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Canada
∗∗∗Dip. di Informatica e Sistemistica, Via Eudossiana18, 00184 Rome,

Italy
∗∗∗∗ONERA, DCSD, Toulouse, France ?

Abstract: This paper describes the synthesis of a self-scheduled controller for a launcher vehicle.
The problem consists in designing a control law which will be valid on the atmospheric ascent
trajectory, from time 5s to time 85s after takeoff, while ensuring decoupling performances for roll
rates between 0◦/s and 30◦/s. Eigenstructure assignment has been retained in its multi model
approach. After introducing the problem itself and the launcher model, the theory related to
self-scheduling synthesis is reviewed before its application on the launcher is described. A first
performance analysis will be carried out to validate the method and the given results.

1. INTRODUCTION

As a standard practice, the control design for a launch
vehicle is based on decoupled dynamic models. Several
Thrust Vector Control (TVC) law designs, which assume
that an action on the pitch plane produces no effect on the
yaw plane, can be easily found in the literature (Alazard
et al. [2003]). Coupling effects (Sadray and Colgreb [2005])
in the dynamics can be due to the external forces, but also
to the state variables for the velocity linear components
and the angular rate components. As Roux and Cruciani
[2007] have presented, there can be cases where a no
negligible roll rate can be foreseen. Therefore in order
to keep valid the assumption of two uncoupled axes, a
dedicated roll control system is added to the initial control
design to reduce the roll rate. This additional subsystem
has an important effect on the mass performance of the
whole launch vehicle since it is added on the first stage.

In this paper the synthesis of a self-scheduled controller
for a launcher vehicle having a no neglegible roll rate is
presented. The coupled dynamics are decoupled for roll
rates between 0◦/s and 30◦/s during the complete atmo-
spheric flight using an eigenstructure assignment technique
without the need of an additional roll control system. The
(Mu-µ) iteration based on a worst-case analysis and multi-
model eigenstructure assignment has given interesting re-
sults.

2. ROBUST MODAL CONTROL

2.1 Eigenstructure assignment

We briefly present here the classical eigenstructure assign-
ment method that will be used in the first step to find the
initial controller K0 for the nominal plant. Let us consider
a linear system (A0, B0, C0, D0) with n states, m inputs
and p outputs.
? E-mails: david.saussie@polymtl.ca, gianluigi.baldesi@gmail.com,
carsten.doll@cert.fr, caroline.berard@supaero.fr

Proposition 1. Magni [2002] The triplet Ti = (λi, vi, wi)
satisfying

[A0 − λiI B0 ]
(
vi

wi

)
= 0 (1)

is assigned by the static feedback K0 if and only if
K0 (Cvi +Dwi ) = wi (2)

The input directions wi and right eigenvectors vi asso-
ciated with the closed loop eigenvalue λi can be fixed
by various methods. They can be chosen with decoupling
objectives: [

A0 − λiI B0

E F

](
vi

wi

)
= 0 (3)

with for example E = ej and F = [0 · · · 0] if the ith mode
must not excite the jth state. More on the subject can be
found in Magni et al. [1998].

2.2 Multi-model modal control

Multi-model eigenstructure assignment Magni et al. [1998]
is done by simultaneously assigning triplets Ti for several
models which reduces to solve a set of equality constraints
of type (2). The choice of the models to treat with and the
triplets to assign is determined by an analysis of the stabil-
ity and/or performance robustness. The proposed iterative
procedure is called (Mu-µ)-iteration for Multimodel-worst
case analysis.

Procedure: (Mu-µ)-iteration

Step A.1 — Elaborate a first initial design on a nominal
model. All kinds of synthesis methods can be applied at
this step (H∞ control, LQG optimal control , µ-synthesis,
etc...). In the case of initial non-modal approaches, look for
eigenstructure assignment having the same characteristics
as the initial controller. Here, we will assign an eigenstruc-
ture which stems from a LQ design.
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Step B.1 — Here, proceed with a classical multi-model
analysis of the pole map and time-responses for worst
case performance analysis. Real µ-analysis as proposed in
Packard and Doyle [1993], Magni and Döll [1997] could be
applied at this stage if an LFT was available. That is where
the name (Mu-µ) stems from. If the initial design is sat-
isfactory for all models or all values of uncertainties, then
stop. Otherwise identify the worst-case model, determine
its critical triplet Ti and continue with Step B.2.

Step B.2 — Improve the behaviour of the worst-case
model by replacing the triplet Ti by T ∗i respecting the
specifications while preserving the properties of all models
treated before. You will need additional degrees of freedom
which can be introduced by using dynamic controllers or
self-scheduled controllers, see §2.3. Return to Step B.1.

Remark: See Magni [1999] for some general rules on
multi-model eigenstructure assignment, for example to
avoid incompatible assignments we should treat models
as ‘far’ as possible from each other in the considered
parameter space and/or relax some constraints on models
treated before.

2.3 Multi-model modal self-scheduling

Classical gain-scheduling is typically done by interpolating
a posteriori the linear controllers obtained for several mod-
els. But, because of structure, the gain-scheduling prob-
lem can be difficult to tackle. Multi-model modal control
handles this task by choosing a priori the interpolation
formula for the controller gain. This choice can be guided
by physical constraints or previous experiments. Let us for
example take a scheduling w.r.t measurable parameter δ
and an interpolation formula

Ks(δ) = K0 + δK1 + δ2K2 (4)
The synthesis of this controller can then be tackled using
the following Proposition 2 (Magni [2002]).
Proposition 2. The determination of such a self-scheduled
controller is equivalent to the synthesis of a multi-model
modal controller

K = [K0 K1 K2 ] (5)
with respect to the augmented systemA,B,

 C
δC
δ2C

 ,

 D
δD
δ2D

 (6)

As it can be seen, the problem boils down to increasing
the number of outputs of the original system (A,B,C,D)
from p to 3p. The augmentation of the ouput number
offers the additional degrees of freedom necessary for the
simultaneous resolution of some linear constraints of type
(2) at Step B.2 of the (Mu-µ)-iterations.

For aeronautical applications, refer Döll et al. [2001] and
Constant et al. [2002].

3. APPLICATION TO THE LAUNCHER

Let us apply this method to the launcher atmospheric
ascent problem.

3.1 Launcher model

Launch vehicle dynamics are generally described by ‘short-
period’ equations of motion during the atmospheric flight.

Indeed, in this particular flight phase, the main constraint
for a launcher is to minimize the angle of attack, which
generates a lift force acting on the lateral direction of vehi-
cle. Therefore no important manoeuvres are commanded.
Although the ‘short-period’ equations are the results of a
linearization process, the lateral dynamics on pitch and
yaw axes can be coupled by the vehicle roll rate. In fact,
when the launch vehicle has a not negligible roll rate,
an action on the pitch plane produces an effect also in
the yaw plane. Neglecting the elastic behaviour of the
whole system and the actuation dynamics, the model is
just characterized by the following equations (Greensite
[1970]):

Lateral forces equations:

v̇ = −rU0 + p0w −
1

2

ρV 2
rel

SR

m

∫
∂CN (η)

∂β
β(η)dη + g cos θ0 ·∆θ +

Tc

m
∆σ

ẇ = −p0v + U0w −
1

2

ρV 2
rel

SR

m

∫
∂CN (η)

∂α
α(η)dη − g sin θ0 ·∆θ −

Tc

m
∆ε

Moment equations:

Iyy q̇ = − (Ixx − Izz) p0r − lcTc∆ε +
1

2
ρV

2
relSR

∫
∂CN (η)

∂α
(ηcg − η)α(η)dη

Izz ṙ = −(Iyy − Ixx)p0q − lcTc∆σ −
1

2
ρV

2
relSR

∫
∂CN (η)

∂β
(ηcg − η)β(η)dη

The kinematic equations are ∆θ̇ = q and ∆ψ̇ = 1
cos θ0

· r
where lc is the distance between the centre of mass and
the pivot point; the Tc is the swivelled thrust; (ρV 2

rel)/2 is
the dynamic pressure; SR is the reference area. The angle
of attack α and the side-slip angle β can be expressed as
follows:

α(η) =
w + wwind

U0
−

ηcg − η

U0
q

β(η) =
v + vwind

U0
+

ηcg − η

U0
r

The states are the lateral launcher velocities (v, w),
angular velocities (q, r), yaw and pitch angles (ψ, θ) with
X = ( v r ψ w q θ )T and the inputs are the two nozzles
deflections U = (∆σ, ∆ε)T .

Using the above equations of motion, different linear time-
invariant (LTI) models can be derived for different instants
of a flight trajectory by assuming the frozen parameters
including the vehicle roll rate p in order to investigate the
effect of the roll rate on the system dynamics. Therefore,
36 different models were generated for 9 different flight
instants (from 5s called Model 1 to 85s called Model 9 with
an increment of 10 seconds), each of them for 4 roll rates
p0 = (0, 10, 20, 30)◦/s. Figure 1 shows how the open-loop
poles evolve with the roll rate p0 on model 6. It illustrates
that the open loop launcher is naturally unstable. For
p0 = 0o/s (∆), the pair of the real positive pole at +1.7
and the real negative pole at −1.85 determine the unstable
pitch motion. You can also identify a pole at the origin
representing the integration of the pitch rate q to the pitch
angle θ and one slightly unstable pole at +0.01 associated
to the lateral drift w. You find more or less the same
poles (∆) for the unstable yaw motion, the yaw angle ψ
and the lateral drift v. Both axis are naturally decoupled.
With non-zero p0 however, i.e. +, the real poles for pitch
and yaw motion combine eachother to coupled complex
conjugated pole pairs.
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Figure 1. System open-loop poles vs roll rate p0 (Model 6)

3.2 Specifications

The controlled outputs are the pitch angle θ and the yaw
angle ψ. A performance objective for the control law is to
follow a unit step in θ (resp. in ψ) with a 90% settling
time Ts inferior to 1.8s, an overshoot less than 10% and
no steady-state errors.

The decoupling objective is as follows: a command on θ
should not affect ψ and reciprocally. So the controller will
have to limit the coupling effects.

At last, the controller must be robust to any roll rate vari-
ations between 0◦/s and 30◦/s and be effective all along
the takeoff phase between time 5s and time 85s. In order
to be robust to non modelised high-frequency dynamics or
flexible effects, the gain margins should remain between 0
dB and 3 dB, and the delay margins greater than 40ms.

3.3 Controller architecture
The available measurements are v, r, ψ, w, q, θ. We add
two integral terms on ψ and θ in order to ensure zero
steady-state errors on these variables and perturbation
robustness. With 8 measurements, we are able to assign
8 poles, see Eq. (2). With two inputs ∆σ and ∆ε, there
are 16 gains Kij as degrees of freedom:

K =

[
K11 K12 K13 K14 K15 K16 K17 K18

K21 K22 K23 K24 K25 K26 K27 K28

]
(7)

allowing furthermore the axe decoupling following Eq. (3).

3.4 Eigenstructure assignment for the nominal model M0

= Model 6 with p0 = 0◦/s

θ and ψ are naturally decoupled. λ1, λ2,3 and λ4 are
belonging to θ and λ5, λ6,7 and λ8 to ψ. During the design
Step A.1, the low frequency poles λ1 and λ5 are chosen
near low-frequency zeros in order to compensate non
desirable zero effects. λ2,3 and λ6,7 satisfy the settling time
criterion of 1.8 s. Their damping is 0.7 for an overshoot less
than 10%. The fast eigenvalues λ4 and λ8 are chosen faster
than the complex poles, but not too fast in order to keep
gains Kij small. See M0 in Tab. 1 for more details. The
eigenstructure assignment boils down to a pole placement
following Eq. (2). This single model controller leads for
sure to good time behaviour in terms of settling time
and overshoot for the nominal model, but time response

analysis during Step B.1 identifies immediately that it
does not ensure decoupling on the other models (it was not
taken into account during synthesis) and that oscillations
appear for higher roll rates p0 ≥ 20o/s. Model 6 with
p0 = 20◦/s is identified as the first worst-case model M1.

Table 1. Eigenstructure assignments for the
three synthesis models

Model Poles

Name Number Open loop Closed loop

M0
#6

p0 = 0
◦

/s

1.71

1.70

0.0158

0.0104

0

0

−1.85

−1.85

λ1 = −0.046

λ2,3 = −1.4± 1.4i

λ4 = −6

λ5 = −0.046

λ6,7 = −1.4± 1.4i

λ8 = −6

M1
#6

p0 = 20
◦

/s

1.71± 0.346i

0.0152

0.01

0

0

−1.85± 0.343i

λ1,2 = −0.0459± 0.3490i

λ3,4 = −1.4± 1.4i

λ5 = −6

λ6,7 = −1.4± 1.4i

λ8 = −6

M2
#9

p0 = 20
◦

/s

1.57± 0.521i

0.0204

0.0241

0

0

−1.75± 0.513i

λ1,2 = −0.01± 0.3490i

λ3,4 = −1.4± 1.4i

λ5 = −6

λ6,7 = −1.4± 1.4i

λ8 = −6

3.5 Search for a suitable eigenstructure for Model M1 =
Model 6 with p0 = 20◦/s

The choice of closed loop eigenvalues and eigenvectors is
not as straightforward as the coupling depends on the
roll rate p. In order to find a suitable eigenstructure on
M1, it is first decided to treat M1 independently from
M0, i.e. return to Step A.1 instead of continuing with
Step B.2. A similar pole placement as for model M0

with coherent supplementary constraints (3) to decouple
θ and ψ does not give expected results. A trial and
error approach did not lead to the selection of adequate
eigenvalues and eigenvectors.

In order to solve the issue, a LQR design (Kalman [1960])
is then considered with R = diag(0.001, 0.001) and Q =
diag(0, 0.1, 0.1, 1, 0, 0.1, 0.1, 1) where

∫
θ and

∫
ψ are the

more ponderated states. The LQR controller performed
quite well placing the closed loop poles as follows :

λ1,2 =−0.0459± 0.3490i

λ3,4 =−1.3527± 1.1534i (8)

λ5,6 =−1.5915± 1.2870i

λ7,8 =−64.7749± 0.34i

The complex pair of eigenvalues λ1,2 seems to be critical in
the decoupling effect and is located near a multivariable
zero. As multivariable zeros are not as well understood
as SISO zeros, our former study did not point that out.
This complex value must be preserved and calculated by
an LQR design for each considered model. It can not be
decoupled as for M0 and is hence affected either to θ or
to ψ, here to θ. Finally, an eigenstructure affecting λ1,2,
λ3,4, λ5 to θ and λ6,7, λ8 to ψ is assigned. The values for
λi 6= λ1,2 are the same as those for M0 in order to satisfy
settling time and overshoot criteria while keeping gains
Kij as small as possible. See M1 in Tab. 1. Figure 2 shows
that all requirements concerning settling time, overshoot
and decoupling are satisfied for M1.
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Figure 2. Time responses due to a unit step command in
θc (up) and in ψc (down) with the single model static
controller for Model 6, p0 = 20◦/s)

3.6 Self scheduled controller w.r.t. p

Having identified the suitable eigenstructure assignments
for models with zero and non-zero roll rate p0, it is
possible to continue the (Mu-µ)-iterations stopped at the
end of §3.4, i.e. with Step B.2. M0 and M1 can be
treated simultaneously, if p is introduced as a scheduling
parameter. The total roll rate p is normalized as p = 15 +
15δp and δp ∈ [−1, 1]. The controller is then scheduled as
follows :

K = K0 + K1δp (9)
The self-scheduled controller is synthetized by assigning
the eigenvalues of the augmented system:(

A∆, B∆,

[
C∆

δpC∆

]
,

[
D∆

δpD∆

])
(10)

with K = [K0 K1]. K has now 2 × 16 = 32 degrees of
freedom which can be used to assign two models following
Eq. (2). The two former eigenstructure for M0 and M1

of Tab.1 are assigned simultaneously on the augmented
system. When dealing with M0, the augmented system
(10) is taken with δp = −1 whereas δp = 1/3 for M1.

A quick study of the time responses (Step B.1) re-
veals that this scheduled controller performs very well for
models 1 to 6 at any roll rates in [0◦/s, 30◦/s] (Fig.3).
Nevertheless the behaviour tends to be quite oscillatory
and not satisfactory for models 7 to 9 with rates above
10◦/s(Fig. 4). Depending on the time, the performances of
this scheduled controller are hence not acceptable. Model
9 at p0 = 20o/s is identified as a second worst case model
M2.

3.7 Self scheduled controller w.r.t. p and t

In order to be able to treat simultaneously models M0, M1

and M2, 16 new degrees of freedom have to be added to
Eq. (2) in Step B.2. The idea is now to add the time as
a supplementary scheduling parameter. The so-scheduled
controller has the form:

K = K0 + K1δp+ K2δt (11)
The total time is normalized as t = 55+30δt and δt ∈ [0, 1]
(for model 6, δt = 0 and for model 9, δt = 1). The
self-scheduled controller is synthetized by assigning the
eigenvalues of the augmented system:
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Figure 3. Time responses due to a unit step command in θc

(up) and in ψc (down) with the scheduled controller
w.r.t. p (Models 1 to 6)
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Figure 4. Time responses due to a unit step command in θc

(up) and in ψc (down) with the scheduled controller
w.r.t. p (Models 7 to 9)(

A∆, B∆,

[
C∆

δpC∆

δtC∆

]
,

[
D∆

δpD∆

δtD∆

])
(12)

In addition to the former eigenstructure assignments for
M0 and M1, the assignement for Model 9 with p0 = 20◦/s
has to be chosen. The low-frequency poles λ1,2 are again
determined by an LQR approach as for M1 for the same
reasons. The other eigenvalues are chosen as for M0 in
order to respect settling time and overshoot criteria while
keeping gains Kij small. Again λ1,2, λ3,4 and λ5 are
affected to θ, the remaining 3 to ψ. See M2 in Tab. 1.
Figure 5 shows the result of the time-responses analysis in
Step B.1. They are now quite satisfactory for all models
and roll rates. It is possible to stop the (Mu-µ)-iterations
at this point.

Nevertheless, there are still light oscillations and the
decoupling could still be improved. One way to improve
this behaviour could be to continue the (Mu-µ)-iterations
by also treating Model 1 at t = 5 s as a third worst-
case model M3 during synthesis. This would mean to add
an additional term K3 to the controller of Eq. (11) with
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Figure 5. Time responses due to a unit step command in
θc (up) and in ψc (down) with the final scheduled
controller
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Figure 6. Time responses due to a unit step command
in θc (up) and in ψc (down) with the final improved
scheduled controller

an additional parameter δ3 (for example δt2) in order to
create the necessary degrees of freedom for the control
design. Here, a simplier way was chosen.

3.8 Improved self scheduled controller w.r.t. p and t

By speeding up the fast poles of Models 6 and 9, p0 =
20◦/s (instead of λ5,8 = −6, we take λ5,8 = −20 on Model
6 and λ5,8 = −30 on Model 9), one can obtain much better
time-responses (Fig 6). But an overshoot can be observed
on θ time-responses of Models 1 and 2. As these models
were not considered in the eigenstructure assignment, they
are not entirely satisfactory but still remain acceptable.
Nevertheless, gains are higher compared to the former
scheduled controller, see Tab. 2 for the values of K0, K1

and K2. Moreover in presence of a flexible model, such big
gains may not give as good results. This will be treated in
future work on a flexible model of the launcher. Frequency
constraints can be added in the synthesis in order to limit
the action of the controller on specific frequencies and/or
additional terms can be added to Eq. (11) in order to
increase the degrees of freedom.
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Figure 7. Pitch control loop SISO margins
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Figure 8. Yaw control loop SISO margins

4. PRELIMINARY ROBUST ANALYSIS

We propose a brief study of the robustness of our improved
controller. First SISO margins are calcutated, then MIMO
margins.

4.1 SISO margins

Gain, phase and delay margins are found with the im-
proved controller. For the pitch control loop, Figure 7
shows that the gain margins are good compared to the
required 3dB margin. The delay margins are rather poor
at p0 = 30o/s, but the specification of 40ms is satisfied for
all models except of Model 1 whose delay margin violates
with 25ms the requirement. Considering the yaw control
loop (Fig. 8), all margins are good for any case.

With increasing roll rate p0, gain and phase margins are
improving which seems surprising, but for greater roll rates
(50◦/s and above), they are decreasing. Nevertheless, SISO
margins are quite optimistic and MIMO margins must be
calculated.

4.2 MIMO margins

In the SISO approach, there is only one control loop that
is disturbed at the same time. Hence the margins found
before may not reflect the robustness of the system. The
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Table 2. Improved scheduled controller matrices

K0 =

[
0.0008448 2.9753 5.8158 −7.5389 0.000003257 −0.03935 −0.002092 0.001478

0 0.03938 0 0 0.0008568 2.9754 7.7014 −9.9936

]
K1 =

[
−0.0001868 1.6203 3.5132 −4.7908 0.000003257 −0.03935 −0.002092 0.001478

0 0.03938 0 0 −0.00019802 1.6202 4.6636 −6.3509

]
K2 =

[
−0.0006866 −0.02936 1.4631 −2.2361 −0.000003811 0.02095 0.002041 −0.001089

0 −0.02098 0 0 −0.0006931 −0.02941 0.1457 −0.5455

]
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Figure 9. MIMO margins

stability is now studied when perturbations are applied
at the input of the system. The perturbations are of the
form I+Lmde = diag(kie

jϕi). The objective is to calculate
the independant margins of gain ki and phase ϕi by the
following formulae:

∀i, |ki − 1| ≤ α and 2| sin
(ϕi

2

)
| ≤ α,

α= sup
ω

[
σ̄
(
(I +KG)−1

KG
)]−1

(13)

α is first determined, gain and phase margins are then
calculated independently. There is a minimum and maxi-
mum value for each of them, inside of which the feedback
gain loop can vary while letting the system stable. Figure
9 shows that the SISO approach surestimated the gain
margins but the margins are still satisfactory. The gain
margin is with 5dB still higher than the required 3dB.
Concerning the phase margins, they are about 40o instead
of the SISO phase margins with about 60o. The MIMO
phase margin of Model 1 is with 16o slightly worse than the
SISO one with 19o. Although MIMO margins are inferior
to SISO margins, they are still fulfilling the requirements
(except for Model 1). As already mentioned, with Model
1 as an additional synthesis model, its margins could be
improved.

5. CONCLUSION

In this article a design technique for self-scheduled con-
trollers is applied to a launcher takeoff problem. With a
static controller scheduled w.r.t. roll rate p and time t,
performance and decoupling objectives are fulfilled for all
considered models. Moreover, SISO and MIMO margins
satisfy requirements. Considering the number of gains (16)
and of models (36), classic gain interpolation could have
been more difficult to tackle and the user would have spent

more time for computation. In our case, only 3 models
needed to be treated at the same time. A LFT model
is under study in order to perform a µ-analysis that will
confirm our results.
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C. Döll, Y. Le Gorrec, G. Ferreres, and J. F. Magni. A
robust self-scheduled missile autopilot: Design by multi-
model eigenstructure assignment. Control Engineering
Practice, 9(10):1067–1078, October 2001.

L. Greensite. Analysis and design of space vehicle control
system. New York: Spartan Books, 1970.

R. E. Kalman. Contribution to the theory of optimal
control. Bol. Soc. Mat. Mex., 5:102–119, 1960.

J. F. Magni. Multimodel eigenstructure assignment in
flight-control design. Aerospace Sciences and Technolo-
gies, 3(3):141–151, 1999.

J. F. Magni. Robust modal control with a toolbox for
use with matlab. Kluwer Academic/Plenum Pusblisers,
2002.
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