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Abstract: In this study, in order to improve the efficiency and the safety of the LNG storage facilities, the 
rigorous hybrid dynamical model is proposed. This model is composed of continuous state dynamics 
which estimate the boil-off rate (BOR) based on understanding of the energy and mass transfer between 
the stratified cells of LNG storage tanks and discrete state dynamics which describe the operational 
procedure of the boil-off gas (BOG) compressors. By using this model, an optimal operational procedure 
can be obtained as a dynamic optimization problem with considering the discrete nature of compressors. 

 

1. INTRODUCTION 

1.1 Overview 

During normal operation, boil-off gas (BOG) is produced in 
the tanks and liquid-filled lines by heat transfer from the 
surroundings. Proper handling of BOG during normal 
operations as well as ship unloading significantly affects the 
efficiency of the operation and the safety of the whole 
gasification plant. 

Too much BOG inside a storage tank brings about safety 
issues, and too little BOG caused by overrunning of the BOG 
compressors may mean unnecessary waste of energy. Hence, 
optimal operations of BOG compressors need to consider 
multiple aspects of plant safety and reduced power 
consumption, simultaneously satisfying all process 
requirements and constraints. However, due to the not-well 
known characteristics of the involved dynamics, it is 
suspected that the BOG compressors are being operated in 
too much capacity, especially before the ship unloading, and 
thus unnecessarily consuming too much energy. 

1.2 Conventional Method 

Conventional methods are summarized in Table 1, where 
method 1 for a load of 1.1, for example, is to run one 
compressor at 100% load level continuously and another 
compressor at 50% for 20% and at 0% for 80% of the 
operation period, after which the same operation is repeated. 
Note that a backup compressor is operated idle in any case in 
order to cover potential failure of a compressor. Failure in the 
BOG compressor may lead to opening of pressure relief 
valves, and various studies through dynamic simulations have 
been reported. 

Table 1. Conventional operational methods of BOG 
compression 

Load Method No. of compressors 

operational on each mode 
100% 75% 50% 0%

1.1~1.5 1 1 - 1 1 
2 - 2 - 1 
3 - - 3 1 

1.6~2.0 1 2 - - 1 
2 1 - 2 1 
3 - 2 1 1 
4 - - 4 1 

· · · 
3.6~4.0 1 4 - - 1 

2 3 - 2 1 
3 2 2 1 1 
4 1 4 - 1 

 

2. MODELLING OF LNG STORAGE TANKS 

For the LNG storage tanks, the experimental approach is very 
difficult. Because liquefied natural gas is mixture which are 
composed of nitrogen, methane, ethane, propane and higher 
molecular weight hydrocarbons and there is complex 
relationship equation of multicomponent diffusion. 
Practically, the relationship equation often don’t match with 
the operating commercial tanks, even through the equation is 
obtained by the pilot-scaled experiment.  

In order to appropriately predict vapor evolution rates as well 
as compositional change of the LNG (i.e., ageing properties), 
we suppose that a state of thermodynamic equilibrium is 
imposed on an arbitrarily interfacial film where a convective 
circulation flow enters and evaporation takes place.  The 
physical picture is shown schematically in Figure 1. 
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parallel, which minimizes the total average power 
consumption. The objective function has two terms. 
The first one represents the total power consumption, 
and the second one is a summation of outlet BOG flow. 
 

min න  Wi,t

୬

୧ୀଵ

  ,,௧ܨ

୬

୧ୀଵ

୲

୲ୀଵ
  ሺ20ሻ 

 Fୡ୭୫୮,୧,୲

୬

୧ୀଵ

െ F୴,୭୳୲ ൌ 0   ሺ21ሻ 

 
The power consumption and outlet flow rate by 
compressor are function of operating mode of 
compressor. According to operating mode, they have 
discrete values as shown equations 22, 23. And, the 
constraints about operating mode are given in equations 
24, 25. 
 
Fୡ୭୫୮,୧,୲ ൌ f൫mode୧,୲ିଵ, mode୧,୲൯   ሺ22ሻ 
W୧,୲ ൌ f൫mode୧,୲ିଵ, mode୧,୲൯   ሺ23ሻ 
mode୧,୲ିଵ െ mode୧,୲  0   ሺ24ሻ 

 mode୧,୲ െ 1  0   ሺ25ሻ
୬

୧ୀଵ

 

 
 

3. SIMULATION RESULT 

The following figures are simulation results which is the one 
case of conventional tank operations. In figure 3(a), the 
folded straight line indicates the BOG outlet flow by the 
conventional operation of compressors. Another line 
indicates the BOG generation at the interfacial film. The 
pressure of LNG tank in figure 3(b) varies directly as the 
compressed BOG outlet and has a effect on the BOG 
generation. 

As the BOG generated, for the relative volatility, the 
composition of methane and ethane at the film increases and 
the heavy component like propane, butane, etc. relatively 
decreases. (Figure 3(c)). 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 
Fig 3. Simulation of the conventional tank operation 

 

And, the dynamic model is applied to the BOG compressor 
optimization problem which has the discrete state dynamics 
describing the operational procedure of the boil-off gas (BOG) 
compressors. The hybrid dynamical model for solving the 
optimization problem determines the mode transition 
sequence of compressors. This optimization problem is 
solved by iterative dynamic optimization method. The 
method solve the original optimization problem by iterating 
the MILP which determine the mode transition sequence of 
compressors and the relaxed dynamic optimization which 
calculate the optimal outlet BOG flow rate. 
The result of optimization is shown in the following figure 4. 
In figure 4(a), the folded straight line indicates the BOG 
outlet flow determined by the optimization. The figure 4(b) 
showed that safety constraints are satisfied.  
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Fig 4. Simulation of the conventional tank operation. 

 

4. CONCLUSION 

 

A rigorous dynamic model is proposed for estimation of the 
boil off rate in a LNG storage tank which can well express 
concrete calculation of heat ingress and behavior in tank 
affected from various. Model can obtain real-time calculation 
and control of BOG generation from manipulating pressure, 
temperature, initial conditions. It has been observed in this 
study that the BOR is greatly influenced by the difference 
between the tank pressure and the LNG vapor pressure. This 
model will help valve and compressor and tank designing to 
reduce BOG generation and the prediction of the pressure 
change in the tank using the dynamic model can be 
effectively applied to safety analysis.  

And, the dynamic model is applied to the BOG compressor 
optimization problem which has the discrete state dynamics 
describing the operational procedure of the boil-off gas (BOG) 
compressors. As the result of optimization, the optimal 
operation procedure is proposed for a safe and energy saving 
BOG compressor operation, which minimizes the power 
consumption while preparing against the potential failure of 
one of the operating compressors. The result of a case study 
indicates that the energy consumption could be reduced by 10% 
compared with the conventional method by increasing the 
tank pressure while the safety is maintained. 
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