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Abstract: In this paper, we examine a design method of modified PID (Proportional-Integral-
Derivative) controllers for multiple-input/multiple-output plants. PID controller structure is the
most widely used one in industrial applications. Recently the parametrization of all stabilizing
PID controller has been considered. Yamada and Hagiwara proposed a design method of
modified PID controllers such that modified PID controllers make the closed-loop system for
single-input/single-output unstable plants stable and the admissible sets of P-parameter, I-
parameter and D-parameter are independent from each other. However, no method has been
published to guarantee the stability of PID control system for multiple-input/multiple-output
plants and the admissible sets of P-parameter, I-parameter and D-parameter to guarantee the
stability of PID control system are independent from each other. In this paper, we propose
a design method of modified PID controllers such that the modified PID controller make the
closed-loop system for multiple-input/multiple-output plants stable and the admissible sets of
P-parameter, I-parameter and D-parameter are independent from each other. Copyright c©2008
IFAC
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1. INTRODUCTION

PID (Proportional-Integral-Derivative) controller is most
widely used controller structure in industrial applications
(Datta et al., 2000; Suda, 1992; Astrom and Hagglund,
1995). Its structural simplicity and sufficient ability of
solving many practical control problems have contributed
to this wide acceptance.

Several papers on tuning methods for PID parameters have
been considered (Ziegler and Nichols, 1942; Hazebroek and
van der Warden, 1950a; Hazebroek and van der Warden,
1950b; Wolf, 1951; Chien et al., 1952; Cohen and Coon,
1953; Lopez et al., 1967; Miller et al., 1967; Kitamori, 1979;
Kitamori, 1980; Cominos and Munro, 2002). However
the method in (Ziegler and Nichols, 1942; Hazebroek
and van der Warden, 1950a; Hazebroek and van der
Warden, 1950b; Wolf, 1951; Chien et al., 1952; Cohen
and Coon, 1953; Lopez et al., 1967; Miller et al., 1967;
Kitamori, 1979; Kitamori, 1980; Cominos and Munro,
2002) do not guarantee the stability of closed-loop system.
The reference in (Zheng et al., 2002; Lin et al., 2004; Viorel
et al., 2005; Tamura and Shimizu, 2006) propose design
methods of PID controllers to guarantee the stability
of closed-loop system. However, using the method in
(Zheng et al., 2002; Lin et al., 2004; Viorel et al., 2005;
Tamura and Shimizu, 2006), it is difficult to tune PID
parameters to meet control specifications. If admissible
sets of PID parameters to guarantee the stability of closed-
loop system are obtained, we can easily design stabilizing
PID controllers to meet control specifications.

The problem to obtain admissible sets of PID parame-
ters to guarantee the stability of closed-loop system is
known as a parametrization problem (Yang, 1994; Ho et
al., 1997; Datta et al., 2000). If there exists a stabiliz-
ing PID controller, the parametrization of all stabiliz-
ing PID controller is considered in (Yang, 1994; Ho et
al., 1997; Datta et al., 2000). However the method in
(Yang, 1994; Ho et al., 1997; Datta et al., 2000) remains a
difficulty. The admissible sets of P-parameter, I-parameter
and D-parameter in (Yang, 1994; Ho et al., 1997; Datta et
al., 2000) are related each other. That is, if P-parameter
is changed, then the admissible sets of I-parameter and
D-parameter change. From practical point of view, it
is desirable that the admissible sets of P-parameter, I-
parameter and D-parameter are independent from each
other. Yamada and Moki initially tackle this problem and
propose a design method for modified PI controllers for
any minimum phase systems such that the admissible sets
of P-parameter and I-parameter are independent from
each other (Yamada and Moki, 2003). Yamada expand
the result in (Yamada and Moki, 2003) and propose a
design method for modified PID controllers for minimum
phase plant such that the admissible sets of P-parameter,
I-parameter and D-parameter are independent from each
other (Yamada, 2005). Yamada and Hagiwara gave a
design method for modified PID controllers for unsta-
ble plants (Yamada and Hagiwara, 2006). However the
method in (Yamada and Moki, 2003; Yamada, 2005; Ya-
mada and Hagiwara, 2006) cannot apply for multiple-
input/multiple-output plants.

In this paper, we expand the result in (Yamada and
Moki, 2003; Yamada, 2005; Yamada and Hagiwara, 2006)
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and propose a design method of modified PID controllers
such that the modified PID controller makes the closed-
loop system stable for any multiple-input/multiple-output
plants and the admissible sets of P-parameter, I-parameter
and D-parameter to guarantee the stability of closed-loop
system are independent from each other.

2. PROBLEM FORMULATION

Consider the closed-loop system written by

{

y = G(s)u
u = C(s)(r − y)

, (1)

where G(s) ∈ Rp×p(s) is the multiple-input/multiple-
output strictly proper plant. G(s) is assumed to have no
zero on the origin and to be coprime. C(s) ∈ Rp×p(s) is
the controller, u ∈ Rp is the control input, y ∈ Rp is the
output and r ∈ Rp is the reference input.

When the controller C(s) has the form written by

C(s) = AP + AI

1

s
+ ADs, (2)

then the controller C(s) is called the PID controller (Yang,
1994; Ho et al., 1997; Datta et al., 2000; Suda, 1992),
where AP ∈ Rp×p is the P-parameter, AI ∈ Rp×p is
the I-parameter and AD ∈ Rp×p is the D-parameter. AP ,
AI and AD are settled so that the closed-loop system
in (1) has desirable control characteristics such as steady
state characteristic and transient characteristic. For easy
explanation, we call C(s) in (2) the conventional PID
controller. The transfer function from r to y in (1) is
written by

y =

{

I + G(s)

(

AP + AI

1

s
+ ADs

)}

−1

G(s)

(

AP + AI

1

s
+ ADs

)

r. (3)

It is obvious that when AP , AI and AD are settled at
random, the stability of the closed-loop system in (1) does
not guaranteed. In addition, there exists G(s) that cannot
be stabilized using the conventional PID controllers. In
addition, even if there exists stabilizing conventional PID
controller, the admissible sets of AP , AI and AD are
related each other. From practical point of view, it is
desirable that the admissible sets of AP , AI and AD are
independent from each other.

The purpose of this paper is to overcome these problems
and to propose a design method of modified PID con-
trollers C(s) to make the closed-loop system in (1) stable
for any multiple-input/multiple-output plant G(s) such
that the admissible sets of P-parameter AP , I-parameter
AI and D-parameter AD to guarantee the stability of
closed-loop system are independent from each other.

3. THE BASIC IDEA

In this section, we describe the basic idea to design for
modified PID controllers C(s) to make the closed-loop sys-
tem in (1) stable for any multiple-input/multiple-output
plant G(s) such that the admissible sets of P-parameter

AP , I-parameter AI and D-parameter AD to guarantee
the stability of closed-loop system are independent from
each other.

In order to design of modified PID controllers C(s)
that can be applied to any multiple-input/multiple-output
plants, we adopt the parametrization of all stabilizing
controllers for multiple-input/multiple-output plants. Ac-
cording to (Vidyasagar, 1985; Morari and Zafiriou, 1989),
the parametrization of all proper internally stabilizing
controllers C(s) for multiple-input/multiple-output plants
G(s) is written by

C(s)

= (Y (s) − Q(s)Ñ(s))−1(X(s) + Q(s)D̃(s))

= (X̃(s) + Q(s)D(s))(Ỹ (s) − Q(s)N(s))−1, (4)

where Ñ(s) ∈ RHp×p
∞

, D̃(s) ∈ RHp×p
∞

, N(s) ∈ RHp×p
∞

and D(s) ∈ RHp×p
∞

are coprime factors of G(s) satisfying

G(s) = D̃−1(s)Ñ (s) = N(s)D−1(s) (5)

X(s) ∈ RHp×p
∞

, Y (s) ∈ RHp×p
∞

, X̃(s) ∈ RHp×p
∞

and

Ỹ (s) ∈ RHp×p
∞

are functions satisfying

[

Y (s) X(s)

−Ñ(s) D̃(s)

] [

D(s) −X̃(s)

N(s) Ỹ (s)

]

=

[

I 0
0 I

]

=

[

D(s) −X̃(s)
N(s) Ỹ (s)

] [

Y (s) X(s)

−Ñ(s) D̃(s)

]

(6)

and Q(s) ∈ RHp×p
∞

is any function.

On the parametrization of all stabilizing controllers C(s)
in (4) for G(s), the controller C(s) in (4) includes free-
parameter Q(s). Using free-parameter Q(s) in (4), we
propose a design method of modified PID controllers C(s)
to make the closed-loop system in (1) stable and to be able
to apply to any unstable plant G(s). In order to design
the modified PID controllers C(s), the free parameter
Q(s) in (4) is settled for C(s) in (4) to have the same
characteristics to conventional PID controller C(s) in (2).
Therefore, next, we describe the role of conventional PID
controller C(s) in (2) in order to clarify the condition that
the modified PID controller C(s) must be satisfied. From
(2), using C(s), the P-parameter AP , the I-parameter AI

and the D-parameter AD are decided by

AP = lim
s→∞

{

−s2
d

ds

(

1

s
C(s)

)}

, (7)

AI = lim
s→0

{sC(s)} (8)

and

AD = lim
s→∞

d

ds
{C(s)} , (9)

respectively. Therefore, if the controller C(s) in (4) holds
(7), (8) and (9), the role of controller C(s) in (4) is
equivalent to the conventional PID controller C(s) in (2).
That is, we can design stabilizing modified PID controllers
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such that the role of controller C(s) in (4) is equivalent to
the conventional PID controller C(s) in (2).

Next, we describe a design method for the free parameter
Q(s) in (4) to make the controller C(s) in (4) works as a
modified PID controller. In the following, we call C(s)

(1) the modified P controller if C(s) in (4) satisfies (7),
(2) the modified I controller if C(s) in (4) satisfies (8),
(3) the modified D controller if C(s) in (4) satisfies (9),
(4) the modified PI controller if C(s) in (4) satisfies (7)

and (8),
(5) the modified PD controller if C(s) in (4) satisfies (7)

and (9)
(6) and the modified PID controller if C(s) in (4) satisfies

(7), (8) and (9).

4. MODIFIED PID CONTROLLER

In this section, we describe a design method of the free
parameter Q(s) in (4) to makes the controller C(s) in (4)
works as a modified PID controller.

4.1 Modified P controller

In this subsection, we mention a design method of modified
P controller C(s) that holds (7), makes the closed-loop
system in (1) stable and is able to apply to any stable
plant G(s).

The modified P controller C(s) satisfying (7) is written by
(4), where

Q(s) = Q0(= const) (10)

and

Q0

= lim
s→∞

{

(Y (s)AP − X(s))(Ñ(s)AP + D̃(s))−1

}

(11)

Since Q(s) in (10) is included in RH∞, the controller
C(s) in (4) with (10) makes the closed-loop system in (1)
stable for any multiple-input/multiple-output plant G(s)
independent from AP .

4.2 Modified I controller

In this subsection, we mention a design method of modified
I controller C(s) that holds (8), makes the closed-loop
system in (1) stable and is able to apply to any stable
plant G(s).

The modified I controller C(s) satisfying (8) is written by
(4), where

Q(s) = (Q0 + Q1s)
1

τ0 + τ1s
, (12)

Q0 = Y (0)Ñ−1(0)τ0, (13)

Q1

= Q0

τ1

τ0

+ τ0

[(

d

ds
{Y (s)}

∣

∣

∣

∣

s=0

− Q(0)
d

ds

{

Ñ(s)
}

∣

∣

∣

∣

s=0

)

AI − X(0) − Q(0)Ñ(0)
] (

Ñ(0)AI

)

−1

, (14)

τi ∈ R > 0 (i = 0, 1). From τi > 0 (i = 0, 1), Q(s) in
(10) is included in RH∞. This implies that the controller
C(s) in (4) with (12) makes the closed-loop system in (1)
stable for any multiple-input/multiple-output plant G(s)
independent from AI .

4.3 Modified D controller

In this subsection, we mention a design method of modified
D controller C(s) that holds (9), makes the closed-loop
system in (1) stable and is able to apply to any stable
plant G(s).

The modified D controller C(s) satisfying (9) is written by
(4), where

Q(s) = Q0s (15)

and

Q0

= lim
s→∞

{

Y (s)AD(D̃(s) + sÑ(s)AD)−1

}

. (16)

Since Q(s) in (15) is improper, Q(s) in (15) is not included
in RH∞. In order for Q(s) to be included in RH∞, (15) is
modified as

Q(s) = Q0

s

1 + τDs
, (17)

where τD ∈ R > 0. From τD > 0 in (17), Q(s) in
(17) is included in RH∞. This implies that the controller
C(s) in (4) with (17) makes the closed-loop system in (1)
stable for any multiple-input/multiple-output plant G(s)
independent from AD.

4.4 Modified PI controller

In this subsection, we mention a design method of modified
PI controller C(s) that holds (7) and (8), makes the closed-
loop system in (1) stable and is able to apply to any stable
plant G(s).

The modified PI controller C(s) satisfying (7) and (8) is
written by (4), where

Q(s) =
(

Q0 + Q1s + Q2s
2
) 1

τ0 + τ1s + τ2s
2
,

(18)

Q0 = Y (0)Ñ−1(0)τ0, (19)

Q1

= Q0

τ1

τ0

+ τ0

[(

d

ds
{Y (s)}

∣

∣

∣

∣

s=0

− Q(0)
d

ds

{

Ñ(s)
}

∣

∣

∣

∣

s=0

)

AI − X(0) − Q(0)Ñ(0)
] (

Ñ(0)AI

)

−1

, (20)

Q2

= lim
s→∞

{

(Y (s)AP − X(s))(Ñ(s)AP + D̃(s))−1

}

τ2

(21)
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and τi ∈ R > 0 (i = 0, 1, 2). From τi > 0 (i = 0, 1, 2), Q(s)
in (18) is included in RH∞. This implies that the controller
C(s) in (4) with (18) makes the closed-loop system in (1)
stable for any multiple-input/multiple-output plant G(s)
independent from AP and AI .

4.5 Modified PD controller

In this subsection, we mention a design method of modified
PD controller C(s) that holds (7) and (9), makes the
closed-loop system in (1) stable and is able to apply to
any stable plant G(s).

The modified PD controller C(s) satisfying (7) and (9) is
written by (4), where

Q(s) = Q0 + Q1s, (22)

Q0 = lim
s→∞

[[

(Y (s) − Q1sÑ(s))AP − X(s)

−s2
d

ds
{Y (s) − Q1sÑ(s)}

·(Y (s) − Q1sÑ(s))−1Q1D̃(s)

+s2Q1

d

ds

{

D̃(s)
}

]

D̃−1(s)

]

, (23)

Q1 = lim
s→∞

{

Y (s)AD(D̃(s) + sÑ(s)AD)−1

}

,

(24)

Since Q(s) in (22) is improper, Q(s) in (22) is not included
in RH∞. In order for Q(s) to be included in RH∞, (22) is
modified as

Q(s) = Q0 + Q1

s

1 + τDs
, (25)

where τD ∈ R > 0. From τD > 0 in (25), Q(s) in
(25) is included in RH∞. This implies that the controller
C(s) in (4) with (25) makes the closed-loop system in (1)
stable for any multiple-input/multiple-output plant G(s)
independent from AP and AD.

4.6 Modified PID controller

In this subsection, we mention a design method of modified
PID controller C(s) that holds (7), (8) and (9), makes the
closed-loop system in (1) stable and is able to apply to any
stable plant G(s).

The modified PID controller C(s) satisfying (7), (8) and
(9) is written by (4), where

Q(s)

=
(

Q0 + Q1s + Q2s
2
) 1

τ0 + τ1s + τ2s
2

+ Q3s,

(26)

Q0 = Y (0)Ñ−1(0)τ0, (27)

Q1

= Q0

τ1

τ0

− Q3τ0 + τ0

[(

d

ds
{Y (s)}

∣

∣

∣

∣

s=0

− Q(0)

d

ds

{

Ñ(s)
}

∣

∣

∣

∣

s=0

)

AI − X(0) − Q(0)Ñ(0)

]

(

Ñ(0)AI

)

−1

, (28)

Q2 = lim
s→∞

[[

(Y (s) − Q3sÑ(s))AP − X(s)

−s2
d

ds
{Y (s) − Q3sÑ(s)}

(Y (s) − Q3sÑ(s))−1Q3D̃(s)

+s2Q3

d

ds

{

D̃(s)
}

]

D̃−1(s)τ2

]

, (29)

Q3 = lim
s→∞

{

Y (s)AD(D̃(s) + sÑ(s)AD)−1

}

,

(30)

and τi ∈ R > 0 (i = 0, 1, 2). Since Q(s) in (26) is improper,
Q(s) in (26) is not included in RH∞. In order for Q(s) to
be included in RH∞, (26) is modified as

Q(s) =
(

Q0 + Q1s + Q2s
2
) 1

τ0 + τ1s + τ2s
2

+ Q3

s

1 + τDs
, (31)

where τD ∈ R > 0. From τD > 0 and τi > 0 (i = 0, 1, 2)
in (31), Q(s) in (31) is included in RH∞. This implies
that the controller C(s) in (4) with (31) makes the closed-
loop system in (1) stable for any multiple-input/multiple-
output plant G(s) independent from AP , AI and AD.

5. NUMERICAL EXAMPLE

In this section, a numerical example is illustrated to show
the effectiveness of the proposed method.

Consider the problem to design a modified PID controller
C(s) for an unstable non-minimum phase plant G(s)
written by

G(s) =







s − 1

s4 − 27s2 − 14s + 120

2

s4 − 27s2 − 14s + 120
−3

s4 − 27s2 − 14s + 120

s − 1

s4 − 27s2 − 14s + 120






.

(32)

Since poles of G(s) are in (2, 0), (−3, 0), (−4, 0), (5, 0) and
zeros of G(s) are in (1 + 2.45i), (1− 2.45i), G(s) in (32) is
an unstable and of non-minimum phase.

AP , AI and AD are settled by































AP =

[

10 0
0 10

]

AI =

[

100 0
0 100

]

AD =

[

0.01 0.01
0.01 0.01

]

. (33)

Using above-mentioned parameter, the modified PID con-
troller C(s) is designed by (4) with (31), where
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{

τ0 = 1260
τ1 = 71
τ2 = 1

(34)

and τD is selected by τD = 0.1.

The response of y written by

y =

[

y1

y2

]

(35)

for the reference input r

r =

[

r1

r2

]

=

[

1
5

]

(36)

is shown in Fig. 1. Here, the solid line shows the response
of y1 and the dotted line shows that of y2. Figure 1 shows

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

8

10

12

14

t[sec]

y
1
, 

y
2

y
1

y
2

Fig. 1. Step response y of the control system using modified
PID controller

that the modified PID controller C(s) makes the closed-
loop system stable.

On the other hand, using conventional PID controller with
(33), the step responses y1, y2 of the control system are
shown in Fig. 2. Here, the solid line shows the response of
y1 and the dotted line shows that of y2. Figure 2 shows
that the conventional PID control system is unstable.
The reason why the conventional PID control system is
unstable is the stability of the conventional PID control
system depends on AP , AI and AD. Therefore, when AP ,
AI and AD are settled by (33), the conventional PID
control system is unstable. Contrary to this, the stability of
modified PID control system is guaranteed independence
of AP , AI and AD.

6. CONCLUSIONS

In this paper, we proposed a design method of modified
PID controllers such that modified PID controllers make
the closed-loop system for any multiple-input/multiple-
output plants stable and the admissible sets of P-
parameter, I-parameter and D-parameter are independent
from each other. Numerical examples was shown to illus-
trate the effectiveness of the proposed method.

0 1 2 3 4 5 6 7 8 9 10
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

19

t[sec]

y
1
, 

y
2

y
1

y
2

Fig. 2. Step response y of the control system using con-
ventional PID controller
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