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Abstract: The release policy for a reservoir’s network can be designed by solving a multi-
objective control problem. However, the use of resolution algorithms based on stochastic dynamic
programming, with their high computational requests, imposes strong simplification in modelling
the water system. In particular, downstream irrigation districts are often described as static sub-
systems, i.e. assuming an a priori trajectory of the water demand, while the use of the available
simulation models is precluded due to their complexity. To overcome this problem, this study
proposes the identification of a meta-model, i.e. a model of a simulation model, for describing
an irrigation district. The meta-model computes the overall water deficit in the district, based
on meteorological inputs and the water supply from an irrigation canal. Even if the meta-model
is very simple, it can be given a physical interpretation in relation to the simulation model
behavior. Results obtained with the original model and the meta-model over a real world case
study, an irrigation district in the Padana plain, Italy, are presented.

1. INTRODUCTION

Water resources management is a quite intricate problem,
because of the simultaneous presence of multiple interests,
often conflicting; the existence of physical constraints, due
to the scarcity of the resource; and the high randomness
that affect the system. As for the management of multipur-
pose reservoir’s network, an adequate approach consists
in using, as a release policy, one of the Pareto-efficient
policies that can be designed through the resolution of a
multi-objective control problem (see, for example, Soncini-
Sessa et al. (2007a)). A multi-objective control problem
can be traced back to a family of single-objective optimal
control problems, each of which can be solved through al-
gorithms based on the numerical resolution of the Bellman
equation (see for example Yeh (1985) for a review of first
applications of stochastic dynamic programming to water
resources management and Soncini-Sessa et al. (2007a) for
recent improvements). The main limit of this approach is
that the computing time increases exponentially with the
state dimension and consequently only few state variables
can be used to model the water system.
Among the water system components, irrigation districts
constitute a typical example of sub-systems whose descrip-
tion is strongly simplified in force of the above considera-
tions. In fact, on the one hand the literature shows a vast
variety of distributed parameter conceptual models that
can compute the water demand of an irrigation district
with good precision; but they use a huge number (hun-
dreds and often thousands) of state variables and thus are
incompatible with stochastic dynamic programming. On
the other hand, reproducing the district’s dynamics with
few state variables is not easy: the identification of em-

pirical input-output models or grey-box models is usually
precluded because of the lack of data. As a consequence,
it is common practice to abandon the dynamic description
of irrigation districts, and assume an a priori (usually
periodic) trajectory for the water demand (see for example
Soncini-Sessa et al. (2007b)).
Our proposal to approach this problem is to resort to a
meta-model of the irrigation district. In the literature,
the term meta-model usually denotes a simplified model
that has been identified on data produced by a complex,
computationally expensive model, and that can be used to
run less time consuming simulations. In the last decades,
meta-models have found successful applications for the res-
olution of optimization problems, where they are coupled
with algorithms based on iterative search, which require
performing many simulations. Recently, applications of
this approach have appeared also in the context of water
systems management, e.g., for the optimization of a water
distribution system (Broad et al. (2005)) and for optimiz-
ing the management policy of a reservoir network with
fixed-class control laws (Neelakantan and Pundarukanthan
(2000)). Other authors (e.g. Young and Ratto (2007)) use
the term Dominant Mode model to refer to a reduced
order model that mimics a complex simulation model
for a particular set of the simulation model parameters;
while reserves the term meta-model for a reduced order
model that mimics the complex simulation model for all
its possible parameter values, thus allowing for Sensitivity
Analysis.

In the present study, the meta-modelling approach is
applied to the simulation model of an irrigation district.
The parameters of the simulation model are given for fixed,
and the scope of the meta-modelling exercise is neither to
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perform sensitivity analysis or to reduce the computing
time in simulation but rather to reduce the dimension of
the state vector. This is in fact the very requirement for
the meta-model to be usable to solve an optimal control
problem with stochastic dynamic programming.
The distributed parameter model, simply called simulation
model in the following, subdivides the irrigation district
in 104 cells and for each one computes 2 state variables;
thus it has 2·104 state variables. On the other hand, the
meta-model reproduces the overall daily deficit in the
irrigation district with only 2 states variables; it has a
nonlinear, input-output form and belongs to the class of
Data Based Mechanistic (DBM) models (Young (1998)).
An application is presented on a large irrigation district
located in the Padana Plain, Italy.

The paper is organized as follows. In the next section,
the principal methodological issues of the meta-modelling
technique will be discussed. Section 3 presents a brief
description of the irrigation district under study and
of the simulation model. Section 4 is devoted to the
meta-model, describing its inputs and output, the data
used for its identification, its structure and discussing the
results of estimation and validation. Further discussion
and concluding remarks are presented in Section 5.

2. META-MODELS

A meta-model (or surrogate or approximation model) is
a faster representation of a computationally expensive
model, usually denoted as simulation model (or original
model). A meta-model is identified based on data produced
by simulation with the original model. The choice of the
type of meta-model and its identification procedure de-
pend on the goal of the meta-modelling exercise. Kleijnen
and Sargent (2000) identifies four goals: understanding of
the original model, prediction of future outputs, validation
of the original model and optimization, which is the most
common goal of meta-models. As for the type of meta-
models, the literature shows a vast variety of applications,
ranging from linear regression to splines or Neural Network
(for a survey, see for example Simpson et al. (2001)).
Kleijnen and Sargent (2000) present a complete methodol-
ogy for fitting and validating meta-models. For the meta-
model discussed in this paper, the following procedure has
been used.

(1) The original model is critically analyzed and its
principal characteristics studied. This first step is of
crucial importance since it constitutes the basis of the
whole procedure, creating the knowledge base that
will permeate the whole meta-model identification
procedure.

(2) The output that best represents the goal of the meta-
modelling exercise and its relevant inputs are chosen.

(3) The input-output data that will be used for the meta-
model identification are produced via simulation of
the original model. According to the practice in meta-
models literature, this simulation experiment will
be denoted in the following as Experimental Design
(ED). This step is also a crucial one, because the
data-set produced in the ED directly affects the meta-
model range of validity.

(4) The class of models (DBM, Neural Networks, etc.) to
which the meta-model will belong is chosen.

(5) The meta-model is fitted on the estimation data-set
and it is validated. If this step provides satisfactory
results, the procedure ends, otherwise it is necessary
to go back to the previous step and select another
type of meta-model.

3. SIMULATION MODEL

The simulation model presented in this paper refers to
the Muzza-Bassa Lodigiana district, located in the Padana
Plain, Italy, south-east from the city of Milan. The ir-
rigation district has an area of about 700 Km2 and it
can be considered representative of agricultural and ir-
rigation practice in a wide portion of the Padana Plain.
The cultivated area covers the 85% of the whole district;
major crops are cereals (especially maize) and permanent
grass. The source of irrigation supply is the Muzza canal,
which originates from the Adda River, an effluent from the
Lake of Como. The irrigation supply is thus controlled by
the release from the lake, which is regulated through the
Olginate dam.

The simulation model is a Soil-Vegetation-Atmosphere-
Transfer model of the flow in the upper part of the vadose
zone, based on previous works of Facchi et al. (2005). It
considers the space variability of soils, crops, meteorologi-
cal and irrigation inputs by subdividing its spatial domain
with a regular mesh, thus being characterized by a total
of 104 cells. Each cell has a side length of 250 m and
it is divided into two layers: the first one (evaporative)
represents the upper part of the soil profile and it is
characterized by a constant depth of 15 cm, while the
second one (transpirative), representing the root zone, has
a time-varying depth. The two layers are modeled as two
nonlinear reservoirs in cascade.
The hydrological balance in the upper layer of the i-th cell
is given by

θ
(i)
1,t+1 =θ

(i)
1,t + R

(i)
t+1 − I

(i)
t+1 + Q

(i)
i,t+1+

− Q
(i)
r,t+1 − E

(i)
t+1 − Q

(i)
u,t+1 (1a)

where θ
(i)
1,t is the water content at (discrete) time t, R

(i)
t+1

is the rainfall in the time interval [t, t + 1), I
(i)
t+1 the

canopy interception, Q
(i)
i,t+1 the irrigation supply, Q

(i)
r,t+1

the surface runoff, E
(i)
t+1 the evaporation and Q

(i)
u,t+1 the

percolation to the second layer (upper percolation).
The hydrological balance in the lower layer, instead, is
given by

θ
(i)
2,t+1 = θ

(i)
2,t + Q

(i)
u,t+1 − T

(i)
t+1 − Q

(i)
d,t+1 (1b)

where θ
(i)
2,t is the water content at time t, Q

(i)
u,t+1 is the

percolation from the upper layer in [t, t + 1), T
(i)
t+1 the

transpiration and Q
(i)
d,t+1 the deep percolation. The water

contents θ
(i)
1,t and θ

(i)
2,t are expressed in millimeter (assuming

constant value over the cell) and all other flux variables
are reported to the same unit of measure. The canopy

interception I
(i)
t+1 is computed as a function of the leaf

area index, the cover fraction and the volume capacity per
unit foliage area. The computation of the surface runoff

Q
(i)
r,t+1 is based on the Curve Number method (see Mockus

(1972)), while the upper and deep percolation (Q
(i)
u,t+1
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and Q
(i)
d,t+1 respectively) are modeled as a Darcian-type

gravity flow in the saturated soil (see Brooks and Corey

(1964)). The evaporation E
(i)
t+1 and the transpiration T

(i)
t+1

are derived based on the reference crop evapotranspiration
ET0t+1, which depends on meteorological data (air tem-
perature, solar radiation, air moisture and wind speed).
More precisely, evaporation is obtained by multiplying

ET0t+1 by the evaporative coefficient K
(i)
e,t , i.e.

E
(i)
t+1 = K

(i)
e,t(θ

(i)
1,t) · ET0t+1 (2a)

where K
(i)
e,t is a function of the water content θ

(i)
1,t. Tran-

spiration is obtained by multiplying ET0t+1 by the basal

coefficient K
(i)
cb and by the water stress coefficient K

(i)
s,t

T
(i)
t+1 = K

(i)
s,t(θ

(i)
2,t) · K

(i)
cb · ET0t+1 (2b)

The product K
(i)
cb ·ET0t+1, named potential transpiration

and denoted with T
(i)
c,t+1, represents the crop transpiration

in conditions of optimal water content. From the above

relation, it follows that T
(i)
t+1 = K

(i)
s,t(θ

(i)
2,t) · T

(i)
c,t+1, i.e.

actual and potential transpiration are related by the

coefficient K
(i)
s,t , which expresses the effect of limited water

availability in the soil and depends on the water content

θ
(i)
2,t.

The irrigation supply Q
(i)
i,t+1 is either zero or equal to 150

mm. This value represents the amount of water necessary
to completely flood the cell surface, thus reproducing the
effect of the flooding irrigation method, which is basically
the only irrigation method adopted in the district. The i-
th cell receives this amount of water if two conditions are
satisfied: first, the water content θ

(i)
2,t in the root zone is

lower than a threshold value θ
(i)
r (mm), which correspond

to a condition where crop growth is at risk; and second,
the cell has the right to be irrigated according to the
irrigation scheduling, which is computed by considering
the currently available water and past supply. Note that if
only the second condition is verified, the irrigation supply

is refused, i.e. Q
(i)
i,t+1 is set to zero and the corresponding

amount of water is withdrawn to the Adda River.

4. META-MODEL IDENTIFICATION

The simulation model, using two state variables for each
cell, presents a total number of state variables of the
order of 2·104, which is far from being tractable in an
optimization algorithm based on stochastic dynamic pro-
gramming, even when adopting advanced methods (e.g.,
neuro-dynamic programming). In the present section we
will discuss the possibility of resorting to an approximate
model of the irrigation district, i.e. a meta-model.

4.1 Input-Output selection

In order to synthetically assess the condition of the i-th
cell of the irrigation district, the following deficit variable

d
(i)
t has been introduced

d
(i)
t =

{

θ
(i)
fc,2 − θ

(i)
2,t if θ

(i)
2,t < θ(i)

r

0 otherwise
(3)

where θ
(i)
fc,2 (mm) is the water content in the lower layer

corresponding to the field capacity. The deficit d
(i)
t thus

represents the amount of water necessary to re-establish
the optimal water content in the i-th cell, when the

latter is in stress condition. The cell deficits d
(i)
t are then

aggregated over a spatial domain that includes all the cells
cultivated with maize and permanent grass (the two most
common and economically significant crops of the district)
to form the total deficit dt. For the sake of clarity, dt is

expressed in terms of volume (m3), i.e. dt = 2502 · (Σid
(i)
t ·

10−3). This scalar variable represents the overall quantity
of water lacking in the cells in stress condition, and it can
be assumed to be representative for the water demand for
irrigation; as such, it is chosen as the output of the meta-
model.
The definition of the total deficit dt deserves some further
comment. It must be noted, in fact, that the presence of

the threshold θ
(i)
r , which distinguishes the stress condition

from the no-stress condition, introduces a random effect
into the dynamics of the total deficit: if at time t the
number of stressed cells is lower than the total number
of cells, the future value of dt+1 will depend both on the
evolution of the stressed cells and on the number of cells
that will cross the threshold in the time interval [t, t + 1),
the last being unpredictable at time t when knowing dt

only. It follows that the accuracy of the prediction of the
total deficit increases with the number of stressed cells.
We shall return to this issue in Section 4.4.

The selection of the inputs is even more keen and requires
some more considerations on the structure of the simula-
tion model. For this, we will first consider the dynamics
of one cell (say the i-th) and develop the reasoning as
if the meta-model were to approximate one cell. Before
proceeding, it must be noted that it is not possible to use

inputs that depend on the two state variables θ
(i)
1,t and

θ
(i)
2,t, since this would require to introduce other dynamical

meta-models to describe the evolution of these variables.
Now, back to the definition of the cell deficit d

(i)
t , we see

from (3) that it is a function of the water content θ
(i)
2,t,

whose dynamics, according to (1b), is driven by the tran-

spiration T
(i)
t+1, the percolation Q

(i)
u,t+1 from the upper layer

and the deep percolation Q
(i)
d,t+1. The transpiration T

(i)
t+1

can not be used, because, according to (2b), is related to

the stress coefficient K
(i)
s,t , which is a function of the water

content θ
(i)
2,t. However the transpiration T

(i)
t+1 can be ap-

proximated with the potential transpiration T
(i)
c,t+1, which

is therefore selected as input. The percolation Q
(i)
u,t+1 from

the upper layer depends on the net rainfall (R − I)
(i)
t+1,

the evaporation E
(i)
t+1, the surface runoff Q

(i)
r,t+1 and the

irrigation supply Q
(i)
i,t+1. The variables E

(i)
t+1 and Q

(i)
r,t+1

can be neglected because their contribution is scarce, as

well as (R− I)
(i)
t+1, because T

(i)
c,t+1, being a function of the

meteorological variables, holds the information about the

rain. Therefore, the percolation Q
(i)
u,t+1 can be approxi-

mated by the irrigation supply Q
(i)
i,t+1, which is selected
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as a second input. Finally, the deep percolation Q
(i)
d,t+1 is

ignored, because it does not bring more information.
In conclusion, assuming that the deficit of the i-th cell can

be described by considering T
(i)
c,t+1 and Q

(i)
i,t+1 as inputs,

the dynamics of the total deficit will be driven by the
total potential transpiration Tc,t+1 (m3) and the district
irrigation supply Qi,t+1 (m3), obtained by aggregating the
cell potential transpiration and the cell irrigation supply
as done for the output variable of the meta-model.

As discussed in the previous section, the water supply to
the irrigation district is regulated by a sheduling system,
which foresees the possibility for a given cell of refusing al-
located water. Therefore the total irrigation supply Qi,t+1

can be lower than the total water volume diverted from the
Adda River. As a consequence, it is necessary to identify
another meta-model for estimating Qi,t+1. To this end it
is necessary to know the available water, i.e. the volume
Qt+1 diverted from the river, and the total water demand
Wt+1, which influences the probability of supply refusals
and can be computed as

Wt+1 = Tc,t+1 + dt (4)

We will name the first meta-model deficit-meta-model, and
the second supply-meta-model.

4.2 Experimental Design

In order to run the Experimental Design, it is necessary to
specify a trajectory for the inputs of the simulation model:
the meteorological data and the volume diverted from the
Adda River into the Muzza canal. As for the former, time
series are available of daily records of air temperature,
solar radiation, precipitation, air moisture and wind speed
at the Sant’Angelo Lodigiano meteo station, which is
located in the western side of the irrigation district; as for
the latter, the time series of daily volume at the Muzza
canal diversion dam were used. The simulation was run
over a period of 7 years, from 1993 to 1999, thus producing
a data-set of input and output data. The first 5 years are
used for the meta-model calibration, while the last 2 years
are used for the validation.

4.3 Choice of the type of meta-model

Two major difficulties must be faced when identifying
the deficit-meta-model: the nonlinearity of the output dy-
namics and the randomness induced by definition (3) of
the cell-deficit, from which the output is derived. These
difficulties suggests to resort to a Data Based Mechanistic
(DBM) model, a class of nonlinear input-output model in-
troduced in the literature by Young (for a survey see Young
(1998) and references therein). With this choice, the model
takes the form of a transfer function model with State De-
pendent Parameters (SDP) that, in our application, must
account for both the system’s nonlinearity and the random
behavior of the output. Moreover, in accordance with the
DBM modelling philosophy, the meta-model will be given
a physically meaningful interpretation, thus maintaining
a relation with the physical-based simulation model that
would be precluded if other classes of models were chosen,
e.g. Neural Networks or NARMAX models.

For the supply-meta-model an algebraic relation will turn
out to be sufficient.

4.4 Meta-model calibration and validation

The DBM meta-model that describes the dynamics of the
total deficit has the form of a Transfer Function (TF)
model with State Dependent Parameters (SDP)

dt+1 =
β1(dt)

1 − α(dt)q−1
Tc,t+1 +

β2(dt)

1 − α(dt)q−1
Qi,t+1 + et+1

(5)
where q−1 is the backshift operator (i.e. q−1dt+1 = dt),
α(·), β1(·) and β2(·) are state dependent parameters, i.e.
coefficients that, instead of being constant as in conven-
tional linear TF model, vary with the value of the ‘state’
variable dt. The last term et+1 accounts for process error.
The shapes of α(·), β1(·) and β2(·) are derived directly
from the data by means of a suitable parameter estima-
tion procedure (Young et al. (2002)). The nonparametric
estimates of the SDPs so obtained are shown in Fig. 1.
Let us first analyze the potential transpiration parameter
β1(·) (Fig. 1b): it is positive (the transpiration indeed
contributes to increase the deficit) and increasing with the
deficit dt. This last characteristic can be interpreted as
follows: when the deficit is low, the number of cells with
θ2,t > θr (not-stressed cells) is likely to be high and thus
the future deficit value dt+1 will be strongly influenced by
the number of cells that will cross the threshold in [t, t +
1), but this number is unpredictable, at time t, knowing
dt only. Therefore the deficit dynamics exhibits a strong
uncertainty and the relation between input Tc,t+1 and
output dt+1 is weakened: this implies a low value for β1(·).
On the other hand, as the deficit increases, the number
of stressed cells also increases and the deficit dynamics
becomes more and more deterministic, thus increasing the
value of β1(·). Analogous considerations are valid for the
irrigation supply parameter β2(·), shown in Fig.1c; the
only difference is that here the parameter sign is negative,
which is consistent with the fact that irrigation tends to
set down the deficit. Fig.1a finally shows the nonpara-
metric estimate of the state dependent parameter α(·):
it appears to be positive (thus guaranteing the positivity
of the deficit) and increasing with dt. More precisely, for
low values of dt it is lower than 1, which implies that
the dynamics of dt is stable. This expresses the fact that
low deficits, typical of winter condition, are canceled by
rainfall, which is not among the inputs of the meta-model.
As the deficit increases, the value of α approaches 1 and
exceeds it when dt equals 6.8·106 m3, thus making the
model unstable. This expresses the fact that when more
than 30% of the district 1 is in stress condition, it is likely
that many cells are just below the threshold θr and will
reach stress condition in the next step. This is unexplained
by the input values and is therefore expressed through
instability.

In order to use the model outside of the estimation data-
set, the nonparametric estimates of the SDPs reported in
Fig. 1 need to be parameterized through suitable functions
fi(·). The following exponential law

fi(dt) = c1,i · exp(c2,i · dt) + c3,i · exp(c4,i · dt) (6)

1 When all the cells in the district reach stress condition the value
of dt is about 23·106 m3.
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Fig. 1. Nonparametric estimates of the State Dependent
Parameters α(·), β1(·) and β2(·). Dotted lines are
standard error bounds.

is well suited for this purpose and the parameters c1,i, . . . ,
c4,i for i = 1, 2, 3 can be estimated by interpolating the
nonparametric estimates in Fig.1. Model (5) can then be
rewritten as

dt+1 = ade
t + b1T

e
c,t+1 + b2Q

e
i,t+1 + et+1 (7)

where de
t = f1(dt) · dt is the effective deficit, and T e

c,t+1 =
f2(dt) ·Tc,t+1 and Qe

i,t+1 = f3(dt) ·Qi,t+1 are the so called
effective inputs.

Model (7) is linear in the effective inputs, thus its pa-
rameters a, b1 and b2 can be obtained through a Refined
Instrumental Variable method. Finally, the estimates of all
the parameters a, b1, b2, c1,i, . . . , c4,i (with i = 1, 2, 3) are
refined through a global nonlinear optimization procedure.
The residual et+1 of model (7) is not white. This is not
surprising considering the number of approximation intro-
duced in the meta-modelling exercise, e.g. the aggregation
of the spatially distributed deficit into just one value.
However the residual can be described as a 1st order
autoregressive process: et+1 = γ · et + ξt+1 , with ξt+1

zero-mean white noise.
In Fig. 2, the trajectory of the total deficit predicted by
the DBM model is compared with the one produced by the
simulation model. A synthetic measure of the meta-model
prediction ability is provided by the coefficient of determi-
nation, which is equal to 0.99 on both the estimation and
validation data-set.

For identifying the supply-meta-model structure, first of
all observe that for each cell of the irrigation district (say
the i-th), the simulation model estimates the irrigation

supply Q
(i)
i,t+1 on the basis of the water demand of the

cell (which is in turn a function of the deficit d
(i)
t and the

transpiration T
(i)
t+1), the available resource (i.e. the volume

Qt+1 diverted from the Adda River into the Muzza canal
times the average efficiency η of the water distribution
network) and the irrigation scheduling. To define the
supply-meta-model let us imagine for a while that there
was no irrigation scheduling: in that case the irrigation
supply would be given by

0 100 200 300 400 500 600 700
0

2

4

6

8

10

x 10
6

days

d
e

fi
c
it
 (

m
3
)

simulation model
deficit−meta−model

Fig. 2. Trajectories of the total deficit computed by the
simulation model (solid line) and predicted with the
deficit-meta-model (dashed line) for the two years of
the validation data-set.

Qi,t+1 = min{η · Qt+1,Wt+1} (8)

where Wt+1 is the water demand of the irrigation district
defined by (4). When scheduling is present, equation (8)
does not express the irrigation supply, but only an upper
bound of it, since not all the stressed cells can be served
in a single round. However we do not know which cells can
be served, since this is a spatially distributed information
which is not available within a meta-model. Then, we
can only try to estimate this lost information by taking
into account the past story of the system. To do this,
we approximate the fraction of the water demand Wt+1

that is actually served during the round with the following
estimator

W̃t+1 =w0,1 · Tc,t+1 + ... + wn1,1 · Tc,t+1−n1
+

+ w1,2 · dt + ... + wn2,2 · dt−n2
(9)

Then, the irrigation supply is given by equation (8), where

Wt+1 is replaced by W̃t+1.
The order [n1, n2] of model (9) is chosen by trial-and-
error, while the parameters are estimated with a Refined
Instrumental Variable method, as in model (7). Remember
that, in the perspective of using the meta-model with
dynamic programming, it is necessary to keep the model
order as low as possible. Unlike the deficit-meta-model,
where the model with the lowest possible order was found
to have satisfactory performances, here the minimization
of the number of regressors implies a reduction of the meta-
model performances, as shown in Table 1. The adoption of
a [1, 1] model implies a performances reduction of about
10% with respect to the [2, 2] model. Fig. 3 compares
the trajectories produced by the [1, 1] model and the
simulation one.

Model (9) is very simple and its estimation ability might
be judged not completely satisfactory. However, the per-
formance of this model should not be judged per se, but
considering the effect on the prediction of the total deficit,
which is the meta-model output we are interested in. The
combination of the two meta-models produces satisfactory
results: the coefficient of determination of model (7), fed
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Table 1. Coefficient of determination R2 over
the estimation and validation data-set for dif-

ferent orders of the model (9).

nb1 nb2 R2 R2

(tar) (val)

1 1 0.64 0.67
2 1 0.67 0.72
1 2 0.70 0.72
2 2 0.73 0.78
4 4 0.74 0.80
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Fig. 3. Trajectories of the irrigation supply computed by
the simulation model (solid line) and estimated by the
supply-meta-model (dashed line) for the two years of
the validation data-set.

with an irrigation supply Qi,t+1 computed with model (9),
is equal to 0.98 both on the estimation and validation data-
set. This confirms that a simple model is sufficient for our
purpose.

5. CONCLUSION

The paper shows the development of a meta-model to ap-
proximate the output of a complex, distributed parameter
simulation model of an irrigation district in northern Italy.
Notwithstanding its simple structure, the meta-model pro-
vides satisfactory results in one-step-head prediction, as
well as a physical interpretation of the simulation model
dynamics. Future research will concentrate on the integra-
tion of this meta-model into the global model of the Lario
basin water system (which already encompasses the Lake
of Como and its catchment) in order to design efficient
release policies for the Lake of Como, with control laws
depending on both the lake storage and the total deficit in
the irrigation district. This will be possible thanks to the
low order of the identified meta-model, which guarantees
tractability of the optimal control problem with stochastic
dynamic programming, while it would have been precluded
with the simulation model, which employs thousands of
state variables.
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