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Abstract: A canonical controller (cf. van der Schaft [2002]), which was proposed by van der
Schaft, is a controller yielding a given specification with a plant behavior. In this paper, for a
given data of a plant and a specification, we provide a synthesis of linear canonical controllers
without using mathematical models of a plant. A desired canonical controller can be obtained
by solving linear algebraic equations which consist of a data and a specification. We also see
that a canonical controller designed by proposed method also unfalsifies the actual data and
a specification, so our result is also regarded as one of synthesis of unfalsified controllers (cf.
Safonov and Tsao [1997]).
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1. INTRODUCTION

It is obvious that a synthesis of a controller which achieves
a given specification by using available information on
the dynamics of a plant is one of the central issues of
control system theory. In van der Schaft [2002] and Julius
et al. [2005], the achievability of a given specification
was discussed within a behavioral framework (cf. Willems
[1991], Willems [1997]) in which the central role of a
synthesis of a controller is played by the set of trajectories
along which the dynamics of a system evolves. Moreover,
a controller yielding a given specification has been also
provided as a canonical controller.

At the same time, since the trajectories along which the
dynamics of a system evolves include fruitful information
on the dynamics, it is also natural to treat such trajectories
as a system itself. From this stand point, there are some
researches on synthesis and analysis of control systems
based on the direct use of the data without mathematical
model, e.g., Markovsky et al. [2005], Markovsky and
Rapisarda [2007], Fujisaki et al. [2005], Safonov and Tsao
[1997], Yamamoto and Okano [2006] and so on. It might be
appropriate to referred to these approaches as data-driven
control synthesis.

From these backgrounds, this paper provide a synthesis of
a linear canonical controller for a given specification based
on the direct use of the data instead of using mathematical
models of a linear plant. A desired canonical controller can
be obtained as a Toeplitz-type linear operator by solving
linear algebraic equations which consist of a data and
a specification. Moreover, we also see that a canonical
controller designed by proposed method also unfalsifies
the actual data and a specification, so our result is also
regarded as one of synthesis of unfalsified controllers.

By the way, in the case in which the structure of a
controller is fixed, a control system synthesis based on
the direct use of the data corresponds to the tuning of
a parameterized controller. As representative methods, we
can list Iterative Feedback Tuning (which is abbreviated
as IFT, cf. Hjalmarsson et al. [1998]), Virtual Reference
Feedback Tuning (which is abbreviated as VRFT, cf.
Campi et al. [2002] and Sala [2007]) and Fictitious
Reference Iterative Tuning (which is abbreviated as FRIT,
cf. Souma et al. [2004] and Kaneko et al. [2005a]).
IFT need many experiments for achieving the desired
controller, which leads to one of the practical drawbacks.
The last two methods enable one to obtain the optimal
parameter of a controller by using one-shot experimental
data without mathematical models of a plant. In this
paper, we also show that our proposed method here
includes FRIT and VRFT as special cases. Thus, our
proposed method has practical advantage in the sense that
only one-shot experiment yields the desired controller.

The contributions of this paper are the following. From
the behavioral points of view, the result in this paper
corresponds to one of the nice applications of a canonical
controller and the unfalsified control. From the view points
of data-driven control system theory, the proposed method
is regarded as one of the new approaches to the control sys-
tem synthesis without mathematical models. Particularly,
our method enables one to obtain the desired controller
with one-shot experiment without mathematical models,
which implies that behavioral systems theory provides not
only profound insight from the theoretical points of view,
but also powerful concept from the practical points of view.

2. PRELIMINARIES

Let R and Z denote the set of real numbers and the
integers, respectively. Let R

n denote the set of real vectors
of size n and let R

n×m denote the set of real matrices
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of size n × m. Let R
p×q[ξ] denote the set of polynomial

matrices of size p × q with the indeterminate ξ.

Let (R)Z denote the set of the maps from the time axis
Z onto R, i.e., w ∈ (R)Z implies that w is a discrete
time series. For w ∈ (R)Z, the value of w at the time
t is denoted with wt. For w ∈ (R)Z and a, b ∈ Z such
that a ≤ b, w[a,b] denotes the finite time series of w in
the time interval [a, b]. We regard w[a,b] as an element of

R
[b−a+1] , i.e., w[a,b] = [wa, wa+1, · · · , wb]

T. Let σ denote
the shift operator defined by σwt := wt+1 for a time series
w ∈ (R)Z.

Consider a linear, time-invariant system with single-input
and single-output in discrete time described by a transfer
function G. Let u[0,N ] and y[0,N ] denote the input and
output data, respectively, obtained in the interval [0, N ].
Normally, the output yt of an operator G with respect to
the input u[0,t] is written by the form of yt =

∑t

k=0 gkut−k

by using the fact that G can be written by Markov
parameter expression G =

∑∞
k=0 gkσ−k. The output finite

time series y[0,N ] ∈ R
N+1 is the range of the following

Toeplitz matrix operator with respect to u[0,N ]:




y0

y1

...
yN


 =




g0 0 · · · 0
g1 g0 · · · 0
...

. . .
. . .

gN · · · g1 g0







u0

u1

...
uN


 . (1)

We denote the Toeplitz operator of a rational function
G =

∑∞
k=0 gkσ−k truncated at N as

T G
[0,N ]:=




g0 0 · · · 0
g1 g0 · · · 0
...

. . .
. . .

gN−1 · · · g1 g0


 ∈ R

(N+1)×(N+1).

Similarly, we denote the Toeplitz matrix consisting of
truncated time series w[0,N ] as

T w
[0,N ]:=




w0 0 · · · 0
w1 w0 · · · 0
...

. . .
. . .

wN−1 · · · w1 w0


 ∈ R

(N+1)×(N+1).

By using Toeplitz matrix descriptions, it is easy to see that
(Gu)[0,N ] = T G

[0,N ]u[0,N ]. In Eq.(1), the invertibility of G

is equivalent to the nonsingularity of the Toeplitz matrix
because of g0 6= 0.

3. PROBLEM FORMULATION

We assume that a plant is linear, time invariant in discrete
time. However, we have also an assumption that mathe-
matical models of a plant is unknown. We obtain the input
and the output data in the finite time interval u[0,N ] and
y[0,N ], respectively. Consider a feedback system illustrated
in Fig.1 with a controller C to be designed. We are also
given a specification as the set of (r, y) which evolve along
the desired trajectory. Then, the purpose is to design a
controller C so as to achieve the desired trajectory by the
direct use of the data without mathematical model of a
plant.

u yr e

−
+ PlantC

Fig. 1. A feedback loop system

4. THE BEHAVIORAL APPROACH AND
UNFALSIFIED CONTROL

4.1 The basics of the behavioral theory

We give a brief review of the behavioral approach here.
For more details, see the references, e.g., Willems [1991],
Willems [1997], and so on. In this paper, we focus
on discrete-time, linear, time-invariant systems, which is
equivalent to saying that there exists a polynomial matrix
R ∈ R

•×q[ξ] such that the (manifest) behavior, say B ⊆
(Rq)Z, is described by a kernel representation Rw = 0
for all w ∈ B. Here, the indeterminate of R is replaced
with the shift operator σ 1 . In some cases, it would be
appropriate not only to focus on the manifest behavior w
but also to introduce the auxiliary behavior ` such that
R′w = M`, where R′ and M are suitable polynomial
matrices, and ` is referred to as the latent variables. A
pair of (w, `) is referred to as the full behavior.

We assume that a plant is controllable in a behavioral
sense, which is equivalent to saying that the row rank of
R(s) is invariant for any complex number s. If R is row
rank, this condition is also equivalent to that a left prime
factor of R is only a unimodular matrix. Another necessary
and sufficient condition for a system to be controllable
is that there exists a polynomial matrix M ∈ R

q×•[ξ]
admitting an image representation w = M` for all w ∈ B

with the latent variable. Without loss of generality, it is
possible to take M such that M(s) is full column rank for
any complex number s.

4.2 Achievable behaviors and canonical controllers

Here, we give a brief review of the novel concept of
achievable behaviors and canonical controllers, which have
been proposed and discussed in van der Schaft [2002] and
Julius et al. [2005]. See these references for more detailed
issues. We here focus on the linear time invariant systems
in discrete time.

Let Pf ∈ (Rq+g)Z be the full behavior of a system, that is,
(w, c) ∈ Pf obey the law described by

R(σ)w = M(σ)c (2)

with appropriate matrices R ∈ R
•×q[ξ] and M ∈ R

•×g[ξ].
Pf is illustrated in Fig.2. Let P ∈ (Rq)Z be the manifest
behavior of Pf . This is described by a kernel representation
which is obtained by eliminating the variable c from Pf .
The variable c is used for the partial interconnection with
another system, that is, a controller. Let S ∈ (Rq)Z be the
desired behavior, that is, the aim of the control (partial
interconnection) is to achieve S by interconnecting Pf

1 In the following, the similar replacement is applied. Moreover, we

often omit the notations the indeterminate ξ and the operator σ.
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Pf

w c

Fig. 2. A plant

and a controller. There also exists a polynomial matrix
K ∈ R

•×q[ξ] such that w ∈ S is described by

K(σ)w = 0. (3)

A canonical controller is defined as the set of the trajecto-
ries described by

Ccan = {c ∈ (Rg)Z| ∃w̃ s.t. (w̃, c)∈Pf , w̃ ∈ S} (4)

and illustrated in Fig.3. The role of a canonical controller is
to yield the desired behavior S exactly by interconnecting
it to a plant. See also this concept Fig.4. Assume that S

Pf

c w̃

S

Fig. 3. A canonical controller

Pf

c w̃

SPf

w

A canonical controller
Fig. 4. A partial interconnection

is implementable via c, which is equivalent to

N ⊂ S ⊂ P (5)

(cf. Belur and Trentelman [2002]), where N is the kernel
of R, and it is referred to as the hidden behavior. Then, a
canonical controller can be parameterized by using R and
M as follows. First, find a polynomial matrix L such that

LR = K. (6)

Then,

LMc = 0 (7)

induces a kernel representation of a canonical controller
acting on the variable c.

4.3 Unfalsified control

The notion of the unfalsified control was proposed in
Safonov and Tsao [1997], as one of the extensions of the
behavioral interconnection to adaptive control scheme. See
a conventional feedback system illustrated in Fig.1. The
dynamics of a plant is unknown and the material we can
obtain is only the actual data u and y evolving along the
law of the dynamics of a plant. The exogenous signal r is
the input of this feedback loop system while u and y are the
outputs. The pair of the data u and y is unique for fixed r
and C. Conversely, for the data u and y, there are infinite

pairs of r′ and C ′ so as to yield u and y. Particularly r′

is referred to as a fictitious reference. Since the triple of
(r′, u, y) is also in the behavior of a feedback loop system
with the corresponding C ′, it is possible to check whether
a controller C ′ which is not implemented in the actual
loop is falsified by a given specification with respect to u,
y and r′. Such a falsification of a controller leads to specify
the set of controller which are unfalsified by the data and
the specification, that is, it is possible to obtain the set of
controllers which are not undesirable controller. This is a
core of the unfalsified control theory.

In Safonov and Tsao [1997], although this concept is used
in the real-time adaptive control scheme, it is also available
for off-line control system synthesis. Our result is in the
latter point of view.

5. MAIN RESULTS

5.1 A linear canonical controllers for the data

Again, see a conventional feedback system illustrated in
Fig.1. Moreover, a system is assumed to be with single-
input and single-output for the brevity of the explanation.
Though there exist coprime polynomials Ry and Ru such

that G = Ry
−1Ru because of the assumption that the

system is linear and time-invariant, we do not know any
information on these polynomials. The material we can
obtain is only the finite interval data u[0,N ] and y[0,N ]. We
are also given a desired trajectory as the output of the
transfer function as yd = Tdr where Td =: K−1

y Kr. The
problem is to find a controller so as to achieve yd with
respect to r in the feedback interconnection in Fig.1.

Now we view this problem in the framework of achievable
behaviors. A plant Pf is described by

Pf =
{
(w, c) ∈ R

q+p|Rw = Mc is satisfied
}

(8)

where w := (r, y) and c := (e, u), and

R =

(
1 −1
0 Ry

)
, M =

(
1 0
0 Ru

)
, (9)

which is also illustrated in Fig.5. We are also given a

Pf

y

r

u

e

Plant

Fig. 5. The full behavior of a plant

desired behavior S as the kernel representation Kw = 0
with K = (Kr − Ky). By noticing that Eq.(5) should
hold for the implementability, we see that w ∈ N, which
is equivalent to that r = y and Ry(σ)y = 0 hold,
implies K(σ)w = (Kr(σ)−Ky(σ))y = 0. This conditional
implication also implies that Kr − Ky includes Ry as the
factor, that is, K should also include Ry as the left factor.
From this observation, we put the desired behavior S′ as
the kernel representation K ′w = Ry(Kr − Ky)w = 0
instead of S. It is also should be noted that the controllable
part of S and S′ are the same, which make no difference in
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the case in which the desired behavior is given as the set
of the trajectories constrained by the transfer function.

A polynomial matrix L satisfying LR = K ′ (cf.Eq.(6)) is
described by

L = ( RyKr Kr − Ky ) . (10)

Next, substituting this L into Eq.(7) with M in Eq.(9)
yields that a canonical controller is described by

( RyKr Ru(Kr − Ky) )

(
e
u

)
= 0. (11)

Of course, in the case in which we know Ry and Ry ex-
plicitly, this representation is used for the implementation
of a canonical controller. However, since we assume that a
mathematical model is unknown and our setting is based
on the direct use the plant behavior, so we should eliminate
Ry and Ru.

It is also natural to assume that a controller is controllable.
Thus, we introduce an image representation of a canonical
controller as

(
e
u

)
=

(
Ce

Cu

)
`. (12)

At the same time, (e, u) should also satisfies Eq.(11), so
combing Eq.(11) and Eq.(12) yields

( RyKr Ru(Kr − Ky) )

(
Ce

Cu

)
` = 0. (13)

Here, it is also possible to regard Eq.(13) as one of the
kernel representations with respect to `. By modifying the
point of view on the variable in this way, together with the
assumption that a plant is single input and single output,
Eq.(13) can be also written as

( Ce Cu )

(
Kr 0
0 (Kr − Ky)

)(
Ry

Ru

)
` = 0. (14)

Since (Ry Ru)T` is also an image representation of the
behavior (u, y) with input/output structure. Hence, we
obtain

( Ce Cu )

(
Kr 0
0 (Kr − Ky)

)(
u
y

)
= 0. (15)

This equation represents one of the relationships among
the trajectory of a plant, the desired behavior and a
canonical controller.

Now, we consider Eq.(15) on the finite interval data.
We denote the unknown rational function CuC−1

e with
C. Let na and nb be the degree of Kr and Kr − Ky,
respectively. Then we see Kru[0,N ] ∈ R

N−na+1 and (Kr −

Ky)y[0,N ] ∈ R
N−nb+1. In the case of na 6= nb, by denoting

ν := min(na, nb), we truncated the vector which has a
greater size than the other so as to have the same size ν.
We denote these truncated signals as Kru[0,N ]|[0,ν−1] ∈ R

ν

and (Kr−Ky)y[0,N ]|[0,ν−1] ∈ R
ν . Then Eq.(15) is described

by

Kru[0,N ]|[0,ν−1] = T C
[0,ν−1](Kr − Ky)y[0,N ]|[0,ν−1]. (16)

It is also possible to expand Eq.(16) laterally such that

T
Kru[0,N]|[0,ν−1]

[0,N−1] and T
(Kr−Ky)y[0,N]|[0,ν−1]

[0,N−1] are upper trian-

gle form. As a result, we also see that

T
Kru[0,N]|[0,ν−1]

[0,ν−1] = T C
[0,ν−1]T

(Kr−Ky)y[0,N]|[0,ν−1]

[0,ν−1] (17)

holds. Summing up the above discussion, the main result
of this paper can be formalized as follows

Theorem 5.1. Assume that we are given finite data u[0,N ]

and y[0,N ]. Moreover, assume that a specification S is
described by Kw = (Kr − Ky)w = 0. Then Ce and
Cu satisfying Eq.(15) induces a kernel representation of
a canonical controller, or equivalently, T C

[0,N−1] satisfying

Eq.(17) induces Markov parameters of a transfer function
of a canonical controller. 2

The structures of T
Kru[0,N]|[0,ν−1]

[0,N−1] and T
(Kr−Ky)y[0,N]|[0,ν−1]

[0,N−1]

are upper triangle, so is T C . The elements of T C satisfying
Eq.(17) form the set of the Markov parameters of a
canonical controller. Particularly, in the case of ((Kr −

Ky)y[0,N ])(0) 6= 0, (T
(Kr−Ky)y[0,N]|[0,ν−1]

[0,N−1] )−1 exists, which

implies that Eq.(17) can be exactly solved with respect to
T C and then a canonical controller can be also realized as
a proper rational function, that is, it can be implemented
as a feedback controller. The method of the realization can
be found in many literatures on the conventional system
theory.

Another way for constructing a canonical controller is
to take polynomials Cu(θ) =

∑m

i=0 θiσ
i and Ce(ρ) =∑n

i=1 ρiσ
i with unknown parameters θ := (θ0 θ1 · · · θm)T

and ρ = (ρ1 ρ2 · · · ρn)T, respectively. Eq.(15) is also
described by

Ce(ρ)Kru[0,N ] = Cu(θ)(Kr − Ky)y[0,N ] (18)

We denote ū[0,N−na] := Kru[0,N ] and ȳ[0,N−nb] := (Kr −
Ky)u[0,N ]. Then Eq.(18) is also written as

Γ

(
θ
ρ

)
=




ū0

...
ūN−na−m−1


 (19)

where

Γ :=


ȳ0 · · · ȳn −ū1 · · · −ūm

...
...

...
...

ȳN−nb−n−1 · · · ȳN−nb−1 −ūN−na−m · · · ūN−na−1


 .

In most cases, N − 1 is greater than n + m + 1. Since it is
impossible to solve the linear algebraic equation Eq.(19)
in such a case, we perform the well-known least squares
method alternatively. Although the controller constructed
as above is an approximated canonical controller, this can
be implemented as a feedback controller because of that
we can fix the degree of C in advance.

5.2 An unfalsified controller

Now we observe that a linear canonical controller in our
proposed method is also characterized as an unfalsified
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controller. Assume that y and u are the actual output and
the input data. We first calculate the fictitious reference r̃
described by

r̃ = C−1u + y (20)

or equivalently

( Cu −Cu 0 −Ce )




r̃
y
ẽ
u


 = 0 (21)

where ẽ is the fictitious error, which also yield the actual
trajectory y and u together with r̃ and a controller C which
is to be designed. Of course, (r̃, y) and (ẽ, u) should also
satisfy the plant equation Eq.(8) and (9). Since Ryy = Ruu
is a trivial relation because of that u and y are the data
from the plant, we can eliminate this equation. Thus,
the interconnected behavior between the plant and the
controller is described by

(
1 −1 −1 0

Cu −Cu 0 −Ce

)



r̃
y
ẽ
u


 = 0. (22)

by using the actual data of a plant u and y. We want the
behavior constrained in Eq.(22) to satisfy S exactly. In
order to achieve this, we take the interconnection of the
kernel of Eq.(22) and S, that is,

(
1 −1 −1 0

Cu −Cu 0 −Ce

Kr −Ky 0 0

)


r̃
y
ẽ
u


 = 0. (23)

Here, since r̃ and ẽ are in the fictitious trajectory, we can
regard this two signal as latent variables. In fact, it is easy
to see that r̃ and ẽ can be eliminated from Eq.(23). Thus,
the behavior on c is also described by

(−KrCe Cu(Ky − Kr) )

(
y
u

)
= 0. (24)

Applying the finite time data y[0,N ] and u[0,N ] into Eq.(24),
we obtain Eq.(16). That is, the result we proposed here is
also regarded as a synthesis of linear canonical controllers
within the unfalsified control framework.

5.3 The relationship with VRFT and FRIT

In the case in which the structure of a controller is
fixed with unknown parameters, the proposed method
here is regarded as the controller parameter tuning so
as to achieve the desired response with only one-shot
experiment. Here we see the relationships with the other
approach like VRFT, FRIT, and so on.

In VRFT (cf. Campi et al. [2002]), the virtual reference r̄ is
calculated so as to y[0,N ] = Tdr̄[0,N ]. One takes the sum of
the squared error between the actual input u[0,N ] and the
virtual input with respect to a parameterized controller
Cu(θ)Ce(ρ)−1 as the cost function described by

JV := ‖u[0,N ] − Cu(θ)Ce(ρ)−1(r̄[0,N ] − y[0,N ])‖
2 (25)

By fixing the parameter ρ of Ce(ρ), the minimization of J
can be modified to that of

0 2 4 6 8 10
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time[sec]

I
n
p
u
t

Fig. 6. The initial input data u

J ′
V =

∥∥CeKru[0,N ] + Cu(θ)(Kr − Ky)y[0,N ]

∥∥2
. (26)

which can be computed by the least squares method. Sup-
pose that the above cost function is completely minimized
, i.e., equal to zero ideally, which coincides with Eq.(19). In
this sense, VRFT is also regarded as the special case of our
approach. Note that only the denominator of a controller
is designed in VRFT while our proposed method designs
both of the numerator and the denominator.

In FRIT (cf. Souma et al. [2004]), which is also an
application of the unfalsified control, we use the fictitious
reference r̂ described by Eq.(20). Then, we minimize the
cost function

JF :=
∥∥y[0,N ] − Tdr̃[0,N ]

∥∥2
. (27)

Suppose also that the above cost function is completely
minimized, i.e., equal to zero ideally. Then, as shown in
the unfalsified control theory, we can obtain C so as to
satisfy Eq.(13). Thus, FRIT is also a special case of our
proposed method. Note that FRIT should be performed
in the off-line nonlinear optimization, in which there are
some critical problems from the view points of numerical
computations while our approach is performed by solving
linear algebraic equations.

6. EXAMPLE

We show a numerical example in order to show the validity
of the result. We are given input u and output y obtained
in the finite interval with the sampling time 0.01[s] as
Fig.6 and Fig. 7, respectively. These data have been
obtained from the feedback system with a certain linear
controller and unknown linear plant. In Fig.7, the desired
output yd is also plotted. The trajectory wd := (yd rd)

T

with the constant rd is in S, which is obtained as the
kernel representation described by ( Kr(σ) −Ky(σ) ) wd =
0, where Kr(σ) = 7.19σ + 6.61 × 10−3 and Ky(σ) =
σ2 − 1.77σ + 0.779. In order to obtain a linear canonical
controller that achieve (yd, r) ∈ S, we apply the proposed
method by using the data (u, y) and the polynomials Kr

and Ky. Here, we set Cu = θ0 + σ , Ce = ρ0 + ρ1σ in
order to guarantee that the designed controller is to be
feedback one. As a result, the desired canonical controller
is obtained as ρ0 = −0.0744, ρ1 = 0.428, and θ0 = −0.806,
by solving the least squares method described as Eq.(19).
The output after implementing it in the feedback loop is
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Fig. 7. Th initial output data y (The real line) and the
desired output yd (The dotted line)
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Fig. 8. The output data y (The real line) and the desired
output yd (The dotted line)

illustrated in Fig.8. In this figure, y and yd are almost the
same, thus we can see that the proposed method works
effectively.

7. CONCLUSION

In this paper, we have proposed a synthesis of a canonical
controller based on using the finite interval data of a
plant without mathematical model. We have also seen
the relationship with other data-driven control system
synthesis like VRFT and FRIT. We have also given a
numerical example to see the validity of the proposed
method.

As future studies, we are studying the issues on the effect
of noise, the extension to the multi-input and multi output
case, and the stability of the interconnected systems with
the proposed canonical controllers. The regularity of the
implementation is also interesting problem, which would
be attacked from the theoretical points of view. Moreover,
our approach would be deeply related to the results on
data-driven control system synthesis approach studied
in Markovsky et al. [2005], Markovsky and Rapisarda
[2007], Yamamoto and Okano [2006] and Fujisaki et al.
[2005]. Thus, the studies on relationships between these
two approaches is one of the theoretical direction.
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