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Abstract: This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement 
hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic 
algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the 
structure/parameter learning for constructing the TNFC dynamically. The evolution of a population 
consists of three major operations: group reproduction using the compact genetic algorithm, variable two-
part crossover, and variable two-part mutation. Illustrative example is conducted to show the performance 
and applicability of the proposed R-HELA method. 

 

1. INTRODUCTION 

Recently, many evolutionary algorithms, such as the 
genetic algorithm (GA), genetic programming, evolutionary 
programming, and evolution strategies, have been proposed. 
Since they are heuristic and stochastic, they are less likely to 
get stuck at the local minimum, and they are based on 
populations made up of individuals with specific behaviours 
similar to certain biological phenomena. These common 
characteristics have led to the development of evolutionary 
computation as an increasingly important field. 

The evolutionary fuzzy model generates a fuzzy system 
automatically by incorporating evolutionary learning 
procedures, where the well-known procedure is GA. Several 
genetic fuzzy models, that is, fuzzy models augmented by a 
learning process based on GAs, have been proposed. Karr 
applied GAs to the design of the membership functions of a 
fuzzy controller (Karr 1991), with the fuzzy rule set assigned 
in advance. Since the membership functions and rule sets are 
co-dependent, simultaneous design of these two approaches 
would be a more appropriate methodology.  Bandyopadhyay 
et. al. used the variable-length genetic algorithm (VGA) that 
let the different lengths of the chromosomes in the population 
(Bandyopadhyay et al. 2000). Juang et. al. proposed genetic 
reinforcement learning in design of fuzzy controllers (Juang et 
al. 2000). The GA that Juang et. al. adopted was based upon 
traditional symbiotic evolution which, when applied to fuzzy 
controller design, complements the local mapping property of 
a fuzzy rule. However, the aforementioned approaches may 
require one or more of the following: 1) the number of fuzzy 
rules has to be assigned in advance; 2) the lengths of the 
chromosomes in the population must be the same. 

For solving above problems, in this paper, we present a 
TSK-type neuro-fuzzy controller (TNFC) with a 
reinforcement hybrid evolutionary learning algorithm (R-
HELA). The proposed R-HELA determines the number of 

fuzzy rules automatically and processes the variable-length 
chromosomes. The length of each individual denotes the total 
number of genes in that individual. The initial length of each 
individual may be different from each other, depending on the 
total number of rules encoded in it. Individuals with an equal 
number of rules constitute the same group. Thus, initially 
there are several groups in a population.  We use the elite-
based reproduction strategy to keep the best group. Therefore, 
the best group can be reproduced many times for each 
generation. The reinforcement signal from the environment is 
used as a fitness function for the R-HELA. That is, we 
formulate the number of time steps before failure occurs as 
the fitness function. In this way, the R-HELA can evaluate the 
candidate solutions for the parameters of the TNFC model.  

The advantages of the proposed R-HELA method are 
summarized as follows: 1) it determines the number of fuzzy 
rules and tune the free parameters of the TNFC model in a 
highly autonomous way. Thus, users need not give it any a 
priori knowledge or even any initial information on these. 2) 
It is applicable to chromosomes of different lengths. 3) It does 
not require precise training data for setting the parameters of 
the TNFC model. 4) It is indeed that the algorithm can 
perform better and converge more quickly than some 
traditional genetic methods. 

This paper is organized as follows. In section 2, the 
TSK-type neuro-fuzzy controller (TNFC) is introduced. In 
section 3, the proposed hybrid evolution learning algorithm 
(HELA) is described. In section 4, the reinforcement hybrid 
evolution learning algorithms used for constructing the TNFC 
controller is introduced. In section 5, the simulation results are 
presented. The conclusions are summarized in the last section. 

2. TSK-TYPE NEURO-FUZZY CONTROLLERS 

A Takagi-Sugeno-Kang (TSK) type controller (Lin et al. 
1996) employs different implication and aggregation methods 
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than the standard Mamdani controller. Instead of using fuzzy 
sets, the conclusion part of a rule is a linear combination of 
the crisp inputs. 
 

IF x1 is A1j (m1j , σ1j ) and x2 is A2j(m2j , σ2j )… 
 and xn is Anj (mnj , σnj )                                       (1) 

THEN y’=w0j+w1jx1+…+wnjxn 
 

Since the consequence of a rule is crisp, the defuzzification 
step becomes obsolete in the TSK inference scheme. 
Therefore, the controller’s output is computed as the weighted 
average of the crisp rule outputs, which is computationally 
less expensive then calculating the center of gravity.  

In this paper, we adopt a TSK-type neuro-fuzzy 
controller (TNFC) to perform a control problem. The 
functions of the nodes in each layer are described as follows: 
Layer1 (Input Node): No function is performed in this layer. 
The node only transmits input values to layer 2. 

ii xu =)1(                                      (2) 
Layer2 (Membership Function Node): Nodes in this layer 
correspond to one linguistic label of the input variables in 
layer1; that is, the membership value specifying the degree to 
which an input value belongs to a fuzzy set is calculated in 
this layer. For an external input ix , the following Gaussian 
membership function is used: 
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where ijm and ijσ are, respectively, the center and the width of 
the Gaussian membership function of the jth term of the ith 
input variable ix . 
Layer 3 (Rule Node): The output of each node in this layer is 
determined by the fuzzy AND operation. Here, the product 
operation is utilized to determine the firing strength of each 
rule. The function of each rule is 
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Layer 4 (Consequent Node): Nodes in this layer are called 
consequent nodes. The input to a node in layer 4 is the output 
delivered from layer 3, and the other inputs are the input 
variables from layer 1. For this kind of node, we have 
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where the summation is over all the inputs and ijw  are the 
corresponding parameters of the consequent part. The wij is 
any real value. If wij=0, i>0, the TNFC controller in this case 
will be called the zero-order TNFC controller.  
Layer 5 (Output Node): Each node in this layer corresponds to 
one output variable. The node integrates all the actions 
recommended by layers 3 and 4 and acts as a defuzzifier with 
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where M is the number of fuzzy rules. 

3. A HYBRID EVOLUTION LEARNING ALGORITHM 

In this section, the proposed hybrid evolutionary 
learning algorithm (HELA) will be introduced. Recently, 
many efforts that try to enhance the traditional GAs have been 
made (Michalewicz 1999). Among them, one category focuses 
on modifying the structure of a population or the role an 
individual plays in it, such as the distributed GA (Tanese 
1989), the cellular GA (Arabas et al. 1994), and the symbiotic 
GA (Moriarty et al. 1996). 

In a traditional evolution algorithm, the number of rules 
in a model must be predefined. Our proposed HELA 
combines the compact genetic algorithm (CGA) and the 
modified variable-length genetic algorithm (MVGA). In the 
MVGA, the initial length of each individual may be different 
from each other, depending on the total number of rules 
encoded in it. Thus, we do not need to predefine the number 
of rules. In this paper, individuals with an equal number of 
rules constitute the same group. Initially, there are several 
groups in a population. Unlike the traditional variable-length 
genetic algorithm (VGA) (Bandyopadhyay et al. 2000), 
Bandyopadhyay et. al. used “#” to mean, “does not care”. In 
this study, we adopt the variable two-part crossover (VTC) 
and the variable two-part mutation (VTM) to make the 
traditional crossover and mutation operators applicable to 
different lengths of chromosomes. Therefore, we do not use 
“#” to mean, “does not care” in the VTC and the VTM. 

In this study, we divide a chromosome into two parts. 
The first part of the chromosome gives the antecedent 
parameters of a TNFC model while the second part of the 
chromosome gives the consequent parameters of a TNFC 
model. Each part of the chromosome can be performed using 
the VTC on the overlapping genes of two chromosomes. In 
the traditional VGA, Bandyopadhyay et. al. only evaluated 
the performance of each chromosome in a population. The 
performance of the number of rules was not evaluated in 
(Bandyopadhyay et al. 2000). In this study, we use the elite-
based reproduction strategy to keep the best group with the 
same length chromosomes. Therefore, the best group can be 
reproduced many times for each generation. The elite-based 
reproduction strategy is similar to the maturing phenomenon 
in society, where individuals become more suitable to the 
environment as they acquire knowledge from society. 

In the proposed HELA method, we adopt the compact 
genetic algorithm (CGA) (Harik et al. 1999) to carry out the 
elite-based reproduction strategy. The CGA represents a 
population as a probability distribution over the set of 
solutions and is operationally equivalent to the order-one 
behavior of the simple GA (Lee et al. 1995). The advantage of 
the CGA is that it processes each gene independently and 
requires less memory than the normal GA. The building 
blocks (BBs) in the CGA represent the suitable lengths of the 
chromosomes and reproduce the chromosomes according to 
the BBs. The coding scheme consists of the coding done by 
the MVGA and the CGA. The MVGA codes the adjustable 
parameters of a TNFC model into a chromosome, as shown in 
Fig. 1; where MSj represents the parameters of the antecedent 
of the jth rule in the TNFC, Cj represents the parameters of the 
consequent of the jth rule. In Fig. 2, the CGA codes the 
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probability vector into the building blocks (BBs), where each 
probability vector represents the suitability of the rules of a 
TNFC model. In CGA, we must predefine the maximum 
number of rules (Mmax) and the minimum number of rules 
(Mmin) to prevent the number of fuzzy rules generated beyond 
a certain bound (i.e., [Mmax, Mmin]).  

 

m11 11σ wjn

 MS1  MS2 ...  MSj  MSM  C1...  C2 ...  Cj ...  CM

m21 21σ ... mi1 1iσ mn1 ... … wj0 ...... wji  
Fig. 1. Coding the adjustable parameters of a TNFC into a 
chromosome in the MVGA. 
 

 
Fig. 2. Coding the probability vector into the building 
blocks (BBs) in the CGA. 
 

The learning process of the HELA involves three major 
operators: elite-based reproduction strategy, variable two-part 
crossover, and variable two-part mutation. The major learning 
process is described step-by-step as follows:  
a. Elite-Based Reproduction Strategy (ERS): Reproduction 

is a process in which individual strings are copied according 
to their fitness value. A fitness value is assigned to each 
individual using Eqs. (13). The goal of the R-HELA method 
is to maximize the fitness value. The higher a fitness value, 
the better the fitness. In this study, we use an elite-based 
reproduction strategy (ERS) to mimic the maturing 
phenomenon in society, where individuals become more 
suitable to the environment as they acquire more knowledge 
from society. The CGA is used here to perform the ERS. 
The CGA represents the population as a probability 
distribution over the set of solutions and is operationally 
equivalent to the order-one behavior of the simple GA. The 
CGA uses the BBs to represent the suitable length of the 
chromosomes and reproduces the chromosomes according 
to the probability vector in the BBs. The best performing 
individuals where in the top half of each population are 
using to perform the ERS. According to the results of the 
ERS, using the crossover and the mutation operations 
generates the other half individuals. After the ERS, the 
suitable length of chromosomes will be preserved and the 
unsuitable length of chromosomes will be removed. The 
detailed of the ERS is shown as follows: 
Step 1. Update the probability vectors of the BBs according 
to the following equations: 
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where Vk is the probability vector in the BBs and represents 
the suitable chromosome in the group with k rules in a 
population; λ is a threshold value we predefine; Avg 
represents the average fitness value in the whole population; 
Nc is the population size; Nk is the kth group size; fitp is the 
fitness value of the pth chromosome in all Nc populations; 
fitkp is the fitness value of the pth chromosome in kth group; 
and kfitMax _ is the best fitness value (maximum value of 
Eq. (13)) in the kth group. As shown in Eq. (7), 
if kfitMax _ ≥Avg, then the suitable chromosomes in the kth 
group should be increased. On the other hand, 
if kfitMax _ <Avg, then the suitable chromosomes in the kth 
group should be decreased. Eq. (10) represents the sum of 
the fitness values of the chromosomes in the kth group. 
Step 2. Determine the reproduction number according to 
the probability vectors of the BBs as follows: 
 

Repk= )_/(*)2/P( size VelocyTotalVk  
 where k=[Mmax,Mmin]                                        (11) 
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where Psize represents the population size; Repk is the 
recorder, and a chromosome has k rules for constructing a 
TNFC. 
Step 3. After step 2, the reproduction number of each group 
in the top half of a population is obtained. Then we generate 
Repk chromosomes each group using the roulette-wheel 
selection method (Cordon et al. 2001). 
Step 4. If any probability vector in BBs reaches 1, then stop 
the ERS and set the probability vector to 1 for all groups 
with the same number of rules, according to step 2. The 
lacks of the chromosomes are generated randomly. To 
replace the ERS step, we use the roulette-wheel selection 
method (Cordon et al. 2001) – a simulated roulette is spun – 
for this reproduction process.  
b. Variable two-part crossover: Although the ERS 
operation can search for the best existing individuals, it does 
not create any new individuals. In nature, an offspring has 
two parents and inherits genes from both. The main operator 
working on the parents is the crossover operator, the 
operation of which occurs for a selected pair with a 
crossover rate. In this paper, we propose the variable two-
part crossover (VTC) to perform this step. In the VTC, the 
parents are selected from the enhanced elites. In the VTC, 
two parents are selected using the roulette-wheel selection 
method (Cordon et al. 2001). The two parents may be 
selected from the same or different groups. Performing 
crossover on the selected parents creates the offspring. Since 
the parents may be of different lengths, we must avoid 
misalignment of individuals in the crossover operation. 
Therefore, a variable two-part crossover is proposed to solve 
this problem. The first part of the chromosome gives the 
antecedent parameters of a TNFC model while the second 
part of the chromosome gives the consequent parameters of 
a TNFC model. The two-point crossover is adopted in each 
part of the chromosome. Thus, new individuals are created 
by exchanging the site’s values between the selected sites of 
the parents’ individuals. To avoid the misalignment of 
individuals in the crossover operation, in the VTC, the 
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selection of the crossover points in each part will not exceed 
the shortest length chromosome of two parents. Two 
individuals of different lengths using the variable two-part 
crossover operation are shown in Fig. 3. MSj represents the 
parameters of the antecedent part of the jth rule in the TNFC, 
Wj represents the parameters of the consequent of the jth 
rule in the TNFC, and M_k is the number of fuzzy rules in 
kth chromosome. After the VTC operation, the individuals 
with poor performance are replaced by the new offspring.                               
 

 
Fig. 3. The VTC in the HELA. 

 
c. Variable two-part mutation: In this paper, the variable 
two-part mutation (VTM) is proposed to perform the mutation 
operation. In each part of a chromosome, uniform mutation is 
adopted, and the mutated gene is drawn randomly from the 
domain of the corresponding variable.  

 

4. REINFORCEMENT LEARNING FOR A TNFC 

Unlike the supervised learning problem, in which the 
correct “target” output values are given for each input pattern, 
the reinforcement learning problem has only very simple 
“evaluative” or “critical” information, rather than 
“instructive” information, available for learning. In the 
extreme case, there is only a single bit of information to 
indicate whether the output is right or wrong. The 
reinforcement hybrid evolutionary learning algorithm (R-
HELA) and its training environment interact in a 
reinforcement learning problems are shown in Fig. 4. In this 
paper, the reinforcement signal indicates whether a success or 
a failure occurs. 

As show in Fig. 4, the proposed R-HELA consists of a 
TNFC model, which acts as the control network to determine 
a proper action according to the current input vector 
(environment state). The structure of the proposed R-HELA is 
different from Barto and his colleagues’ actor-critic 
architecture (Barto et al. 1983), which consists of a control 
network and a critic network. The input to the TNFC model is 
the state of the plant, and the output is a control action of the 
state, denoted by f. The only available feedback is a 
reinforcement signal that notifies the TNFC model only when 
a failure occurs. An accumulator plays a role which is a 
relative performance measure shown in Fig. 4. It accumulates 
the number of time steps before a failure occurs. In this paper, 
the feedback takes the form of an accumulator that determines 
how long the experiment is still a “success”; this is used as a 
relative measure of the fitness of the proposed R-HELA 
method. That is, the accumulator will indicate the “fitness” of 
the current TNFC model. The key to the R-HELA is 
formulating a number of time steps before failure occurs and 
using this formulation as the fitness function of the R-HELA 
method.  

RWNFS Model Builder

Accumlator

Plant

HELA method

RWNFS Model

Reinforcement 
Signal

Chromosomes

fState

x

 
Fig. 4. Schematic diagram of the R-HELA for the TNFC. 

 
In this paper, we use a number of time steps before 

failure occurs to define the fitness function. The goal of the R-
HELA method is to maximize the fitness value. The fitness 
function is defined by: 

 
 Fitness Value (i) =TIME-STEP(i)                  (13) 

where TIME-STEP(i) represents how long the experiment is a 
“success” with the ith population.  

5.  ILLUSTRATIVE EXAMPLE 

In this section, we compare the performance of the 
TNFC model using the R-HELA method with an application. 
The simulation was performed to balance the cart-inverted-
pendulum plant (Cheok et al. 1987). The initial parameters are 
given in Table 1. The initial parameters are determined by 
practical experimentation or trial-and-error tests. 

 
Table 1: The initial parameters before training 

Parameters Value Parameters Value 
Population Size 54 [ minw , maxw ] [-20,20] 

Crossover Rate 0.5 Mmax 12 
Mutation Rate 0.3 Mmin 3 

[ minσ , maxσ ] [0,2] λ 0.01 

[ minm , maxm ] [0,2]   

 
In this example, we shall apply the R-HELA method to 

the classic control problem of the cart-inverted-pendulum 
plant. This problem is often used as an example of inherently 
unstable and dynamic systems to demonstrate both modern 
and the classic control techniques (Cheok et al. 1987), or the 
reinforcement learning schemes (Barto et al. 1983), and is now 
used as a control benchmark. The cart-inverted-pendulum 
plant is the problem of learning how to balance an upright 
pole. The bottom of the pole is hinged to a cart that travels 
along a finite-length track to its right or left. Both the cart and 
the pole can move only in the vertical plane; that is, each has 
only one degree of freedom.  

There are four state variables in the system:θ , the angle 
of the pole from an upright position (in degrees);θ& , the 
angular velocity of the pole (in degrees/seconds); x , the 
horizontal position of the cart's center (in meters); and x& , the 
velocity of the cart (in meters/seconds). The only control 
action is f, which is the amount of force (in Newtons) applied 
to cart to move it toward left or right. The system fails when 
the pole falls past a certain angle (± 24 is used here) or the 
cart runs into the bounds of its track (the distance is 2.4 m 
from the center to each bound of the track). The goal of this 
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control problem is to determine a sequence of forces applying 
to the cart to balance the pole upright. The equations of 
motion that we used are: 

)()()1( ttt θθθ &Δ+=+                                                     (14) 
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where                                                         
l = 0.5 m, the length of the pole;                           

  m = 1.1 kg, combined mass of the pole and the cart;           
mp = 0.1 kg, mass of the pole;                               
g = 9.8 m/s , acceleration due to the gravity;        (18) 

cM = 0.0005, coefficient of friction of the cart on the 
track,       

pM = 0.000002, coefficient of friction of the pole on 
the cart,     
Δ  = 0.02(s), sampling interval.                                

The constraints on the variables are oo 2424 ≤≤− θ , -
2.4m ≤≤ x 2.4m, and -10N ≤≤ f 10N. A control strategy 
is deemed successful if it can balance a pole for 100000 time 
steps. The four input variables ),,,( xx &&θθ and the output ft 
are normalized between 0 and 1. The four normalized state 
variables are used as inputs to the proposed TNFC model. The 
fitness function in this example is defined in Eq. (13) to train 
the TNFC model. A total of thirty runs were performed. Each 
run started at the different initial state. The TNFC model 
learned to balance the pole at the 54th generation averagely is 
shown in Fig. 5. In this figure, each run represents that largest 
fitness value in the current generation is selected before the 
cart-pole balancing system fails. When the R-HELA method 
is stopped, we choose the best strings in the population at the 
final generation and test them on the cart-inverted-pendulum 
plant. Fig. 6 shows the results of the probability vectors in 
CGA. In this figure, the final average optima number of rules 
is 4.  

The simulation was carried out for thirty runs. The 
successful results, which consist of the pole angle, cart 
position and controller output, are shown in Fig. 5 (d)-(f). 
Each line in Fig. 5 (d)-(f) represents each run with a different 
initial state. The results shown in this figure are the first 1000 
time steps in the 100,000 control time steps. As shown in Fig. 
5 (d)-(f), the R-HELA successfully controlled the cart-
inverted-pendulum plant in thirty runs.  

 
  (a)                                              (b) 

 
(c)                                              (d) 

 
(e)                                           (f) 

Fig. 5. The performance of time steps of (a) the R-HELA, (b) 
the R-SE, and (c) the R-GA and control results of the cart-
inverted-pendulum plant using the R-HELA of (d) angle of 
the pole, (e) position of the cart, and (f) control force. 

 
Fig. 6. The probability vectors of ERS step in R-HELA.
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We also compare the performance of our system with 
the reinforcement symbiotic evolution (R-SE) (Juang et al. 
2000) and the reinforcement genetic algorithm (R-GA) (Karr 
1991) was applied to the same problem. In the R-GA and the 
R-SE, the population size was set to 200 and the crossover 
and mutation probabilities were set to 0.5 and 0.3, 
respectively. The R-SE and R-GA methods learned to balance 
the pole at the 80th and 149th generations averagely are 
shown in Fig. (b) and (c).  

The GENITOR (Whitley et al. 1993), the SANE 
(Symbiotic Adaptive Neuro-Evolution) (Moriarty et al. 1996), 
the TDGAR (Lin et al. 2000), and the CQGAF (Juang 2005) 
have been applied to the same control problem and the 
simulation results are listed in Table 2. Table 2 shows the 
number of pole-balance trials (which reflects the number of 
training episodes required) and CPU time. In this experiment, 
we used a Pentium 4 chip with a 1.5GHz CPU, a 512MB 
memory, and the visual C++ 6.0 simulation software. As 
shown in Table 2, the proposed R-HELA is feasible and 
effective and obtains smaller CPU times than those of other 
existing models. 

 
Table 2. Performance comparison of various existing 
models. 
Method Mean Mean 

(time) 
Best

 
Best 

(time) 
Worst Worst

(time)
Whitley 

et al. 
1993 

3814 104.65 519 51.68 9172 218.51

Moriarty 
et al. 
1996 

2148 76.25 89 38.56 5482 178.34

Karr 
1991 

514 72.34 78 33.56 938 130.75

 Juang  
et al. 
2000 

346 68.37 56 28.72 679 121.39

 Lin et al. 
2000 

287 61.34 49 21.78 512 116.91

 Juang 
2005 

213 52.92 47 18.67 489 107.64

R-HELA 198 28.47 12 6.31 314 81.83

6. CONCLUSIONS 

In this paper, a TSK-type neuro-fuzzy controller (TNFC) 
with the reinforcement hybrid evolutionary learning algorithm 
(R-HELA) is proposed for dynamic control problems. The 
proposed R-HELA has structure-and-parameter learning 
ability. That is, it can determine the average optima number of 
fuzzy rules and tune the free parameters in the TNFC. The 
proposed learning method also processes variable lengths of 
the chromosomes in a population. The computer simulation 
has shown that the proposed R-HELA has a better 
performance than the other methods. 
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