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Abstract: In this paper a method for coverage control for a convex region D ⊂ R
2 in a dynamic

environment is studied. An information map is introduced in which the information about each
point is decaying with respect to time s.t. the robots must revisit them periodically. Also a time-
varying density function is used for modeling moving points of interest. The considered gradient
based control approach causes the cost function to stay within the desired bounds. But due to
the non-stationary problem setup caused by the information decay it does not converge to a
single point but to a bounded set, such that the robots keep gathering information continuously.
With this method it is possible to gather information about several points of interest within
the region D with only a few robots. In the end simulation results are presented to outline the
effectiveness of the proposed control law.

1. INTRODUCTION

Natural disasters with their need for quick humanitarian
help as well as military and surveillance operations and
tasks in hazardous environments are major application for
robots. In these kind of applications we often have to deal
with additional difficulties like an adversarial environment,
constraints (e.g. time restrictions, limited communication
capabilities, etc.) and changing mission objectives. But for
the use of robots in these scenarios they also must be
economically reasonable. This is the motivation for the
approach of this paper to use only a few robots, which
should gather information in a specified area.
Recently a lot of research results came up for the area of
coverage control. A very nice introductory overview can
be found in Mart́ınes [2007]. Most of the results rely on
Voronoi tessellations. For example in Cortés [2004] a gra-
dient descent to reach the optimal Voronoi configuration
is proposed and in Mart́ınes [2004] coverage control al-
gorithms for robot groups with limited-range interactions
are presented. Other results use some explicit information
measures to express a gain of information. For instance
Olfati-Saber [2007] proposes an algorithm which causes
mobile agents with a dynamic network topology to im-
prove their estimation of a moving target. In Mart́ınez
[2005] motion coordination algorithms which maximize the
determinant of a Fisher Information Matrix are presented
and in Basir [1995] a solution to an active sensing task
is given which minimizes the variance of the estimation
error and thus reduces the uncertainty of the target state.
In addition there are also results like Ahmadzadeh [2007]
which are based on receding horizon control or MPC.
In this paper the problem of gathering information and
monitoring an area with only a few robots is addressed.
The aim was to derive results, which are applicable for
infinite time and therefore not converge to a single point
but to a bounded set. In order to achieve that, an idea
similar to the effective coverage function in Hussein [2007]

but with the novel concept of an information model with
information decay is introduced.
The paper is organized as follows. In section 2 the problem
setup and the necessary definitions are presented and
explained. Then the control law will be introduced and
discussed in section 3. The results were validated by ex-
tensive simulations. In section 4 a simulation for covering
a square area with a moving point of interest is presented
before a conclusion and the possible extensions of this work
are stated in section 5.

2. PROBLEM SETUP

In this paper Q = R
2 denotes the configuration space of

the agents. Let D be the area which should be monitored
by the agents. D must be a convex subset of Q. Throughout
the paper R

+ = {a ∈ R | a ≥ 0} is used.

2.1 Agent model

Let A = {Ai | i ∈ S = {1, 2, 3, . . . , N}} be the set of
agents consisting of the single agents Ai with N being
the number of agents and S being the index set of the
fully connected network which means that it contains the
indices of all agents. Let qi ∈ Q denote the position of
agent Ai. All agents Ai satisfy the kinematic equation

q̇i = ui, i ∈ S (1)

with ui ∈ R
2 as the control input of agent Ai. It is assumed

that the underlaying dynamics of the agents are controlled
by low level controllers which use ui as reference input.

2.2 Measurement function

The measurement function

Mi (si) : D × Q → R
+ with si = ‖p − qi‖

2
(2)

of the agent Ai is defined as a C1-continuous map that
describes the sensing performance of that agent. Sensing
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performance in this case means how much information the
agent can get about a fixed point p ∈ D depending on his
own position. Naturally sensing performance is decreasing
when the distance to the agent increases, which leads to
the assumption of Mi being a monotonically decreasing
function of the distance between a point p ∈ D and

the position of the robot qi:
∂Mi

∂si

∣
∣
∣
si=‖p−qi‖

2
≤ 0 ∀p ∈

D and qi ∈ Q ∀i ∈ S. Additionally the agent can only
gather information in a certain area around his position.
Therefore the sensor area of the agent Ai is defined
as Wi =

{
p ∈ D| ‖p − qi‖ ≤ r2

i

}
with the sensor range

ri. This leads to the following additional assumption on

the measurement function: Mi (si) = ∂Mi

∂si

∣
∣
∣
si=‖p−qi‖

2
=

0 ∀p ∈ D \Wi =
{
p|si ≥ r2

i

}
. Now let the measurement

map

M(s) =
∑

i

Mi(si) ∀i ∈ S (3)

be defined as the sum of all measurement functions and s
be the set containing all si.
An example of such a measurement function is

Mi(si) =







Ci

r4
i

(si − r2
i )2 if si ≤ ri

0 if si > ri

(4)

which is also depicted in fig. 1.

Fig. 1. Meassurement function (4) with Ci = 2 and ri = 5.

2.3 Information model

Let the information map be defined as I(p, t) : D ×
R

+ → R
+. The evolution of the map is modeled with the

following partial differential equation:

∂

∂t
I(p, t) = δ I(p, t) + M(s) (5)

with the decay rate δ ≤ 0. The information map indicates
how much information the agents have gathered about the
points p ∈ D. It consists of two parts. The first part
δ I(p, t) represents the information decay whereas the
information map M(s) in the second part represents the
information gain. For δ < 0 the information is decaying
over the time s.t. all the points have to be revisited fre-
quently in order to keep the information level high. For
δ = 0 the results of Hussein [2007] are a special case of the
results presented in this paper.

In this method δ, Iref (p) and ki are considered as de-
sign parameters. Iref (p) is the reference information map
which gives the level of information the robots should
gather for each point of D and ki are the feedback gains.
While according to (7) the feedback gains are directly
related to the velocity of the robots, the choice of δ
and Iref (p) is more complicated. But according to (5)
δ Iref (p) + M(0) ≥ 0 should hold for all p ∈ D because
otherwise Iref (p) never can be reached in all points p ∈ D.
An explicit relation between the speed of the robots and
the design parameters will be the subject of further re-
search.

2.4 Density function

Let φ(p, t) : D × R
+ → R

+ be the time-variant positive
semi-definite density function which represents the regions
of interest in the area D. The robots will always spend
particular interest on gathering information in regions
where the density function has a high value and will
gather information about adjacent regions only if they
already have gathered enough information about that
regions of interest. Moving points of interest such as the
targets of a surveillance operation can be represented
by the moving peaks of a time-variant density function.
This will cause the robots to follow these peaks. There
are two assumptions on φ(p, t). First, it must be two
times continuously differentiable with respect to time. This
assumption is not very restrictive due to the fact that
real points of interest also can not instantly change their
position. And possible newly detected points of interest
can be incorporated by a slowly rising peak. Second,
∂φ
∂t

(p, t) ≪ ki and ∂2φ
∂t2

(p, t) ≪ ki must hold which
physically means that the speed and the acceleration of
the target has to be small compared to the robot. In
this paper the time-varying density function is assumed
to be pre-known and the problem of online-estimation and
adaption is not considered. But there are already existing
results and algorithms available from the field of computer
science.

2.5 Cost function

Let

J(t) =

∫

D

h(Iref (p) − I(p, t)) φ(p, t) dp (6)

be the cost function which should be minimized with the
penalty function h(eI) which penalizes a lack of coverage
which in addition is weighted according to the importance
of the area denoted by the density function. There are
some necessary assumptions on the penalty function h(eI)
with eI = Iref (p) − I(p, t):

A1 h(eI) must be piecewise ∈ C1

A2 h(eI),
∂h
∂eI

(eI),
∂2h
∂e2

I

(eI) > 0, ∀eI > 0

A3 h(eI),
∂h
∂eI

(eI),
∂2h
∂e2

I

(eI) = 0, ∀eI ≤ 0

A2 and A3 basically mean that only a lack of information
is penalized but not having too much information. For
instance the function h(x) = (max(0, eI))

2 will be used
for the simulation.
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3. MAIN RESULT

Now the control law is introduced which will cause the
objective function (6) to stay bounded and its validity
is proven by a Lyapunov function approach. In addition
there will be a short physical interpretation of the problem
and a relation between the decay rate δ and the achieved
performance will be discovered. Then the theorem will be
extended for partially or even non connected robot groups.
The following abbreviations will be used:

h′(eI) =
∂h

∂eI

∣
∣
∣
∣
eI=Iref (p)−I(p,t)

h′′(eI) =
∂2h

∂e2
I

∣
∣
∣
∣
eI=Iref (p)−I(p,t)

M′(si) =
∂Mi

∂si

∣
∣
∣
∣
si=‖p−qi‖

2

Fully connected robot group: As a starting point a
fully connected robot group is considered, which means
that each agent can communicate with all other agents.
Thus the index set is S = {1, 2, 3, . . . , N}. Consider the
following control law

ui(qi) = −ki

∫

Wi

h′(eI) M
′(si) (p − qi) φ(p, t) dp (7)

with the feedback gains ki ∈ R
+.

Please note that the input for each agent Ai only depends
on his own position qi explicitly. The information about
the positions of the other robots are only used indirectly
through the use of the information map I(p, t) in the
penalty function. According to equation (5) only for the
evolution of the information map the information about
all robot positions is required. This corresponds to the
concept of a ’world model’ which often can be found in
computer science literature on artificial intelligence.
Note further that it is not necessary to evaluate the
integral over the whole area of D. Because M ′(si) =
0 ∀p /∈ Wi holds by definition, it is sufficient to evaluate
the integral over Wi. While this reduces computational
effort it causes the problem of local minima which will be
solved later.
A closer look at the control law will reveal that it ’sums
up’ the weighted vectors from the robot to each point
p ∈ Wi. The use of the gradient of the error distribution
inside Wi causes the robot to move in the direction with
the maximum error inside its sensor range. Through the
following remark this can be seen easily.

Remark 1. Here some properties which are often used in
mechanics but also hold for more general problems will be
reviewed. For a region V ⊂ R

n and a generalized mass
density function ρ(p) with p ∈ V , the generalized mass
and generalized center of mass is given as follows:

MV =

∫

V

ρ(p) dp (8)

CV =
1

MV

∫

V

p ρ(p) dp. (9)

By splitting up the integral and using (8) and (9) with
V = Wi and ρ(p) = h′(eI)M

′φ(p) we find out that the
control law (7) can also be expressed as follows:

ui(qi) = −ki MWi
(CWi

− qi) (10)

Note that the control law can become zero if h′(eI) is equal
to zero everywhere in Wi even if J(t) is not equal to zero.
This happens if the following condition holds:

I ≥ Iref ∀p ∈ Wi
A3
⇒ h′ = 0 ∀p ∈ Wi

(7)
⇒ ui(qi) = 0 (11)

To move the robot away from condition (11) the following
simple linear control law is used

ûi(qi) = −k̂i (qi − p̂i) (12)

with the control gains k̂i ∈ R
+. The only requirement

on the point p̂i is that it has to drive the robots away
from condition (11). How to choose p̂i specifically is not
considered in this paper. But one possibility is to choose
p̂i as the nearest point for which condition (11) does not
hold. A more detailed discussion of the second control law
can be found in the remark after the proof of the following
theorem.

Theorem 1. Under the given assumptions the control law

u∗
i (qi) =

{
ui(qi) if h′ 6= 0 for some p ∈ Wi

ûi(qi) if h′ = 0 ∀p ∈ Wi

(13)

with sufficiently large gains ki, k̂i ∈ R
+ will hold the

objective function within the bounds C > J(t) ≥ 0 ∀t > 0.
Therefore it will cause the robots to continuously gather
information in D.

Proof. For the proof (6) will be used as a common
Lyapunov function V (t) for the switching control law (13).
Due to the non-stationary problem setup it is only possible
to keep the cost function within the stated bounds. In
order to achieve that the control law is used to ensure
V̈ (t) < 0 whenever V̇ (t) > 0 holds. As stated before it
is sufficient to integrate the control law only over Wi but
in order to unify the integration process it is also feasible
to integrate over D because M′(si) equals zero outside of
Wi.
But first the stated bounds should be derived. From (5) it
is obvious that the lower bound Imin(p) = 0 ∀p ∈ D for
I(p, t) exists. Then the maximum difference, and because
of A2 therefore also the maximum value of the penalty
function h(eI), is eI = Iref − Imin = Iref . And because -
according to A3 - differences in the other direction (eI < 0)
are not penalized this is the case in which the penalty
function reaches its maximum. Hence the upper bound C
for the cost function is J(t) ≤ C =

∫

D
h(Iref )φ(p)dp. For

N > 0 equality can only be achieved for t = 0 and an
initial information map I0(p, 0) = 0 ∀p ∈ D but not for
any t > 0 because as long as there is at least one robot
in D it will cause the measurement map to be M(s) > 0
for some p̄ ∈ D and according to (5) this will cause the
information map to be I(p̄, t) > 0. Hence the value of cost
function will be smaller. Since this is a very conservative
upper bound which is also not related to the control law,
more research will be done on finding a better upper bound
C. According to A3 the lower bound is J(t) ≥ 0 for eI ≤ 0.
The lower bound is only reached if there are enough robots
s.t. M(s) ≥ −δ Iref ∀p ∈ D holds for all time. This
basically means that there are enough robots to keep the
measurement map high enough s.t. the information map
never drops below the reference information map after it
exceeds it for the first time.
The common Lyapunov function and its derivatives will be
discussed in the following. The exclamation marks should
indicate that these inequalities are not necessarily fulfilled
but should be fulfilled in the below stated cases.
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V (t) =

∫

D

h(eI)
︸ ︷︷ ︸

≥0

φ(p, t)
︸ ︷︷ ︸

≥0

dp ≥ 0 (14)

V̇ (t) =

∫

D

h′(eI)
︸ ︷︷ ︸

≥0

(−δ I(p, t)
︸ ︷︷ ︸

≥0

−M(s)
︸ ︷︷ ︸

<0

) φ(p, t)
︸ ︷︷ ︸

≥0

dp

+

∫

D

h(eI)
︸ ︷︷ ︸

≥0

∂φ

∂t
(p, t)

︸ ︷︷ ︸

?

dp
!
≤ 0 (15)

V̈ (t) =

∫

D

h′′(eI) (−δ I(p, t) −M(s))
2
φ(p, t)

︸ ︷︷ ︸

≥0

dp

+

∫

D

δ
︸︷︷︸

≤0

h′(eI) (−δ I(p, t) −M(s)) φ(p, t)
︸ ︷︷ ︸

≥0

dp

+ 2
∑

i∈S

MWi
︸ ︷︷ ︸

≤0

(CWi
− qi)u

∗
i

︸ ︷︷ ︸

!

≥0

(16)

+ 2

∫

D

h′(eI)
︸ ︷︷ ︸

≥0

(−δ I(p, t) −M(s))
︸ ︷︷ ︸

≥0

∂φ

∂t
(p, t)

︸ ︷︷ ︸

?

+ 2

∫

D

h(eI)
︸ ︷︷ ︸

≥0

∂2φ

∂t2
(p, t)

︸ ︷︷ ︸

?

dp
!
≤ 0

From A2 and A3 it is obvious that inequality (14) is
fulfilled with equality iff eI = Iref (p) − I(p, t) ≤ 0 ∀p ∈
D holds.
But inequality (15) does not necessarily hold. It can be
reformulated as follows such that it shows us bounds on δ.

(0 ≥) δ ≥
−

∫

D
h′(x)M(s)φ(p, t)dp +

∫

D
h(x)∂φ

∂t
(p, t)dp

∫

D
h′(x)I(p, t)φ(p, t)dp

(17)

If this inequality is violated the objective function will
start to rise. So the goal is to keep the cost function within
bounds around that critical point. To achieve that, it has
to be verified that the cost function will decrease again
after a certain time. Therefore inequality (16) has to hold
in that case. The indicated signs of the terms in (16) are
also only necessarily true in that case. Please note that
(−δI(p, t) −M(p, t)) > 0 also does not necessary hold
pointwise but should indicate the sign of the integration
result. The input ui must be chosen s.t. the inequality
holds. This can only be achieved with a sufficiently big
positive input ui as indicated in (16). Since we assumed ∂φ

∂t

and ∂2φ
∂t2

to be small they were neglected in these thoughts.
But it might also be considered as a disturbance and in the
future one might look into that problem from the robust
control point of view.
But first let S̃ be defined as the arbitrary index set that
contains those agents, which use the control law ui, and
Ŝ as the arbitrary index set that contains those agents,
which use ûi. Of course S̃

⋃
Ŝ = S and S̃

⋂
Ŝ = ∅ have to

hold. With the use of (10), (12), (13) and vi = CWi − qi

the term of (16) which contains the input becomes:

2
∑

i∈S

MWi vi ui = −2
∑

i∈S̃

ki M2
Wi v2

i

− 2
∑

j∈Ŝ

k̂j MWj vj (qj − p̂j)

Please note that for all agents Aj with j ∈ Ŝ condition
(11) holds and thus because of

h′(eI) = 0
(8)
⇒ MWj

= 0 ∀p ∈ Wj with j ∈ Ŝ

the last term of the equation above is equal to zero and
therefor we finally obtain the inequality:

V̈ =

∫

D

h′′(eI) (−δ I(p, t) −M(s))
2

φ(p, t) dp

+

∫

D

δ h′(eI) (−δ I(p, t) −M(s)) φ(p, t) dp

− 2
∑

i∈S̃

ki M2
Wi (CDi − qi)

2

+ 2

∫

D

h′(eI)((−δ I(p, t) −M(s)))
∂φ

∂t
(p, t)

+ 2

∫

D

h(x)
∂2φ

∂t2
(p, t)dp ≤ 0

which holds for sufficiently big ki. Therefore the cost
function will stay within the desired bounds.

Remark 2. (Discussion of control law ûi(qi):)
As obvious from the proof, switching to the second control
mode ûi(qi) does not change the stability argument. But
it is immediately clear (by applying simple linear analysis)
that this control law will drive the agents Aj to the point
p̂j in infinite time. Though, it is not necessary for the robot
to reach that point because as soon as there is a point in
his sensory range for which condition (11) does not hold
(e.g. p̂j enters Wj) it will switch back to the first control
law. This shows that (12) drives the agents Aj to a state
where (10) will be used again.
We exclude cases with infinite switching here. Future work
will address this possible problem.

Partially connected robot group: Now the validity of
theorem 1 for partially or even non connected robot groups
will be shown. But first a worst case scenario is discussed.
Theorem 1 also holds for an index set S1 = 1. This means
that there is only one single agent A1 available for covering
the area D. Thus theorem 1 holds obviously for a group of
disconnected robots. In that case each robot tries to cover
D by himself without recognizing the efforts of the others.
Starting from this point the index sets Ŝi ⊆ S with
i = 1, . . . , n can be defined for n disconnected subgroups
with the properties

⋃n
i=1 Ŝi = S and Ŝi

⋂

i,j
i 6=j

Ŝj = ∅. It is

assumed that the robots of each group can communicate
with all of their group members but not with robots of
other groups. Now a group specific objective function Ĵi

for each group can be defined as

Ĵi(t) =

∫

D

h(Iref (p) − Îi(p, t)) φ(p, t) dp (18)

with the group specific information map Îi(p, t), which
also evolves according to equation (5) but with a group

specific measurement map M̂i(si) =
∑

j∈Ŝi
Mj . Obvi-

ously the inequality Ĵi(t) ≥ J(t) with equality iff Ŝi = S
holds. The new common Lyapunov function can be defined
as

V̂ (t) =
∑

i

Ĵi(t) (19)

This will lead to similar expressions as we have obtained in
the proof for the fully connected robot group and therefore
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the proof follows exactly the same strategy. This shows us
that each robot group for itself tries to cover the points of
interest.

4. SIMULATION

In this section we will see 3 robots covering a square area D
of 50x50 units length in which a point of interest is moving.
The point of interest is modeled by a Gaussian which is
moving in a counter-clockwise circular motion around the
middle point of the map.
The simulation starts with an initial information map
I(p, 0) = I0 = 0 ∀p ∈ D. As reference information map
Iref (p) = 5 ∀p ∈ D is used. The measurement function (4)
with the sensor range ri = 2 and the peak sensing capacity
Ci = 2 and the penalty function h(x) = (max(0, x))2

are used. The decay rate and the control gains are set

to δ = −0.03 and ki = k̂i = 5 respectively. For the
integrations a simple trapezoidal method is applied.
In fig. 2 the evolution of the cost function over the time
is shown. It can be seen that even with the tiny sensor
range of ri = 2 the robots manage to keep the cost
function bounded. On the last page the simulation results
belonging to the cost function depicted in 2 are shown in
two columns. In the left column the time-variant density
function φ(p, t) is depicted at different time steps. In the
right column the corresponding evolution of the informa-
tion map I(p, t) can be seen at the same time steps.
It can be seen that the robots create a high level of
information always near the peak of the density function
and therefore they have to follow its moving peak. There
are always 2 robots maintaining the high level of infor-
mation near this peak and the third robot tries to gather
information about other areas 1 .
If we would increase the sensor range, the robots could
gather more information and at a certain point all robots
would move away from the peak of the density function
to gather information somewhere else until the level of
information at the peak has dropped sufficiently. Then one
or more would move back to the peak.

Fig. 2. Cost function

1 There are videos of other simulations available at

http : //fujita.fl.ctrl.titech.ac.jp/researches/2007/search/3robots − dot1delta, phi = ones.mpg

and http : //fujita.fl.ctrl.titech.ac.jp/researches/2007/search/3rob15range phi45 + 5.mpg.

5. CONCLUSION

In this paper we have formulated a coverage control
problem with a large variety of applications. We have
introduced the novel concept of an information model
with information decay in order to derive a control law
that - under the given assumptions - causes small groups
of robots to gather information about an area without
converging to final positions and thus being capable of
monitoring an area for infinite time. Additionally this
control law can be applied in dynamic environments and
a modeling possibility for moving points of interest was
described. Then it was shown that with the introduced
control law the cost function is bounded and it was pointed
out that this control law is also valid for partially con-
nected robot groups with only minor changes. Finally a
numerical simulation was presented.
For the future there are several areas of work in addition
to the points already mentioned in the paper. Especially
collision avoidance, more realistic models of the robots,
dynamic network topologys and the use of anisotropic sen-
sors might be interesting. In addition a better cooperation
of the robots might be achieved using predictive control
methods like MPC.
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this inspiration and the grateful supply of manuscripts.

REFERENCES

S. Mart́ınes, J. Cortés and F. Bullo. Motion Coordination
with Distributed Information. IEEE Control Systems
Magazine, pages 75-88, 2007.

J. Cortés, S. Martinez, T. Karatas and F. Bullo. Coverage
control for mobile sensing networks. IEEE Transactions
on Robotics and Automation, pages 243-255, 2004.

S. Mart́ınes, J. Cortés and F. Bullo Spatially-Distributed
Coverage Optimization and Control with Limited-
Range Interactions. ESAIM: Control, Optimization and
Calculus of Variations, pages 691-719, 2005.

R. Olfati-Saber. Distributed Tracking for Mobile Sensor
Networks with Information-Driven Mobility. Proc. of
the American Control Conference, 2007.

S. Mart́ınez. On Optimal Sensor Placement and Motion
Coordination for Target Tracking. Proc. of the IEEE
International Conference on Robotics and Automation,
pages 4544-4549, 2005.

A. Ahmadzadeh, A. Jadbabaie, V. Kumar and G. J.
Pappas. Cooperative Coverage using Receding Horizon
Control. European Control Conference, 2007.

I. I. Hussein and D. M. Stipanović. Effective Coverage
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Fig. 3. Simulation: In the left column you can see the time-variant density function φ(p, t) whereas in the right column
the according evolution of the information map I(p, t) is depicted.
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