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(e-mail: egardt@chalmers.se)

Abstract: The extra degree of freedom offered in hybrid electric vehicles have inspired many
researchers to formulate and solve optimal control problems of various kinds. This paper presents
an Approximate Dynamic Programming scheme that efficiently solves the optimal power split
between the internal combustion engine and the electric machine in parallel hybrid powertrains.
Gear switches and switches between hybrid and pure electric mode are formally treated. The
scheme combines two ideas to reduce the computational time of the iterations performed in
the dynamic programming. First, the value function is approximated using piecewise linear
functions on a sparse grid. Secondly, by using model approximation the iterations performed in
the dynamic programming are reduced to solving scalar quadratic problems. In the simulations
the approximation scheme is able to find a good approximation of the optimal control trajectory.

Keywords: Dynamic Programming, Predictive Control, Hybrid Vehicles, Hybrid Powertrains,
Powertrain Control

1. INTRODUCTION

The extra degree of freedom offered in a hybrid electric
vehicle (HEV) — i.e. the power split between internal
combustion engine (ICE) and electric machine (EM) —
has inspired many researchers to formulate and solve opti-
mal control problems of various kinds, see Sciarretta and
Guzzella [2007] and references therein. The energy man-
agement strategy (EMS) strongly affects the performance
of the HEV, e.g. its fuel efficiency. It is not trivial, how-
ever, to device an EMS which is efficient across a variety
of operating conditions determined by traffic conditions,
topography and driver characteristics. With the availabil-
ity of traffic information from GPS, mobile phones and
digital maps (GIS), predictions of the vehicle propulsion
load can be made. This enables predictive control of the
hybrid powertrain. Previous work within this field includes
Sciarretta et al. [2004], Beck et al. [2006], and Deguchi
et al. [2003].

Previous work by the authors include Johannesson et al.
[2006], where optimal control of the power split of a mild
parallel hybrid was investigated for known routes with a
stochastic model of the speed profile along the route. One
of the conclusions of this study was that if the route is
known to the EMS, the optimal planning will be done on
a long horizon with the topography playing a crucial role.
The results indicated that with a navigation system that
works in conjunction with a traffic information system, it
should be possible to design a controller that achieves close
to the minimal attainable fuel consumption.

Dynamic programming (DP), which was the tool used
in the work mentioned, is a versatile tool, allowing to
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take into consideration e.g. non-linear models and state
and control constraints; it can also be applied to both
deterministic and stochastic models of the driving mission.
However, a fundamental drawback of dynamic program-
ming is the rapidly growing computational demands as
the problem size increases.

In order to fight this curse of dimensionality, the results
in Johannesson et al. [2006] formed the inspiration for a
novel algorithm for predictive control on known routes; the
basic idea, pursued in Johannesson and Egardt [2007], is
to move as much as possible of the computations outside
the real-time control loop. The algorithm was motivated
by studying the value function for a large number of speed
trajectories along a specific route. For a given position and
SoC, it turned out that the slope of the value function
varies only slightly between the studied speed trajectories.
Hence, a valid approximation for the value function can be
obtained by applying DP to a previously measured drive
cycle, or even to a simulated/predicted one, in an off-
line computation. When actually driving along the route,
the previously stored value function approximation (as a
function of position along the route) is used as terminal
cost in a simple receding horizon controller. The proposed
algorithm resulted in fuel consumption almost identical to
the minimal attainable consumption on the studied route.

The objective of the present contribution is to develop this
idea one step further. The motivation is that even though
we have used the term off-line above, in practice we would
like to recalculate the DP part periodically (although at a
fairly low rate) in order to adjust to model uncertainties,
disturbances and changes in traffic. Hence, it is of interest
to minimize computations in the off-line step. This is
particularly so when we would like to extend the number
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Fig. 1. Layout of the system architecture. The acronym
PE is short for Power Electronics.

Table 1. Vehicle Specifications

Vehicle parameters

Parameter Value

Total vehicle Mass 1600kg

ICE type and max power Atkinson, 43 kW

ICE efficiency Prius 1 data

Maximal EM power 30 kW

Maximum EM torque 300 Nm

Battery type and max power NiMH Battery, 32 kW

Battery capacity 7.5 Ah

Nominal voltage 270 V

Power electronics efficiency 0.95

Gearbox 5 stepped automatic

of states in order to handle gear switching dynamics and
switching between hybrid and pure electric propulsion
(combustion engine stop/start) – which is indeed the case
here.

In order to arrive at the sought computational simplifica-
tions, two ideas will be pursued:

• Approximation of the value function using piecewise
linear functions on a (possibly sparse) grid.

• Model approximation leading to simplification of the
iterations performed in the dynamic programming.

The first idea is very much in line with the rationale
behind the algorithm described above. The second idea
has previously been used in several works including Beck
et al. [2006]. Both approximations will be dealt with in
detail later.

The paper is organized as follows. The vehicle and pow-
ertrain models used are described in the following section.
The subsequent two sections describe the main contribu-
tion of the paper. The paper is ended with simulation
results and conclusions.

2. VEHICLE MODEL

The system architecture for the studied parallel hybrid is
shown in Fig. 1. The vehicle specifications are given in
Table 1. The HEV is powered by an Internal Combus-
tion Engine (ICE) with a modern Nickel Metal Hydride
(NiMH) battery as a buffer. The mechanical power pro-
duced by the ICE is transferred to the driving wheels via
a 5 stepped gearbox and a differential gear. The Electric
Machine (EM) is located between the ICE flywheel and
the gearbox and can add or absorb torque on the shaft. In
order to enable efficient pure electric propulsion, the ICE
can be disconnected from the rest of the powertrain by
opening a clutch.

2.1 Quasi Static Vehicle Model

The objective of the chassis and powertrain model is to
model the efficiency of the power flows in a parallel HEV.
The model is a backwards (inverse) simulation model.

Chassis model The force needed to give the vehicle with
mass m, the acceleration a, at a certain velocity v, and
road grade θ, is modeled by the sum of the inertia force, the
air drag force, the projected normal force and the rolling
resistance force:

F = ma+0.5ρv2CdAfront +mg sin(θ)+frmg cos(θ), (1)

where ρ is the density of air, Cd the vehicle’s air drag coef-
ficient, Afront the vehicle’s front area, g the gravitational
acceleration and fr the roll resistance coefficient.

Powertrain model The propulsion force results in a
torque demand Tdem, defined here at the final drive. Note
that Tdem is defined as negative when power can be
regenerated. The shaft speed at the final drive is denoted
ωdem. The speed of the electric machine, ωEM , is related
to ωdem through the gear ratio, rg, as

ωEM = rgωdem, (2)

where index g, denotes the gear number. The torque
demand must be fulfilled by a sum of torque from the
internal combustion engine, TICE, and torque from the
electric machine, TEM :

TICE − TEM =
ηgTdem

rg

, Tdem ≤ 0 (3)

TICE − TEM =
Tdem

ηgrg

, Tdem > 0, (4)

where ηg, denotes the mechanical efficiency at the selected
gear. Note that TEM , is defined as positive when charging
the buffer. The ICE torque, TICE and the gear, g, are
determined by the EMS. There are no a priori restrictions
on gear changes and the inertia of the engine is not
modeled.

Finally, the logical signal ICEon, also decided by the EMS,
determines if the ICE clutch is closed or opened (the latter
being an option during pure electric propulsion or during
braking):

ωICE = ωEM , ICEon = 1, (5)

ωICE = 0, ICEon = 0. (6)

The starting of the ICE is simplified in the way that we
do not distinguish between if the ICE is started from a
starter or if the clutch is closed.

The fuel mass rate, c(ωICE, TICE), is given by linear
interpolation in a quasi static, fuel mass rate map, see
Fig. 2. When the clutch is open TICE = 0 and c = 0.

The electric machine losses are given by linear interpo-
lation in a loss map and the electric converter efficiency
is modeled as constant. The battery is modeled by a
resistive circuit, shown in Fig. 3. The open circuit voltage
Voc(SoC) and the charge/discharge resistances Rc(SoC)
and Rd(SoC) depend on the State-of-Charge (SoC).

The time derivative of the SoC is determined by:

dSoC

dt
=

i

Qmax

, (7)
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Fig. 2. The fuel mass rate map plotted at six different ICE
speeds.
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Fig. 3. Equivalent battery circuit.

−300 −200 −100 0 100 200 300

−0.006

−0.003

0 

0.003

d
S

o
C

/d
t

T
EM

 [Nm]

600 RPM

1400 RPM

2200 RPM

3800 RPM

Fig. 4. Relationship between TEM and dSoC/dt at SoC =
0.5.

where Qmax is the total capacity. In Fig. 4 the relationship
between TEM and dSoC/dt is shown with four EM speeds
for SoC = 0.5.

A number of restrictions must be considered when sim-
ulating and optimizing the powertrain energy flow. The
battery current and the SoC are limited according to

i ∈ [iEB,min, iEB,max], (8)

SoC ∈ [0, 1]. (9)

It should be noted that to avoid excessive wear of the
battery, the SoC interval used in the optimization is only
15% of the total battery capacity and placed symmetric
around 50% of the total buffer capacity. The ICE and EM
torques, TICE and TEM , are limited by rotational speed
dependent constraints

TICE(ωICE) ≤ TICE,max(ωICE), (10)

TEM (ωICE) ∈ [TEM,min(ωEM ), TEM,max(ωEM )]. (11)

3. DYNAMIC PROGRAMMING

From a given velocity trajectory and topographic profile,
the torque demand trajectory can be calculated using the
chassis model. The trajectories are discretized with an
appropriate sampling time (1 second is used here). The
shaft speed, ωdem,k, and the torque demand, Tdem,k, are
then given for all time steps, k, in the interval 1 ≤ k ≤ N .
With the shaft speed and torque demand trajectories de-
termined, the dynamic states in the vehicle model are the
continuous state, SoC, and the two discrete states, ICEon

and the gear number, g. The control signal is the triple,
uk = (TICE,k, gk+1, ICEon,k+1). With a slight abuse of
notation, the next discrete state is directly determined by
the control signal.

Based on a quantization of the continuous state SoC, a
Dynamic Programming problem is formulated. In the well
known Dynamic Programming algorithm the optimal con-
trol signal is found by backwards iterations of a collection
of value functions from the final time sample N to the first:

J i
k(SoCk) = min

TICE ,j
{ci,k(TICE) + dij

+ Jj
k+1

(SoCk+1)}. (12)

For the present formulation, we have a collection of value
functions J i

k(SoCk), i = 1, . . . , n, where n is the number
of admissible discrete states (gears, engine on/off) at the
sample k. Analogously, the value functions at the next
sample, k + 1, are denoted Jj

k+1
(SoCk+1), j = 1, . . . , m,

where m is the number of admissible discrete states
(gears, engine stop/start). The current value functions,
J i

k(SoCk), are calculated over a grid in SoC. In (12), linear

interpolation is used to calculate Jj
k+1

(SoCk+1).

Gear switches and transitions from engine off to on, are
penalized by the instantaneous cost term dij . The cost,
dij , is a fuel equivalent for changing gear and turning the
ICE on. The fuel equivalent used here is a simplification;
generally the cost would be dependent on the vehicle
speed and torque demand. It would then include the fuel
consumption and the fuel equivalent for the change of SoC
that will result when changing the engine speed during an
ICE start or gear change. Moreover, it would also include
the fuel equivalent for the energy loss that occurs when
changing the gear during brake regeneration and possibly
also a comfort penalty for too many shifts.

The other instantaneous cost term, ci,k(TICE), or perhaps
clearer c(ωICE , TICE), is the fuel consumption. The value
function J i

k(SoCk) is the sum of instantaneous costs that
remain before reaching the final time sample from the
current SoC. The next state of charge SoCk+1 is a function
of ωdem,k, Tdem,k, SoCk and uk.

The control signal u must not violate the constraints (3)-
(6) and (8)-(11).

The value functions J i
N , at the final sample are initiated

with a penalty function. The detail of the grid in SoC,
which J i

k are calculated over determines the accuracy of
the solution.
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Fig. 5. The drive cycle and the topographic profile that is
used in the simulations

3.1 Simulation

After that the DP-iterations (12) have terminated, the
optimal control and state trajectory are simulated from
the initial state, using the value functions J i

k. The optimal
control signal trajectory is thus given by

u∗

k = arg min
TICE ,j

{c(ωICE,k, TICE) + dij

+ Jj
k+1

(SoCk+1)}, (13)

where linear interpolation is used to calculate
Jj

k+1
(SoCk+1).

4. APPROXIMATE DYNAMIC PROGRAMMING

As mentioned already in the Introduction, the main con-
tribution here is to improve the computational efficiency
of the DP outlined in the previous section. We will deal
with the two main ideas mentioned in the Introduction
separately below. The drive cycle and the topographic
profile that will be used in the simulations are shown in
Fig. 5

4.1 Local linear approximation of the value function

We will now study the numerical sensitivity of the DP-
solution with respect to the detail of the grid in SoC.
The study will be done by comparing two simulations, one
based on a sparse grid and the other on a detailed grid.

Due to lack of measurement data from a real powertrain,
the transition penalties dij , are here simply manually
tuned to produce realistic simulation results, realistic in
the sense that there are not too many gear changes and
ICE turn-on’s. The cost for turning on the ICE is tuned
with the guideline that the ICE should not be turned on
for shorter periods than 10 seconds. A simplified torque
reserve constraint is imposed on the ICE, requiring the
ICE to be turned on when the velocity exceeds 40 km/h.

Simulated SoC-trajectories are shown in Fig. 6 for two
SoC-grids, one with 40 grid points and the other with 2000
grid points. The two grids result in almost identical fuel
consumption, 4.12 l/100km.

In the dynamic programming iteration (12), it is obvious
that, for a specific dynamic state, the local properties
of the value function will determine the optimal control
signal. An example of a value function is shown in Fig. 7.
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Fig. 6. Simulated SoC-trajectories based on DP-
calculation with 2000 respectively 40 equally spaced
grid points
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Fig. 7. The value function at 800 s, corresponding to gear
5 and ICE on.

The shown value function is locally well approximated by
a linear function of SoC. This is true for all examined
value functions, except when getting close to the hard
constraints on SoC. What determines the required degree
of accuracy of the approximation is the effect on the
computed control signal, obtained by linear interpolation.
When using equally spaced grid with 40 or less grid points,
due to the constraints (8), (11) the linear interpolation
in (12) is actually almost always an interpolation on a
function with only two linear pieces, one for charging
and one for discharging. Applying this piecewise linear
approximation to the jth value function in a neighborhood
of SoC = SoC0 gives

Jj
k+1

(SoC0 + ∆SoC) ≈ Jj
k+1

(SoC0) + λs(j, SoC0)∆SoC.
(14)

The index s is used to denote that the slope λ is dependent
on the sign of ∆SoC. The similarity between (14) and
the ECMS, see Sciarretta and Guzzella [2007], is due to
the relation between the partial derivative of the value
function in dynamic programming and the costate from
Pontryagin Maximum Principle see Naidu [2003].

4.2 Quadratic programming in the DP iteration

So far, the powertrain model has been treated as a gen-
eral, nonlinear, quasi-static model underlying the optimal
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control problem. We will now exploit the particular form
of the nonlinearities, and show how this can be used to our
advantage in the computations.

The first observation is that, for a given engine speed,
ωICE , (or, equivalently, a given vehicle speed and gear)
the fuel consumption is close to linear in the engine torque,
i.e., with a slight abuse of notation,

c(ωICE, TICE) ≈ c0(ωICE) + c1(ωICE)TICE (15)

The second observation is that the electric losses are well
described by a piecewise quadratic function of the electric
machine torque TEM , so that the change of SoC over a
sampling interval ∆t can be written as

SoCk+1 ≈ SoCk + ∆t · [bs0(ωEM , SoC)

+ bs1(ωEM , SoC)TEM + bs2(ωEM , SoC)T 2
EM ]. (16)

The index s is used to denote that the parameters are
dependent on the sign of ∆SoC.

The DP iteration of the ith value function, at time index
k, according to (12) can be rewritten in two steps by
using the approximations (14), (15) and (16). The first
step calculates for each fixed transition i → j (and with
ωICE , ωEM determined by j)

J ij
k (SoCk) = min

TICE

{c0(ωICE) + c1(ωICE)TICE

+ Jj
k+1

(SoCk) + λs(j, SoCk)∆t[bs0(ωEM , SoCk)

+ bs1(ωEM , SoCk)TEM + bs2(ωEM , SoCk)T 2
EM ]}. (17)

From (3),(4) we can conclude that the r.h.s. of (17) is
piecewise quadratic in TICE and thus the minimization can
be carried out explicitly by solving two scalar quadratic
problems. For the discrete state corresponding to ICEon =
0, i.e. the engine is switched off, there is no optimization
involved, since TEM is then directly given by the torque
demand.

It remains to take care of the discrete decision variable
in the DP iteration. Once the optimization (17) has been
carried out for every admissible j, the choice of discrete
control is simply determined by

J i
k(SoCk) = min

j
{J ij

k (SoCk) + dij}. (18)

5. RESULTS

The suggested Approximate Dynamic Programming (ADP)
scheme will now be evaluated by comparing with the DP-
solution based on 2000 equally spaced grid points. Note
that ADP scheme is here only used to calculate the value
functions. In the simulations and when calculating the
optimal control signal (13), it is the nonlinear, quasi-static
model that is used for both the ADP-solution and the
nonlinear DP-solution.

The value functions from the ADP scheme are calculated
using 20 equally spaced grid points. The simulated SoC-
trajectories are shown in Fig. 8. The corresponding control
trajectories are shown in Fig. 9 and Fig. 10. From the
figures we see that ADP-scheme is able to produce a close
approximation to the optimal state and control trajectory.
At most time samples the gear choice and the logical signal
ICEon are identical to the DP-solution. In Fig. 10 the ICE
torque is shown for the part of the drive cycle with the
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Fig. 8. Simulated SoC-trajectories based on a DP-
calculation with 2000 and an ADP calculation with
20 equally spaced grid points.
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Fig. 9. Simulated gear and ICE-state trajectories based on
a DP-calculation with 2000 and an ADP calculation
with 20 equally spaced grid points. The black dashed
curves correspond to the accurate DP-solution.

largest differences between the ADP and the DP-solution.
Nevertheless, the trajectories are very similar. By studying
the derivative of the value functions with respect to SoC
along the drive cycle an estimate of the fuel equivalent of
the difference in SoC is provided. Using this estimate, the
difference in fuel consumption between the DP and the
ADP-solution is assessed to 0.8%.

6. CONCLUSIONS

The presented ADP scheme gives the possibility to ef-
ficiently calculate the value functions. By introducing
heuristics many of the discrete transitions could be ruled
out immediately. It is plausible that further improvements
can be made by optimizing the spacing of the grid or by
using some smarter functional approximation of the value
functions.
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