
for determining the  parameters  of  the  fuzzy  adaptation 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13936



 
 

     

 

0 1 2 3 4 5 6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

ω
1- ω

2 (r
ad

/s
eg

)

 

 
CPSS
ANFPSS1
ANFPSS2

 

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

ω
2- ω

3 (r
ad

/s
eg

)

 

 
CPSS
ANFPSS1
ANFPSS2

 
Fig. 12. Three phase to ground fault test. 

system used by the ANFPSS2 additional offline 
computations were required before its final 
implementation. 

8. CONCLUSIONS 

At every sampling instant, the ANFPSS1 deals with a smaller 
number of controller’s tuning parameters than the ANFPSS2. 
However, this is counterbalanced by the way each approach 
updates its parameters. Because of the additional offline 
effort in the ANFPSS2, the design process of the ANFPSS1 
is faster. However, for the online implementation, the 
ANFPSS2 is preferred because it does not require 
computation of derivatives up to the inputs of the controller. 
Besides, the ANFPSS2 may provide a better performance 
than the ANFPSS1. Since the performance of both 
approaches is good in comparison, any of them can be used 
for improving the damping of power systems oscillations.  
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