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Abstract: This paper presents an approach to adapt the suppression and scaling factor from a single input 

single output (SISO) dynamic matrix controller (DMC) thought a multiobjective optimization algorithm. 

To optimize, a nonlinear neural network (NN) process model is used, combined with a multiobjective 

evolutionary algorithm called SPEA II (Strength Pareto Evolutionary Algorithm) to find better controller 

parameters for the plant each sample time. Also every sample time, a decision over the resultant pareto 

front from the multiobjective optimization process are taken using a simple decision approach.  

 

1. INTRODUCTION 

Industrial Model Predictive Controllers were introduced in 

the 1970s as an industrial alternative for designing controllers 

based on plant-data based dynamics without fitting a given 

structure.  Two technologies were developed back then, 

IDCOM (Identification Command) and DMC (Dynamic 

Matrix Control, Qin and Badgwell (2003), presents a history 

of their evolution.  According to a survey in Japanese 

Industry (Takatsu and Itoh, 1999) MPC controllers present a 

combination of high expectation and high technical 

possibility trend.   

DMC controllers are designed using step response from the 

process about an operating condition.  Then a dynamic matrix 

is generated based on the unit step response vector and the 

control horizon to be used.  The resulting number of rows in 

the dynamic matrix is called the prediction horizon (Cutler 

and Ramaker, 1980).  Even though no structure is fitted, the 

dynamic model is linear and stationary (principle of 

superposition is used in the controller design).   

Applications of DMC are presented in boiler level control 

(Zou, et al., 2004), steam temperature regulation in a 300 

MW thermal power plant (Sanchez-Lopez, et al., 2004), 

intermittently stirred, and thickness control in battery 

separator plants (Zhang , et al., 2004).   

Accounting for process nonlinearities has been a concern 

ever since DMC was created.  Kumar et. al. developed a 

discrete-time globally linearized control to account for 

process nonlinearities while solving a quadratic form of the 

DMC controller (QDMC).  Guiamba and Mulholland (2004), 

presented an Adaptive Linear DMC for processes with 

integrating behavior using a holistic technique that recognizes 

residual integration disturbances and matrix parameter 

variation.  Chen and Yea (2003), created a modified QDMC  

 

 
Fig. 1.  Proposed adaptive strategy.   

 

integrating the DMC algorithm with a neural network 

performing instantaneous linearization of the neural network 

model at each sampling time.  

This article present an adaptation approach for a SISO 

DMC using neural networks as process model in the 

multiobjective evolutionary optimization algorithm to find 

the best suppressions and scaling factors at each sample time. 

 

2. PROPOSED STRATEGY 

Fig. 1 shows the proposed adaptive control architecture, 

which consists of four main components: a reference model, 

an evolutionary algorithm, a nonlinear neural network model 

and the dynamic matrix controller (DMC). 

The nonlinear model was obtained trough a fast training 

feed-forward neural network called Random Activation 

Weights Neural Network (RAWN). This model is updated 

online trough a recursive least square (RLS) approach. 

The reference followed by the DMC was a second order 

model instead of a step reference which in generally it is not 

possible to follow for most of industrial processes. 

The evolutionary algorithm adapts the suppression and the 

scaling factor from the DMC control law using the neural 

network (NN) to predict the future process behavior. Every 

sample time the algorithm searches for the parameters that 

minimize the objective functions simultaneously and meet the 

restrictions imposed by the optimization problem. 
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The evolutionary algorithm found a Pareto front at each 

sample time, where there are many possible controllers to 

choose one, but a decision are made using the procedure that 

will be explained in section five. 

 

3. NONLINEAR MODEL USING NEURAL NETWORKS 

3.1 Discrete dynamic model structure 

Generally a nonlinear system with multiples inputs and 

multiple outputs (MIMO), with a vector input 

u(t)=[u1(t)...un(t)] and an output vector y(t)=[y1(t)...ym(t)]
T
 

can be described by the following function (Rajapakse, et al., 

2002): 

 

                             ( ) ( )( ) ( )ttf νϕ +=ty  (1)                     

 

Where f =[f1...fm]
T
, is a nonlinear vector function. ϕ(t) is 

called the regression vector and it is composed by the past 

values from y(t) and u(t), which are usually called as 

regressors. The last term ν(t), represent the model error. 

Typically the function f is nonlinear and unknown and we 

wish to approximate it from input–output data such that ν(t) 
is small (Rajapakse, et al., 2002). 

For this purpose there are many possible methods, such as 

higher order polynomials, Takagi-Suegeno or Mandani fuzzy 

models and neural networks, which uses input-output data 

and expert knowledge to achieve their job.  

In this work a feed-forward neural network are used to 

map the nonlinear function f from the process. Two basic 

forms for the system model are used when neural networks 

are utilized in this approach: the Nonlinear Auto Regression 

with Exogenous inputs (NARX), and the Nonlinear Output 

Vector (NOE). The differences between them are the 

elements in the regression vector ϕϕϕϕ(t).  
The NARX model uses the past values from inputs and 

outputs in the regression vector which has the following 

form: 
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where du and dy are the maximum delay considered for every 

input and output respectively (Narendra  and Parthasarathy, 

1990)  

The NOE model uses the same regression vector from the 

NARX model, substituting the past output values y(t-k) with 

past predicted outputs ŷ(t-k). The NARX model is only used 

in the training phase while the NOE model is used to 

simulate the process in a finite horizon length in the 

optimization process. 

 

3.2 Neural network training and architecture 

 

The neural network used was a standard feedforward 

neural network with an input layer, one hidden layer and one 

output layer. The neural network is called RAWNN because 

of the training algorithm that uses (Braake, et al., 1995). The 

activation function used in the hidden layer is a sigmoid like 

function while in the other two layers a linear activation 

function were used.  

The hidden layer weights are calculated using normal 

random numbers regularized as indicated by Braake, et al. 

(1995), using the following regularization formula.   
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Where, a is the maximum input of the activation function 

used, xi is the training data for an input, Ni is the number of 

inputs, and N(0,1) is a  normal random number generator 

with mean equal to zero and variance equal to one. The 

output weights (W
o
) are calculated using standard least 

squares problem solution:  
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Where, X is the input training data, f is the activation 

function, Vb is equal to V except that one column  with ones 

is added to express output bias b
o
, and Y is the output training 

data.  Training data was collected making successive step 

changes to the plant input, instead of the traditional pseudo-

random binary input, in order to use process industry-types 

identification algorithms. 

3.3 Online training procedure 

The online adaptation for neural network is required due to 

process nonlinearities, disturbances, time varying parameters, 

aging, etc…, that can cause the model obtained with the 

initial training does not represent the actual behavior of the 

process. Once the initial training was performed, the weights 

updating are performed using RLS. For initialization P is 

chosen as 
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The next sample times the weight updating law are 
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4. DMC CONTROLLER USING REFERENCE MODEL 

 

4.1 Controller description 

 

The DMC control is a class of predictive control that uses 

a dynamic matrix G to predict the output of the process, over 

a finite prediction horizon np, using a number of finite input 

movements, nu (Cutler and Ramaker, 1980). The vector of 

the future control variables is obtained from the minimization 

of the following cost function: 
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Where γ is the scaling factor for error, λ is the suppression 

factor, r is the reference trajectory, ypred is the predicted 

output using the dynamic matrix, and ∆u are the predicted 

movements of the controller.  

Using the dynamic matrix the process output can be 

obtained as follows: 

                          dmGyy pastpred +∆+=         (11) 

 

Where the vector ypred is the predicted values for process 

output, ypast is the vector of past predicted values for the 

process output, ∆∆∆∆u is the vector of control movements 

obtained in the control law, and d is the vector that computes 

the perturbations due to model error and measure errors.  

The control law obtained using the objective function in 

(10) is: 
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Where Γ y Λ are the matrices that have in their diagonals 

the scaling factors and the suppression factors respectively. 

The reference model is described by a discrete second 

order model as shown: 
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Here T is the sampling time, ξ the damping factor and ωn 
the natural frequency. Using this model, a step response 

model is obtained to be used as controller reference. The 

model parameters should be chosen carefully, because it 

defines the required closed loop response of the process. 

4.2 Initial Controller tuning 

Tuning a DMC controller implies chose several 

parameters: the prediction horizon np, the control horizon nu, 

the sampling time T, the suppression and scaling factors and 

the step magnitude to obtain the dynamic matrix G. The lack 

of an exact analytical approach to obtain the tuning 

parameters for a required response, results in model 

approximations based tuning that have shown good results. 

Given a First Order Plus Delay Time (FOPDT) model with 

transfer function of the form: 
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Shridhar and Coop (1997) shows equations for tuning a 

DMC controller, which are summarized in Table 1. 

The sample time selection needs to be made carefully 

because a sample time too short increase the computational 

time that is not always reflected in a better controller and a 

too long sample time could not capture the systems dynamics 

and decrement the control quality. 

 

 
The suppression factors adjust the controller aggressiveness, 

modifying the closed loop response of the system. If very 

small values are chosen the controller could be unstable, but 

in the other way, if very high vales are chosen an excessive 

slow response are obtained. For that reason, intermediate 

values are preferred and for start the adaptive strategy the 

formula shown in Table 1 are used. 

 

5.  MULTIOBJETIVE EVOLUTIONARY OPTIMIZATION 

5.1 Multiobjective optimization 

The use of a multiobjective optimization recognizes that in 

many practical problems, a number of design objectives must 

be satisfied simultaneously. The optimization problem can be 

formulated as: 

 

                                      )(min xF
x Ω∈

                   (17) 

 

Where x = [x1,x2,...,xm] and Ω defines the set of m free 

variables, x, subject to any constraints. 

F(x)=[f1(x),f2(x),...,fn(x)] is the set of n objective functions to 

be minimized (Chipperfield and Fleming, 1996). 

The concept of dominance is crucial in this type of 

Table1. Tuning equations for dynamic matrix controller 

Parameter Equation 
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problems, because its reformulate the concept of optimality 

of a solution. Given two solutions x
1
and x

2
, if fi(x

1
) <= fi(x

2
) 

and fk(x
1
) < fk(x

2
) para k < n ∧ k ≠ i, its saids that the solution 

x
1
 dominates x

2
. In other words, the value of the objective 

functions for x
1
 are equal, or less in almost one, than the 

objectives functions for x
2
. 

Clearly, for the set of functions, F(x), there are not an ideal 

optimal solution that minimize simultaneously all the 

objectives functions, rather a set of Pareto-optimal solutions 

for which an improvement in one of the design objectives 

will lead to a degradation in one or more of the remaining 

objectives. These solutions are known as nondominated 

solutions for the multiobjective optimization problem 

(Chipperfield and Fleming, 1996).  

In this paper, an evolutionary approach have been used, 

using all the advantage of evolutionary algorithms like noise 

tolerance, time varying parameters and discontinuities on the 

objective functions and the fact that this algorithms can 

search in the entire space of feasible solutions thanks to its 

stochastic nature. 

5.2 Multiobjective evolutionary algorithm : SPEA II 

SPEA (Strength Pareto Evolutionary Algorithm) is an 

algorithm that uses the concept of strength of a solution that 

is proportional to the number of elements that dominate and 

that it dominate. In the same way, use the elitism, having a 

population called archive that does not modifies with the 

variations operator and survives until the next generation to 

be compared with the modified population (Zitzler, et al., 

2001).  

In this type of algorithms there are four crucial aspects that 

depend of each problem specifically: the chromosome 

coding, the crossover and mutation operators, the objective 

functions and the restrictions to be evaluated. 

Chromosome coding, crossover and mutation 

operators: for this research a real valued coding is used. 

Here the chromosome is coded as vector of floating point 

numbers of the same length as the solution vector, and each 

element is forced to be within the feasible region. This 

approach has two advantages; the first one is the precision of 

the solution because no code or decode has made, and the 

second is the low computational load because the reduced 

amount of memory space and the simplicity of operators 

(Sakawa, 2002) 

The crossover operator used was the heuristic crossover 

(Sakawa, 2002), which has the following form: 

 

                                  wvwaz +−= )(         (18) 

 

where a is a random number between 0 and 1, z is the 

resultant individual, and the parent w is not worse than v; that 

is Fitness(w) < Fitness(v). For the case of using the SPEA 

the fitness of nondominated solutions are less than one and 

the fitness of dominated solutions are greater than one.  

The second crossover operator was the arithmetic 

crossover (Sakawa, 2002), described as follows: 
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Now a is a random number between 0 and 1, z is the 

resultant individual with parents w and v from the population. 

The mutation operator used was the non-uniform mutation 

[13], which can be described with the following functions: 
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In equations (20) and (21) v is the individual to be 

modified, r1 and r2 uniform random numbers between 0 and 

1, b is a constant parameter, t is the number of the actual 

generation, T is the total number of generations, u(v) and l(v) 

are the upper and lower bounds of the individual and z is the 

modified individual 

Objective functions and decision making system: the 

objective functions to be minimized and restrictions for the 

optimization procedure are summarized in Table 2. 

In Table 2 epred are calculated using the neural network as 

process model. The restrictions are used to assure a good 

search space for the multiobjective optimization tool. The last 

two restrictions are focus in the control loop stability. The 

decision making process about the Pareto front needs to be 

automated because the algorithm needs to run every sampling 

period. To achieve this goal a rather simple decision making 

process is implemented using the following function: 
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where Fs is the sum of the values of every function associated 

to a point s in the Pareto front,  represented by the solution 

P
’
s, where fji is the value from each function evaluated, N ‘ is 

the size of archive set in SPEA, and n the number of problem 

functions. 

 

 

6. SIMULATIONS AND RESULTS 

The process used to apply the strategy is the pH 

neutralization reactor, which has been chosen largely in the 

literature to evaluate nonlinear control strategies due to its 

highly nonlinear behavior. The open-loop system is 

Table2. Objective functions and restrictions for 

optimization process 

Objective functions Restrictions 
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illustrated in fig. 2.  For the single-input single-output (SISO) 

analysis, the process input is the signal to the base stream 

valve, m1(t), the process output is the pH sensor signal, c1(t), 

and the main disturbances are the inlet acid stream flow, 

q1(t), and the inlet buffer stream flow, q2(t). Underlying 

assumptions are constant densities (due to low molar 

concentrations), perfect fixing, and constant inlet 

concentrations.   

The initial population of individuals was created using the 

initial controller tuning and adding a uniform random noise. 

The parameters for the optimization process are in Table 3. 

The FOPDT model and the dynamic matrix, for initial 

controller tuning was obtained using a -5%CO step change at 

process input. 

To evaluate the effectiveness of the strategy two 

controllers were used to prove the improvement in the 

performance. A modified PID with derivative filter and reset 

windup prevention, and a non adaptive DMC were tuned 

using the same FOPDT approximation of the process. For 

DMC the Table 1 was used and for PID controller tables for 

minimum IAE set point tracking were used (Smith and 

Corripio, 1997). The final tuning parameters for each 

controller are found in Table 4. 

In Table 5 the result for the tests are shown. It can be seen 

that the adaptive strategy in the case of set point tracking are 

better that the others but in case of disturbance rejection the 

PID shows a better response.  The DMC and the adaptive 

DMC shows a non oscillatory response for set point tracking 

and disturbance rejection, in the opposite from PID, this can 

be seen in fig. 3 and fig 4. The inherent noise rejection from 

the adaptive algorithm without the uses of a filter in the input 

are greatly appreciable in fig. 4 were the noisy sensor signal 

instead of the real pH signal are shown.  

7. CONCLUSIONS 

The use of adaptive control strategies is reasonable in highly 

non-linear processes, where linear or static tuning strategies 

become either sluggish or unstable as the process moves 

away from the initial operating condition.  This research, as 

similar research developed for other controllers, demonstrates 

that adaptation is an alternative that becomes useful and 

effective for predictive controllers.  It also shows that for 

linear or time-invariant processes the value added by 

adaptation is negligible. The computational load it is one of 

the main problems for this strategy if we tray to implement it 

in a fast real process, but for chemical process like the one 

used in this research it is not a problem. For another kind of 

processes, the use of multiobjective evolutionary strategy to 

calculate the control moves should resolve the problem. 

Further research will address the issue of extending the 

adaptive strategy based on evolutionary learning to the 

multivariate scenario and the inclusion of a better decision 

making system for pareto front, also the modification to 

calculate the control moves using the evolutionary strategy as 

optimizer. 
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Fig. 2.  pH neutralization reactor. 
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Fig. 3.  Process response for set point tracking from various 

controllers. 

TABLE3. OPTIMIZATION PARAMETERS FOR SIMULATION 

Spea II parameters 

pc pm N N’ T 

0.8 0.3 20 10 10 

Constraints parameters 

∆λmin ∆λmax ∆γmin ∆γmax λmin γmin ∆mmax 

10 2 2 10 0.2 1 25%CO 

TABLE5. PERFORMANCE COMPARISON FOR TEST 

CONTROLLERS 

 IAE 

TEST PID DMC ADMC 

-5% set point 493.6 539.6 466.7 

+20% set point 1429 1444 1227 

Disturbances 41 173.1 128.7 

 

TABLE4. INITIAL TUNING FOR DMCAND PID CONTROLLERS 

PID tuning 

Kc ti td α 

6.2674 40.9969 9.2076 0.2 

DMC tuning 

Ts np nu λ γ 

11 47 47 0.4238 1 
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Fig. 4.  Process response for a 5% change in acid flow and 

sensor noise. 
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