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Abstract: This paper is one of two joint papers, each presenting and utilizing a different
representation of a feedforward neural network for controller design. Here a neural state-space
model is transformed into a linear fractional transformation (LFT) representation to obtain a
discrete-time quasi-linear parameter-varying (LPV) model of a nonlinear plant, whereas in the
joint paper (Abbas and Werner [2008]) a method is proposed to transform the neural state-space
into a discrete-time polytopic quasi-LPV model. As a practical application, air charge control
of a Spark-Ignition (SI) engine is used in both papers as example to illustrate two different
synthesis methods for fixed structure low-order discrete-time LPV controllers.
In this paper, a method that combines modelling using a multilayer perceptron network and
controller synthesis using linear matrix inequalities (LMIs) and evolutionary search is proposed.
In the first step a neural state-space model is transformed into a linear fractional transformation
(LFT) representation to obtain a discrete-time quasi-LPV model of a nonlinear plant from
input-output data only. Then a hybrid approach using LMI solvers and genetic algorithm,
which is based on the concept of quadratic separators, is used to synthesize a discrete-time LPV
controller.

1. INTRODUCTION

The intake manifold of a SI Engine for air charge control
has a highly nonlinear nature, and a model that captures
the nonlinear dynamics of the plant is required to design
a controller. Linear parameter-varying (LPV) control is
an efficient way of extending well-known linear controller
design techniques to nonlinear plants. In (Kwiatkowski
et al. [2006]), a nonlinear model of the intake manifold
was presented, based on which an LPV model and the
design of an LPV controller was proposed. Constructing
an LPV model of a nonlinear plant is however not trivial,
and generating it from a physical nonlinear plant model
has two drawbacks:

• Obtaining a suitable physical nonlinear model re-
quires considerable effort and insight into the plant
dynamics. Moreover, transforming such a model into
an LPV model often necessitates approximations, e.g.
of nonlinear characteristics by polynomials.

• The physical model is typically continuous-time, and
approximating a controller designed in continuous
time e.g. using Tustin approximation may lead to
performance deterioration when the sampling rate is
limited.

An alternative approach that avoids both problems is to
identify a LPV model directly from experimental input-
output data. Neural networks such as multilayer percep-
trons (MLPs) have been shown to be able to model non-
linear systems to an arbitrary degree of accuracy and have
been successfully integrated in several control applications,
see e.g. (v. d. Boom et al. [2003]) and (Norgaard et al.
[2000]).

A method for extracting an LPV model from a multilayer
perceptron network and controller design based on this
model, was proposed in (Bendtsen and Trangbæk [2002]),
where a neural-state space model is transformed into linear
fractional transformation (LFT) form in a nonconservative
way. The key to that approach is the observation that
the LFT formulation allows for a quasi-LPV description
of a nonlinear system, in which the scheduling parameters
depend on the measured system output. In this case, the
extracted nonlinearities define the parameter variation,
and it is hence possible to exploit this for controller syn-
thesis. However, the authors of (Bendtsen and Trangbæk
[2002]) mention some drawbacks of their approach:

• The proposed controller synthesis is done in contin-
uous time and requires to convert the discrete-time
model into a continuous-time one.

• Bounds on the rate of change of the scheduling
parameters are not taken in consideration, which
leads to a conservative design.

• Only full-order controllers can be designed, which is
unattractive for practical purposes.

• Assessment of the quality of the LPV model was only
by neural network validation and not in terms of
achievable control performance.

All these issues are addressed in this paper.

A method to convert a neural state-space model into a
discrete-time polytopic quasi-LPV model in a nonconser-
vative way is proposed in the joint paper to this paper
(Abbas and Werner [2008]), that allows to apply linear
techniques such as a polytopic LPV controller synthesis
(Apkarian et al. [1996]) to a nonlinear plant.
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The problem of designing controllers for discrete or con-
tinuous time LPV systems can be solved using LMI-based
tools discussed in, e.g. (Boyd et al. [1994]) . Most of these
approaches rely on a fixed Lyapunov function for the whole
range of operation, which leads to conservatism of the
design. This conservatism can be reduced by the use of
parameter dependent Lyapunov functions when bounds on
the rate of parameter change are known, (Apkairan and
Adams [2000]) . This approach is however computation-
ally unattractive: the problem is non-convex and involves
extensive gridding. A procedure for designing a discrete-
time LPV controller that exploits known bounds on the
rate of parameter variation was proposed in (Chughtai and
Werner [2007]). In this approach the analysis technique
of quadratic separators (Iwasaki and Shibata [2001]) has
been used, and the synthesis problem is solved using LMI
solvers and genetic algorithms.

In this paper an extended version of the idea in (Bendtsen
and Trangbæk [2002]) is used to obtain an LFT repre-
sentation for the neural state-space model. The method
proposed in (Chughtai and Werner [2007]) is then used
to design a discrete time low-order LPV controller for the
model. The modeling and the controller synthesis steps
are combined in one algorithm in order to assess different
models in terms of achievable control performance, to de-
tect the best model and find a corresponding controller. To
illustrate this approach it is applied to the charge control
of a SI engine.

The paper is organized as follows. Section 2 presents a
method for transforming a neural state-space model into
a quasi-LPV model in the form of an LFT representation.
Section 3 gives an outline of the discrete-time LPV con-
troller synthesis technique as well as the proposed design
algorithm. To illustrate the algorithm, it is applied to
charge control of a SI engine in Section 4; this section in-
cludes a brief description of the nonlinear system and how
it is identified using a neural network. Finally, conclusions
are drawn in Section 5.

2. DERIVATION OF A QUASI-LPV MODEL FROM A
NEURAL NETWORK MODEL

Consider a discrete-time nonlinear model

xk+1 = g(xk, uk).

The problem considered in this section is to represent this
model in the form of a discrete-time quasi-LPV model in
LFT representation

xk+1 = Axk + B∆w∆
k + Buk

z∆
k = C∆xx + D∆uk

yk = Cxk

w∆
k = ∆kz∆

k

The idea in (Bendtsen and Trangbæk [2002]) will be
extended to construct the above quasi-LPV model from
a given multilayer perceptron (MLP) feedforward neural
network with a single hidden layer, l neurons and hyper-
bolic tangent activation function. This can be done by
transforming a neural state-space model into a LFT rep-
resentation. Assume that the nonlinear system dynamics
are described in the following neural state-space form with
zero bias in the output layer

x̃k+1 = Wo tanh(Wxx̃k + Wuũk + W̃b) (1a)

ỹk = Cx̃k (1b)

where x̃k = [ỹT
k ỹT

k−1 ... ỹT
k−ny]T ∈ R

n is the state
vector, ũk ∈ R

m is a control signal, ỹk ∈ R
p is the

output vector of the system, Wo ∈ Rn×l and Wx ∈ Rl×n,
Wu ∈ Rl×m contain the output and hidden layer weights,
respectively. W̃b ∈ R

l contains a set of biases in the hidden
layer. During the completion of the neural network model
training phase, it should be trained long enough on a
sufficiently rich training signal, and choices have to be
made for the indices l and ny, nu, the past output and
input, respectively, such that a good estimation of the
parameter matrices Wo,Wx,Wu and vector W̃b is obtained
(Norgaard et al. [2000]).

In order to remove the bias W̃b from (1a), it is assumed
that there exists an equilibrium point, (x̃k, ũk) = (x̃o

k, ũo
k),

such that

0 = Wo tanh(Wxx̃o
k + Wuũo

k + W̃b)

and this equilibrium can be determined as follows:
[

x̃o
k

ũo
k

]

= −W+W̃b (2)

where W = [Wx Wu] is assumed to have full column rank
and W+ is a right inverse. Then the network coordinates
can be changed such that the new coordinates are xk =
x̃k − x̃o

k, uk = ũk − ũo
k. As a result, (1a) can be written as

xk+1 = Wo tanh(Wxxk + Wuuk) (3)

Let the input argument to the neuron functions be given
as

ξk = Wxxk + Wuuk (4)

The effective range of ξ can be calculated as

ξj,max = sup
0≥k≥Tf

|W j
xxk + W j

uuk|

for 1 ≤ j ≤ l where k ∈ [0 Tf ] is the time interval in
which the training data have been acquired and W j

x ,W j
u

denote the jth rows in the hidden layer weight matrices.
We have the following bounds on the active input range of
the jth neuron

ξj
k = W j

xxk + W j
uuk ∈ [−ξj,max ξj,max]

Hence the neuron function response to the active input
range belongs to the sector [kj,min kj,max] where

kj,min = inf
ξ

j

k
∈[−ξj,max ξj,max]\{0}

{

tanh(ξj)

ξj

}

(5a)

kj,max = sup
ξ

j

k
∈[−ξj,max ξj,max]\{0}

{

tanh(ξj)

ξj

}

(5b)

The sector bounds must be found for each neuron func-
tion individually. As shown in Fig. 1, it is immediately
concluded that

kj,min = tanh(ξj,max)/ξj,max, kj,max = 1

Once the sector bounds are found, a nonlinear function
ω(.) : Rn+m → Rn can be defined as

ω(ξk) = tanh(ξk) −
1

2
(Kmin + Kmax)ξk (6)

where Kmin = diag{kj,min} and Kmax = diag{kj,max},
1 ≤ j ≤ l. It is observed that ω(.) belongs to the sector
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(−1/2(Kmax − Kmin), 1/2(Kmax − Kmin)). Now (3) can
be written as

xk+1 = Wo(ω(ξk) +
1

2
(Kmax + Kmin)ξk)

= Axk + Buk + B1Ω(ξk) (7)

in which A, B, B1 and Ω are given by

A =
1

2
Wo(K

min + Kmax)Wx

B =
1

2
Wo(K

min + Kmax)Wu

B1 =
1

2
Wo(K

max − Kmin)

Ω(ξk) = 2(Kmax − Kmin)−1ω(ξk)

Note that the diagonal scaling by 1/2(Kmax − Kmin) is
included in order to make the diagonal static nonlinearity
Ω belong to the sector [−1 1].

Note also that the nonlinear mapping Ω(.) is diagonal.
The gains in Ω(ξk) are considered here to be time-varying
residual gains Bendtsen and Trangbæk [2002], i.e.

∆kξk = Ω(ξk) (8)

The rate of change of the gains of the residual function can
be taken into account in the controller synthesis procedure
described below to reduce the conservatism.

Using (2), (4), (7) and (8), a discrete-time quasi-LPV
model can be determined from the neural state space
model. The method here reduces the conservatism by only
considering the neuron functions in the range where infor-
mation is supplied via the training set. Since the training
set represents the only information available about the
process, there is no straightforward way of introducing
robustness to unmodelled uncertainties. This, of course,
only makes it more important that the training set is
indeed sufficiently rich to provide information about the
behavior in the entire operating range of interest and the
frequency range at which the controller will operate.
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Fig. 1. Shifting the original hyperbolic tangent neuron
function (dashed) with bias W̃b to the origin (solid)
and defining its sector bounds.

3. DISCRETE-TIME CONTROLLER DESIGN

This section describes LPV controller synthesis based on
the model obtained in the previous section. The idea
of quadratic separators has been used - employing a
technique proposed in (Chughtai and Werner [2007]) for
discrete-time LPV systems - the existence of which is
equivalent to the existence of a parameter-dependent Lya-
punov function (Iwasaki and Shibata [2001]). This allows

to take bounds on the rate of parameter variation into
account. The method in (Chughtai and Werner [2007])
uses a hybrid evolutionary-algebraic approach for solving
the non-convex problems of low-order and fixed structure
controller design that was proposed in (Farag and Werner
[2004]). The idea is to decompose the non-convex problem
into a convex subproblem with a large number of variables,
solved by Riccati or LMI solvers, and a non-convex sub-
problem which is solved by evolutionary search methods.
The evolutionary search can be carried out for a discrete
time LPV controller that minimizes the induced L2 norm
of the closed-loop system from wp to zp as illustrated in
Fig. 2, while LMI solvers are used to find a quadratic
separator.

The generalized plant P , as shown in Fig. 2, includes the
model of the plant and the weighting filters for perfor-
mance. The generalized plant and the controller depend
on the parameter matrix ∆ in an LFT manner as given in
(4), (7), (8) for the plant and for the controller K(∆) as
follows:

K(∆) =

[

Ac Bc

Cc Dc

]

+

[

Bc
∆

Dc
1,∆

]

∆
[

Cc
∆ Dc

∆,1

]

(9)

The closed-loop system can be described by the following
LFT structure

xk+1 = Axk + B∆w∆
k + Bpw

p
k (10a)

z∆
k = C∆xk + D∆w∆

k (10b)

zp
k = Cpxk + Dpw

p
k (10c)

w∆
k = ∆kz∆

k (10d)

where w∆
k , z∆

k ∈ R
l, wp

k ∈ R
d, zp

k ∈ R
v, and ∆k =

diag(∆k,∆k) where each ∆k ∈ Rl×l. It should be noted
here that the dimension of the uncertainty block ∆k is
equal to the number of neurons in the hidden layer of the
neural network model. The condition on the induced L2-
norm, derived in (Chughtai and Werner [2007]), is repeated
here for completeness. Define a set of matrices and scalings
according to

A =

[

A B∆

0 0

]

, B =

[

Bp 0 0
0 I 0

]

,

C =















C∆ D∆

C∆A C∆B∆

C∆A C∆B∆

0 I
0 0
0 0















, D =















0 0 0
C∆Bp D∆ 0
C∆Bp D∆ 0

0 0 0
0 I −I
0 0 I















,

E =

[

Cp 0
0 0

]

, F =

[

Dp 0 0
I 0 0

]

(11)

SD := {D : D∇ = ∇D,D = DT > 0} (12a)

SG := {G : G∇ = ∇G,G + GT = 0} (12b)

where

∇ := diag(∆k,∆k,∆δ
k), (13a)

∆k = diag{q1,kIr1
, ..., ql,kIrl

}, (13b)

∆δ
k = diag{δq1,kIr1

, ..., δql,kIrl
}, (13c)

= ∆k+1 − ∆k (13d)

and all varying parameters qi,k and their changes δqi,k are
bounded such that |qi,k| < φi and |δqi,k| < ρi, ∀ i = 1, ..., l,
where the index ri represents the multiplicity of the ith

uncertainty. The following Theorem gives a performance
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∆

∆

Fig. 2. Closed-loop system with model uncertainty ∆

measure for the closed loop (Chughtai and Werner [2007]).

Theorem 1. The LPV system described by (10a) - (10d)
is stable and has worst case induced L2-performance less
than γ if there exist real symmetric matrices P > 0, S and
R such that with A, B, C, D, E , F as defined in (11) the
following conditions hold







A B
C D
I 0
E F







T 





P 0 0 0
0 Θ 0 0
0 0 −P 0
0 0 0 Γγ













A B
C D
I 0
E F






< 0 (14a)

[

I
∇

]T

Θ

[

I
∇

]

> 0, Γγ =

[

I 0
0 −γ2I

]

(14b)

where

Θ :=

{ [

ΥRΥ S
ST −R

]

: R ∈ SD, S ∈ SG

}

(15a)

Υ := diag(Υφ,Υφ,Υρ) (15b)

Υφ := diag(φ1Ir1
, ..., φlIrl

) (15c)

Υρ := diag(ρ1Ir1
, ..., ρlIrl

) (15d)

Proof. see (Chughtai and Werner [2007])

The conditions in (14) and (15) - for a given controller
are linear in the variables γ, P , S, and R. To determine
the optimal performance measure, one needs to find the
solution of the problem

min
P,S,R

γ subject to equations (14) and (15) (16)

which can be computed with the help of LMI solvers. Using
the above analysis result, the nonconvex controller synthe-
sis problem can be solved using a hybrid evolutionary-
algebraic approach proposed in (Chughtai and Werner
[2007]), which is briefly reviewed here. Let Ki denote indi-
vidual controllers, which can have a simple structure and
low order, and Ai the corresponding closed-loop system
matrix in (10a). The synthesis procedure can then be
summarized as follows.

• Generate an initial random population of controllers
{K1, ...,Kµ}.

• Evaluate the objective function

f(Ki) =







γ̂ if Ai is stable,
κ(Ai) + βu if Ai is unstable,
βs if Ai stable, (16) infeasible

where γ̂ is the solution to the minimization problem
(16). The term κ(Ai) denotes the maximum real part

of the eigenvalues of Ai, and βu ≫ βs represents
a penalty for destabilizing controllers and infeasible
inequalities, respectively.

• Evolve the current population, i.e. use ranking to
evaluate the fitness and apply evolutionary operators
(mutation and crossover).

• Repeat the steps Evaluate and Evolve until a stop-
ping criterion is met.

3.1 Modelling for Controller Synthesis

The choice of the structure (ny, nu, l) of the neural state-
space model is not trivial. Moreover, validation of the
neural network model alone is not enough to say that
it is the best representation of the plant. It is proposed
here to combine the controller synthesis step with the
modeling step in order to find the best model in the
sense of achievable control performance. This can be done
by training a set of neural networks in state-space form
with different structures, possibly using different training
signals. The modelling and synthesis procedure described
above is then applied to all models in the set, and the
achieved control performance is compared.

4. APPLICATION TO CHARGE CONTROL

In the following, the design procedure described in the
previous section will be applied to a nonlinear model of
the intake manifold of a SI engine (Kwiatkowski et al.
[2006]) for air charge control. The nonlinear dynamics of
the system can be represented as a discrete time quasi-
LPV model based on the neural network model from the
input-output data only. Since the engine is controlled by a
digital controller and the model is in discrete-time form, a
direct discrete-time design of an LPV controller is possible.

4.1 The Intake Manifold of a SI Engine

The intake manifold is not an isolated system but it is part
of the overall system of the vehicle, Fig. 3. The nonlinear
engine block generates the torque Te from the normalized
air charge mnac and the motor speed N , and the vehicle
model generates the motor speed from the torque and
some fixed environmental conditions. The opening of the
throttle valve in the intake manifold αlim is used to control
the amount of the normalized air charge. It should be
noted here that the speed of the engine influences the
internal dynamics of the intake manifold and the engine.

The vehicle model as shown in Fig. 3 has integral behavior;
for this reason the loop is closed between the engine speed
and αlim through a proportional gain Kp as shown in Fig. 3
in order to stabilize the engine speed during the input-
output data collection for system identification.

4.2 Nonlinear System Identification with Neural Networks

Generating an input signal to excite the different dynam-
ics of the nonlinear system is a crucial step in system
identification. The required operating ranges, the sampling
frequency and the bandwidth of the system are important
information to design a rich training signal. As shown in
Fig. 3, the intake manifold system has two inputs αlim

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7430



vehicle
N

V

+
-

+

+
engine

Nref
KP

Overall system

Temnacαlim

manifold

Fig. 3. Overall system in the closed-loop identification

and N , and a single output mnac. The aim here is to
construct a single-input single-output black box model
based on the neural network that is robust against the
variation of the engine speed. This can be achieved if the
training signal excites the input-output operating ranges
at different levels of the engine speed. For this purpose,
a random signal, Nref , in the low frequency range is
designed to cover the whole range of the engine speed and
another pseudo-random multilevel sequence V in the high
frequency range (Norgaard et al. [2000]), up to the Nyquist
frequency, is designed to excite the input-output dynamics
of the system (from αlim to mnac). The way the signals
enter the loop is shown in Fig. 3. The input output data
are collected and divided into training and validation sets.
The required operating ranges for the different variables
to design the input signal are as follows

mnac ∈ [10 80]%, αlim ∈ [0 100]%, N ∈ [760 6250]rpm

Here an NARX structure is used as the neural network
model structure with different values of ny, nu, l. Several
feedforward networks with different structure were sepa-
rately trained using the Levenberg-Marquardt optimiza-
tion algorithm (Norgaard [2000]), and it was validated
that each model had learned the behavior of the intake
manifold system and was robust against the variations
of the engine speed through k-step ahead prediction of
a separately generated validation set. In this way a set of
neural state-space models was determined.

4.3 Controller Implementation and Simulation Results

The first step in the proposed design approach is to
convert the neural network models into LFT form using
the method in Section 2 to obtain discrete-time quasi-LPV
models. Next, controllers are designed for these models.
The design objectives considered here are

• Rise time tr < 0.3s
• Zero steady state error
• Small overshoot
• Constraint on actuator usage

To meet these objectives, two weighting filters were de-
signed: WS for sensitivity and WKS for control sensitivity.
These were chosen as:

WS =
0.4z−1

1 − 0.7z−1
, WKS = 0.01 (17)

For implementation in the electronic control unit of the
car, a low-order controller is required. Thus, a LPV-PID
controller was designed using the approach presented in
Section 3. The controller has the structure

K(∆) = KP (∆)+KI(∆)
T

2

1 + z−1

1 − z−1
+

KD(∆)

1 + αT
2

1+z−1

1−z−1

(18)

AD

z
−1

z
−2

z
−1

DA

A
D

++
-

K(θ)

+ -

P.F 1

Sch. signals

αlim
mnac

manifold

Kaw

Fig. 4. Block diagram of the closed loop system

where T is the sampling time and α ia a suitable constant
to make the PID controller realizable. The controller K∆ is
converted into LFT form (9). Next the generalized plant,
as shown in Fig. 2, is constructed with the weighting filters
WS and WKS included in the performance channels. The
synthesis procedure is then applied to find and tune the
coefficients of K(∆). Thus a LPV-PID controller has been
designed for each model (provided that (16) is feasible).
The controllers are then tested on the nonlinear model of
the intake manifold. To avoid windup effects after actuator
saturation, an anti-wind up is applied to the integral part
of the LPV-PID controller as proposed in (Kwiatkowski
et al. [2006]). By comparing the achieved performance
(in terms of the induced L2 gain), the best controller
and the corresponding model are determined. Here the
control algorithm was applied to twenty neural state-space
models with different structure, and the best model has
l = 3, nu = 1 and ny = 2 and the smallest induced L2

norm achieved is γ ≈ 2. The discrete-time controller is
connected to the continuous-time nonlinear model through
digital-to-analog and analog-to-digital converters as shown
in Fig. 4, together with the anti-windup and a pre-filter,
which is used to shape the step response. The closed-loop
tracking performance is illustrated in Fig. 5 and Fig. 6. The
controller follows the reference trajectory in a satisfactory
manner, with a rise time between tr = 0.1s and tr = 0.25s,
without overshoot, and the maximum undershoot is less
than 2.3%. The simulation results also show that the
integral gain KI is adjusted more heavily than the other
gains.

It is worth to mention that the achieved performance here
is nearly the same as that achieved by the controllers
which were designed based on a physical model given in
(Kwiatkowski et al. [2006]). On the other hand, a slight
improvement in the achieved performance here compared
to the one achieved with the method in (Abbas and Werner
[2008]) and designed for the same system is because in
(Abbas and Werner [2008]) the controller design was based
on a fixed Lyapunov function for the whole operating
region, which results in more conservatism in the controller
design. The approach based on a parameter-dependent
Lyapunov function presented in this paper reduces that
conservatism and hence improves the performance.

Remark 1: The synthesis method used here for the
discrete-time LPV controller assumes that there is no
feedforward connection between the input performance
channel wp

k and the input channel to the uncertainty
block z∆ in the closed loop system, see (10b), i.e. the
D matrix from wp

k to z∆k should be zero. Unfortunately,
in the example here, when the generalized plant, Fig. 2
was constructed with the weighting filters included in the
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Fig. 6. Zoomed plots of different parts of the trajectory

performance channels, the D matrix turned out to be non-
zero. This problem was dealt with by simply adding a one-
step delay z−1 to the input performance channel wp

k.

Remark 2: It should be pointed out that the dimension
of the ∆ block (8) depends on the number of neurons
in the hidden layer of the neural state-space model, and
the efficiency of the synthesis approach is improved as the
dimension of this block is reduced, because the number of
the design variables is decreased. This should be taken in
consideration when the number of the hidden neurons is
chosen during the modelling stage.

Remark 3: Integral action explicitly appears in the PID
controller, which makes the use of anti-wind up more
straightforward to deal with the saturation problem in
comparison with a full order controller, which has no
explicit integrator.

Remark 4: Figure 4 shows that the scheduling signals of
the LPV-PID controller depend only on the input and the
output signals of the nonlinear system, thus there is no
need to measure any additional signals. This is a useful
feature of the proposed black box modelling method.

5. CONCLUSION

This paper presents the design of a discrete-time low-order
LPV controller for the air charge control of a SI engine,
which is modelled as neural state space model. The design
procedure integrates modelling and controller synthesis. A
number of discrete-time quasi-LPV models in LFT repre-

sentation are derived from neural state-space models in the
modelling step. A hybrid evolutionary-algebraic synthesis
procedure is used to design low-order discrete-time LPV
controllers for these models that guarantee stability and
performance for a wide range of operation. The inherent
conservatism in the synthesis step is reduced by using the
concept of quadratic separator, which takes into account
bounds on the rate of change of the parameters. The
proposed method resolves all issues that were left open in
(Bendtsen and Trangbæk [2002]). Different neural state-
space models are assessed according to the performance of
the corresponding controller on the nonlinear system. The
proposed method was successfully applied to the charge
control problem and resulted in a discrete-time LPV-PID
controller, that achieved the same performance as a previ-
ously reported LPV-PID design for this problem that was
based on a nonlinear physical model.
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