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Abstract: The development of modern information systems able to process real-time data concerning the 
traffic state network-wide is making possible the implementation of new forms of strategies concerning 
urban transportation networks management. The success of the implementation of such strategies is 
heavily depended on the detailed design of them. In the current study, an evaluation framework of the 
application of a congestion pricing strategy based on the marginal travel cost is presented, able to identify 
the dynamic impact of congestion pricing on the performance of the system, by taking into consideration 
behavioral characteristics of multiple user classes. This framework builds on tactics of variable road 
congestion pricing, based on theories of stochastic optimal control. 

 

1. INTRODUCTION 

The advent of new technologies in information systems is 
giving rise to the implementation of new forms of strategies 
concerning urban transportation networks management. The 
social awareness concerning the negative impacts of the 
rapidly increasing mobility on the performance of economic 
activities, has been adding a pressure for the introduction of 
effective strategies for the management of urban 
transportation infrastructure. The success of the 
implementation of such strategies is heavily depended on the 
detailed design of them, a complex task by itself since urban 
transportation networks lie on the cutting edge of 
interrelations among alternative social groups, each having 
their own objectives.  

Congestion pricing of urban road networks has been 
identified as an effective tool for the management of the 
increasing demand for mobility in congested parts of 
metropolitan areas. Although the fundamental theories of 
road network congestion pricing have been proposed for 
several decades by the seminal works of Pigou (1920) and 
Vickrey (1969), it was until recently that these have been 
applied in metropolitan areas, providing encouraging results 
on the effective organization of urban mobility demand.  

In the current study, an evaluation framework for the 
application of a congestion pricing strategy based on the 
marginal travel cost is studied, able to identify the dynamic 
impact of congestion pricing on the performance of the 
system, by taking into consideration behavioural 
characteristics of multiple user classes. This framework 
builds on tactics of variable road congestion pricing, based on 
theories of stochastic optimal control. In the next section a 
brief background of the models used for evaluating the 
system performance under congestion pricing schemes will 
be presented. Next follows the architecture of the proposed 

model with a detailed description of its underlying parts. The 
fundamental characteristics of the proposed framework will 
be analyzed by applying it to a hypothetical network able to 
provide useful insights concerning its features, while results 
of the model application to a realistic network representing a 
part of Athens, Greece, Central Business Area will be 
presented, and finally the last section concludes. 

2. BACKGROUND  

The main scope of congestion pricing strategies aims on one 
to the charge of the congested road infrastructure use (by 
treating congested transportation infrastructure as a public 
good on scarcity) and on the other to alter the behaviour of 
network users that leads to the generation of congestion 
phenomena by internalizing the cost of congestion on the 
generalized travel cost. Various economic theories and 
concepts on road pricing and specifically on congestion 
pricing have been proposed over the years. One of the most 
widely adopted strategies of congestion pricing relies on the 
concept of the Marginal Cost Pricing (MCP) initially studied 
by Walters (1961). Under this assumption, road users should 
by charged as much as the cost of the ‘marginal’ user, i.e. the 
cost that the last user (or an additional user) imposes on the 
others. Such pricing strategy provides the framework for 
treating the transportation infrastructure in an economic 
efficient (in terms of public economics) yet social equitable 
manner, increasing the acceptability of the introduction of 
such management policies.  

Many models have been presented for estimating the impacts 
of MCP congestion charging policies on the transportation 
systems. Alternative models of the static case, examining the 
performance of large systems at the peak hour, have been 
extensively studied (Dafermos and Sparrow, 1971) 
considering the influence on both the total demand level and 
at the route choice process (Yang et al. 2004) while 
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identifying multiple users classes and stochastic route choice 
process (Zhao and Kockelman 2006).  

Nevertheless static models are inadequate to capture the 
system responses to transient phenomena and thus the 
dynamic influence of MCP on the system performance 
(Henderson, 1974). Models of the dynamic form of the 
problem of system performance under MCP have been 
proposed based on the optimal control theory (Carey and 
Srinivasan 1993, Huang and Yang 1996, Wie and Tobin 
1998). Sandholm (2002) provided an evolutionary game-
theoretic mechanism for applying congestion pricing while 
results demonstrating that a system with users following a 
myopic adjustment process (in terms of identifying optimal 
paths and incorporating real-time information) that eventually 
converges to steady-state conditions. A model of dynamic 
congestion pricing aiming at the maximization of the net 
economic benefit, identifying disequilibrium states based on 
the theory of optimal control has been presented by Friesz et 
al. (2004). De Palma et al. (2005) provides results on the 
effects of time-varying congestion pricing strategies based on 
a dynamic network model able to incorporate such strategies 
and treating endogenously departure time, mode and route 
choices in a detailed environment of microscopic simulation.  

The aforementioned models of dynamic congestion pricing 
rely on ‘hard’ assumptions regarding the information 
acquisition rate of the users. Also, although dynamic models 
-especially those based on optimal control theory- identify 
and model an adaptive process related to a learning 
mechanism, most of them do not rely on behavioural 
assumptions regarding the users learning process. In the next 
section a network model able to endogenously treat the 
dynamic interaction between network users and network 
operator responsible for the road charging is presented. The 
model is based on behavioural assumptions regarding the 
route choice process, based on an evolutionary equilibrium-
tending learning mechanism. In that model, multiple user 
classes are identified, distinguished by their Value of Travel 
Time (VOTT) and the information acquisition process using 
for making choices. These features of the model are 
accompanied by adjustment mechanisms controlling the mix 
of users of each class participating into the network. 

3. A DYNAMIC SYSTEMS MODEL OF URBAN 
NETWORKS  

Dynamic transportation systems, like those of urban road 
networks, constitute an area of recursive interrelationships, 
among users, management authorities and prevailing traffic 
conditions. The proposed model of dynamic urban road 
network is based on an architecture of discrete-time optimal 
control in cascade (Fig. 1), at which users are making choices 
tending to optimize their objectives (outer loop), while the 
authority responsible for the network management is 
intervening by setting congestion charges (inner loop).  

The proposed dynamic system in order to identify multiple 
user classes and to model their dynamic trip choices, is 
composed of a network model able to provide traffic 
conditions (link-path travel times, travel cost per user class, 
etc) subject to network loading, four distinct sub-systems, 

namely the route choice, the information provision, the 
demand simulation and the MCP sub-system, and finally a 
historic information data storage feature. In particular the 
route choice sub-system provides estimations regarding the 
route choices of the multiple user classes. The information 
provision sub-system distinguishes users in classes according 
to the information that will utilize in order to make route 
choices. The demand simulator provides the demand pattern 
of each user class and time period, based on a elastic 
relationship between demand and travel cost. Finally the 
MCP sub-system provides the reaction of an authority 
imposing MCP to prevailing conditions. The connections 
among all parts of the dynamic system are made in a manner 
such as to replicate the actual process of the evolutionary 
interaction among the users and the charging authority. In the 
next sub-sections the description of the sub-systems will 
follow.  

Network Model

Route Choice

Demand Simulator

Information Provision
Historic 

Data

t t+1

MCP 

Users Loop
Authority Loop

 

Fig. 1. The architecture of the discrete-time dynamic model 
of urban road network 

3.1 Route choice sub-system 

The route choice sub-system provides the network loading 
pattern. An extended perception of the classical user 
equilibrium (UE) assumption is adopted here, modelling the 
route choice as a repeated game with memory. At each 
repetition of the route choice ‘game’, users are evolving 
(adjusting) their route choices with respect to predictions (or 
beliefs) regarding the behaviour of all other participants in 
the game (rest of the network users), in order to optimize 
their objectives (typically the minimization of travel time or 
cost). Under this evolutionary game-theoretic perception of 
the route choice process it is possible to endogenously 
consider long-run relationships among the game participants 
(network users) identifying and taking into account the 
impact of the behaviour of alternative player classes. 
Evolutionary game theory (Smith, 1982) provides the 
framework to investigate the evolution of rational players 
behaviour into a constantly changing environment (like the 
conditions in urban road networks) based on their 
performance in previews stages of the game, forming long-
run relationships (or experience, or reputation) with co-
participants in the game (Mailath and Samuelson 2006). 
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Although the incentives of network users is the collective 
minimization of users belonging in class A  travel cost tji

pAC ,
,  

using path ijPp∈  between an O-D ( ji− ) travelled by at 
time interval t , here users perception regarding path costs are 
considered as myopic, giving rise to treating users behaviour 
under the framework of bounded rationality. Then the route 
choice probability t

pkA ,,π  that path p  is chosen by users of 
class A  at interval t  can be expressed as a discrete-time 
stochastic dynamical system of the following evolutionary 
logit logic: 
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where tk <  is a time interval whose path cost information is 
utilized by a user to choose path p  at interval t  and kt−θ  is 
the user’s cost perception parameter at interval kt − .  

3.2 Demand level sub-system 

In order to capture users trip departure time choices and the 
elasticity of the demand to travel cost, the evolution of the 
demand is modelled as a discrete-time dynamical system of 
the form:  

ktji
ACatji

A
tji

A Dd
−

=
,

exp,,     (2) 

where tji
Ad ,  stands for demand of users belonging to class A  

and wishing to move between ji−  pair during interval t , 

while tji
AD ,  stands for the maximum (desired) demand for 

travel between ji −  and a  is a scale parameter. This sub-
system allows the redistribution of multiple user classes 
demand by a desired time resolution t . Nevertheless other 
dynamic demand simulators can be adopted in order to 
estimate the demand level by taking into account alternative 
features of trip scheduling like late/early arrival costs etc.  

3.3 Information acquisition sub-system 

The system performance is heavily depended by the 
availability and the quality of information that users utilizing 
in order to make choices and their switching activity (i.e. the 
willingness of the users to immediately respond moving to 
the best route). Simulation tests demonstrated that the 
increase of real-time reliable information penetration among 
the user groups, up to a certain threshold (fraction of users) 
would be beneficial to the system performance. On the other 
hand, if all users had access to the same real-time information 
and immediately respond to that by a self-optimizing manner, 
the system performance would be severely dropped 
(Mahmassani and Jayakrishnan 1991).  

In the current study a dynamic sub-system is incorporated 
into the proposed model for estimating the users information 

acquisition process in order to make choices, by controlling 
the penetration of reliable real-time information into user 
classes. The users information sources is divided in two 
classes, namely those utilizing historic information of path 
travel cost and those that are utilizing reliable real-time 
information like that provided by online dynamic traffic maps 
(Athens Real-Time Traffic Map). The concept that is used 
here in order to estimate the penetration of real-time 
information is based on the perception that the less the users 
are choosing the optimal path the more users are seeking for 
improved travel cost information. Under this assumption 
users are seeking for improved information as they become 
inadequate to identify optimal choices (in a proportional 
rule), forming a dynamical process that provides a desirable 
real-time information acquisition level, leading towards the 
system-optimal penetration rate. This dynamical sub-system 
has the following form: 
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where 1−t
Au  stands for the percentage of users of class A that 

are accessing reliable real-time information concerning travel 
cost, 1,

*,
1,

*
−− tij

pA
tij

p Cx  stands for the total optimal path, *p ,travel 
cost and I for the maximum real-time information penetration 
rate.  

3.4 Dynamic congestion pricing sub-system 

A fair congestion pricing strategy should respect the pay-as-
you-drive principle, implying that users are charged for the 
part of the network (under MCP strategy) utilizing to execute 
a trip. Thus, the proposed MCP scheme is estimated here by 
imposing a time-varying charge to each link of the part of the 
network where the congestion pricing strategy will be 
implemented. In order to introduce such time-varying MCP 
strategies the model assumes that the part of the network that 
the road pricing is introduced should be under real-time 
surveillance in order for the authority responsible for the 
MCP charges to have knowledge concerning the traffic state. 
Such an assumption is valid since model-based tools able to 
provide system-wide real-time surveillance are already 
available (Papageorgiou et al. 2005).   

 Taking that t
mf  is the flow at link m  during interval t  and 
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entering the link) or the marginal cost ( t

mMC ) (see Figure 1) 
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where t
mτ  denotes the marginal cost of congestion. The 

average cost t
mc  at link m  during interval t  is composed of 

the value of travel time AVOTT  of user class A  and other 

costs t
mg , which are irrelevant to the congestion price (for 

instance, flat toll fares), i.e. t
m

t
mA

t
m

t
m gftVOTTfc += )()( , 

where )( t
mft  denotes the travel time at the specific link and 

interval. Provided that multiple user classes are identified 
with respect to their VOTT , the marginal congestion cost 

t
mτ  is weighted with the flow of users from different classes 

sharing link m : 
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where tji
px ,  refers to the path flow given by the evolutionary 

learning system and tji
Apm

,
,δ  stands for a incidence variable 

characterizing whether link m  is included in path p  
connecting ji −  pair for user class A  at interval t  
( 1,

, =tji
Apmδ ) or not ( 0,

, =tji
Apmδ ), such that t

mApji
tji

Apm
tji

p fx =∑ ,
,

, δ . 

3.5 System evolution 

The evolutionary models of the sub-systems presented in 
previews sections consists a cascade discrete-time dynamical 
system which allow the loading of the network through 
taking into account different user classes, in terms of the 
information that users possess in making their trip choices 
(departure time and route). The connections between them 
substantiate by the following formula: 
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where kt
Au −  denotes the percentage of users of class A  

processing the information corresponding to interval kt −  
regarding the cost of path p . The proposed stochastic 
evolutionary learning model provides an equilibrium-tending 
dynamical system, whose fixed point (attractor) is the 
stochastic user equilibrium. Such a system recognizes that the 
trajectory of the state of urban road networks moves towards 
equilibrium, but it rarely equilibrates in practice. This is 
because the traffic conditions required to ensure the system 
stability rarely can be met in real-world situations. 

4. APPLICATION OF THE MODEL 

In order to get insight regarding the characteristics of the 
proposed model at first results from its application on a test 
network will be provided. This test network (Fig. 2) connects 
a single origin-destination (O-D) pair and it has 23 links 
composing a number of 25 paths, leading in a rather 
complicated case concerning the route choice process. The 

link travel time estimation is based on the standard 
formulation of the Bureau of Public Roads (BPR), as follows: 
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where f
mt  stands for the free-flow link travel time and β, μ 

scale parameters (here β=0.15 and μ=4) of link m. The 
capacity of each of the existing links is set equal to my =30 
vehicles per hour (veh/hr). The free-flow travel time, which is 
proportional to the link length, is set equal to 1=f

mt  min for 

links 1-17, while 4.1=f
mt  min, for links 18-23. 
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Fig. 2. Network Configuration 

By adopting the BPR formula, t
mτ  is calculated as follows: 
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The resolution of the time evolution for this example is set to 
1 hour, while only one VOTT user class has been considered. 
The maximum desirable demand is set to 80, =tjiD veh/hr, 

Tt ∈∀ while the elasticity on the travel cost scale parameter 
is set to 03.0=a . Also, the maximum real-time information 
penetration is set equal to I=25%. For the users utilizing real-
time information a large scale parameter of perception error 
is preferred ( 21 =−tθ ) allowing the choices of those users to 
be concentrating to the shortest path since those users are 
better informed regarding the network conditions. The rest of 
the users are utilizing the historic path costs, i.e. path costs 
for the same period at previous day (k=24) and a lower scale 
parameter of perception error is preferred ( 5.01 =−tθ ) 
assuming larger perception error leading to a larger spread of 
the users among the available paths.  
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Fig. 3. Evolution of Total Travel Time (a) and Path Choice 
Probabilities (b) of the Information Constraint Setup 
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Fig. 4. Evolution of Total Travel Time (a) and Path Choice 
Probabilities (b) under the Extreme Case 

Under this assumption the model reaches the stochastic user 
equilibrium conditions after a warm-up period of few hours 
(Fig 3a and Fig 3b).  In the extreme case where all users are 
reconsidering their route choice based on the same real-time 

information, then the network conditions oscillates failing to 
converge (approach optimal conditions) since the interaction 
among the users is constant and no steady state can be 
achieved (Fig. 4a and Fig. 4b). As it can be observed, users 
path choices oscillate between the optimum path (red line) 
and the alternative paths. This happens since users identifies 
optimal paths at the beginning, then they tend to choose it 
collectively increasing path travel cost and thus at the next 
evolution phase they are choosing alternative paths 
(collectively again) making the previous path costs to be 
reduced again creating an oscillation among paths.  

At the next step, a variable demand pattern has been used in 
order to test the model performance under more realistic 
conditions. Two model configurations have been tested for a 
period of 1 day (24 periods), one with the limited real-time 
information penetration (I=25%) and other assuming all users 
receiving real-time information (Fig. 5). The results show 
that the model with the limited real-time information (red 
line) is performing better in terms of total travel cost, than 
that of the fully informed users (blue line), for the time 
periods of increased congestion where the interaction among 
the users is high and small perturbations in the loading 
patterns have a severe impact on the system performance, a 
result that coincides with that of Mahmassani and 
Jayakrishnan (1991). On the other hand, at low congestion 
periods, system performance is almost identical for the two 
models since, in that case, perturbations in the route choices 
have little effect on the system performance and thus optimal 
route is easier to be identified.  
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Fig. 5. Evolution of the System Total Travel Time  

Next the model is applied in a much more complex case, that 
of a sparse representation of a realistic network. The 
particular case stands for a part of the business centre main 
arterials network, of Athens, Greece (Fig. 6). This network 
has been coded by a network of 123 links connecting a sum 
of 506 O-D pairs. Part of the Athens centre is under an access 
restriction policy (shaded area in Fig. 6). For the current 
application in the links belonging to the access restricted 
area, a MCP policy has been investigated by the model of the 
constrained real-time information penetration, with I=25%. 
This penetration rate can be considered as a relatively large 
percentage number of potential users to have real-time 
information access, even for using it as the upper limit, 
although Mahmassani and Jayakrishnan (1991) suggested 
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that under these conditions maximum system efficiency is 
expected to be gained.  

 

Fig. 6. Central Athens Network Layout 

In this case, the time slice evolution has been set at the 15 
minutes, a time step able to capture users’ choices in a rather 
dense resolution. Two users classes has been identified with 
respect to their VOTT, user class A with VOTTA=1.50 €/hour 
and class B with VOTTB=4.00 €/hour. The mixture of the 
demand by those two user classes is set as 20%-A class and 
80%-B class. The BPR formula is also used for the network 
model. The variable demand pattern for all O-D pairs follows 
a realistic pattern obtained by field measurements. In order to 
investigate the system performance, a warm-up period of 20 
days of evolution has been utilized, to which period the 
information tank is able to provide reliable information 
regarding historical path costs. Under the above assumptions 
the evolution of MCP charges for a part of the network 
connecting the boundaries of the restricted area (congestion 
abatement) with the city centre (indicated in yellow at the 
middle-down area of Fig. 6) is provided below, for a 
complete day. This particular section is composed of two 
links (a part of Vas. Sofias Av.) of two lanes per direction, 
with length of 2755 metres and the free-flow speed is set up 
to 50 km/hour. So for that road stretch, the maximum 
congestion charge equals the amount of 0.35 € for the peak 
hour period and ranges between 0.25 € - 0.30 € for most of 
the day.  

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  

Fig. 7. Evolution of Congestion Charges for the Selected 
Link 

It should be noted that the estimation of the link congestion 
charges is based on the BPR formula, that tends to under-
estimate congestion effects (propagation of queues, 
intersection delays etc.) on the link travel time.  

5. CONCLUSIONS 

In the current study, an evaluation framework of the 
application of a congestion pricing strategy based on the 
marginal travel cost has been presented, able to identify the 
dynamic impact of congestion pricing to the performance of 
the system, by taking into consideration behavioural 
characteristics of multiple user classes. The proposed 
framework builds on tactics of variable road congestion 
pricing, based on theories of evolutionary game theory and 
stochastic optimal control. 
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