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Abstract: This paper deals with a class of chemical process with measurable time-varying disturbances,
which is modeled within the framework of singular perturbation in non-standard form. The results in singular
perturbation theory consider the systems in a standard form, therefore, a transformation to change a system
representation from non-standard to standard form should be found. After this transformation is made, a
systematic approach to control this class of systems and disturbance rejection using feedback linearization is
proposed. The application of the developed method is illustrated through a catalytic continuous stirred tank

reactor.

1. INTRODUCTION

The majority of chemical processes is inherently nonlinear
and is often characterized by the presence of dynamical
phenomena occurring in multiple time-scales (Breusegem
and Bastin 1991). Typical examples of nonlinear multiple-
time scale systems include reaction networks (Breusegem and
Bastin 1991), catalytic reactors (Chang and Aluko 1984), DC
motor models (Kokotovic, Khalil and Oreill 1986) and
electrical circuits (Khalil 1996).

Singular perturbation theory has proven to be the natural
framework scale systems. This model of finite-dimensional
dynamic systems, extensively studied in the mathematical
literature by Tikhonov, Levinson, Vasil’eva, etc., was also
the first model to be used in control and systems theory
(Kokotovic, Khalil and Oreill 1986).

However, these results consider the systems in a standard
form. In some cases, the singularly perturbed systems are
often modeled as a non-standard form. In these cases
Although there is a guideline for finding this transformation
in Kokotovice et al. (Kokotovic, Khalil and Oreill 1986), but
it is heuristic and especially difficult to apply in nonlinear
cases (Glizer 2004).

For a class of singularly perturbed systems there have been
numerous research papers for analysis and controller design
(Choi, Son and Lim 2006, Glizer 2004, Krishnan and
McClamroch 1994, Shao 2004, Zigang and Basar 1994).
Usually singularly perturbed systems are controlled by
composite control that is designed to stabilize the fast and
slow subsystems (Kokotovic, Khalil and Oreill 1986). This
composite-control scheme is easy to design and results in
simple control structure. Feedback linearization by the main
feature that reduces the nonlinear control design to a linear
control is a systematic approach to the control of nonlinear
singularly perturbed systems (Choi, Shin and Lim 2005).
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In this paper, a class of two-time-scale nonlinear systems
modeled within the non-standard singular perturbation
framework, with measurable time-varying disturbances, is
considered. After finding a transformation to change to
standard form, by using an ¢ -independent diffeomorphism,
nonlinear singularly perturbed system will be transformed
into the linear singularly perturbed form (Choi, Shin and Lim
2005, Khorasani 1987). Fast and slow controllers are
designed for each subsystem and applied to the model.

The reminder of the paper is organized as follows: Section 2
contains the problem formulation. Section 3 presents a
method for changing non-standard form into standard model.
In section 4 the design procedure of the feedback
linearization-based controller for singularly perturbed system
is introduced. The practicability of the proposed scheme is
demonstrated with the control of a catalytic continuous
stirred tank reactor modeled as a singularly perturbed system
in non-standard form in section 5. Finally, section 6
concludes this paper.

2. PROBLEM STATEMENT

Modeling a two-time-scale process in a singularly perturbed
form is in the explicit state-variable form in which the
derivatives of some of the states are multiplied by a small
positive scalar ¢ . That is,

i=f(x,2,61) x(,)=x", xeR" )
ez=g(x,2,6,1) z(t,)=2", ZeR"
Where f and g are assumed to be sufficiently many times

continuously differentiable functions of their
arguments z, g, . The scalar & represents all the small
parameters to be neglected and is defined by taking into
account the physicochemical characteristic of the process
(Kokotovic, Khalil and Oreill 1986, Breusegem and Bastin
1991).
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In control and systems theory, the model (1) is a step toward
reduced-order modeling, i.e. wheng = 0, the dimension of the
state space reduces from n+m ton because the second part
of (1) degenerates into the

0=g(X,Z,0,¢) (2

If and if only in the domain of interest, the equation of (2) has
been k >1 distinct real root, the model (1) is in standard form
because this model changed to a well-defined 7 -dimensional
reduced model corresponds to each root. Else for using the
singular perturbation theory must to find a way to convert
non-standard model into the standard form.

In many chemical processes the main nonlinearities are
associated with the slow variables and these two-time-scale
nonlinear systems can be considered in a specific singularly
perturbed system that the singular perturbation parameter &
appears only in the left-hand side of equations, while the fast
variable enters in a linear fashion as the following state-space
representation:

X = £i(0)+0(X)z+ g (Xu +W,(x)d (1)

s = £,(0+ 0, ()2 + g, (Nu+ W,(0)d (1) )
Y =h(x)
Where xe R” and z € R” denote vectors of state variables,
ueRr denotes the manipulated input,

d =[d,(1),d,(t),---,d, ()] denotes the vector of disturbance

inputs, which are assumed to be measurable and sufficiently
smooth function of time, andy e R denotes the controlled

output.

Furthermore, f,(x), £,(x),g,(x)and g,(x)are analytic vector
fields, Q,(x), Q,(x) andw,(x),w,(x) are analytic matrices of
dimensions nxm, mxm, nxq,mxq respectively, and h(x)
is an analytic scalar function.

By setting ¢ = 0, the system (3) takes the form

X=f(x)+0,(X)z, + g, (Xu + W, (x)d “4)
LX) +0,(X)z, + g, (X)u+W,(x)d =0 ®)
Where z denotes a quasi-steady state for z. By assuming

that the system (3) is in standard form, the invariability of the
matrix (Q,(x) guarantees that the system of algebraic
equation (5) admits a unique solution forz , and the system
decomposes into separate reduced-order systems evolving on

different time scales. Else it must be converted into the
standard form.

Performing a  two-time-scale = decomposition,  the
corresponding slow subsystem is given by
x=F(Xx)+G(x)u+W(x)d,
y* =h(x) (6)

Where j°denotes the output associated with the slow
subsystem and

F(x) = £,(0)-0®IQ®]" £,(x)

G(x) = g,(x) -G (MO, (M)] " g,(x)

W (x) = W (x) = Q (N[, ()] W, (x)
Note the input » and the disturbance input vector 4 appear

in an affine because of the linearity in z in the original
system.

(7

3. FROM NON-STANDARD TO STANDARD FORM

Suppose that the two-time-scale nonlinear system (3) is in
non-standard form, i.e. systems for which the matrix Q,(x) is

singular for some x e x. The direct consequence of it is the

absence of a well-defined quasi-steady-state for the fast
variable z (Breusegem and Bastin 1991) and thus the lack of
a well-defined open-loop reduced system.

To achieve regularization of the fast dynamic, because of the
fast variable is in linear fashion, appropriate feedback of the
state vector z will be employed. Thus a control law
considered of the form

u=u+k"(x)z

®)
Where k7 (x) is a vector field in R”, and # is an auxiliary
input. Under the control law, the system (3) takes the form

X = £1(0)+[0, () + g (k" (X)]z+ g, (X)i + W, (x)d
g2 = f,(x)+[0,(x) + g, (k" (N)]z + g,(X)it + W, (x)d
In addition %" (x) is chosen in such a manner that the matrix

)

0, (x)+g,(x)k" (x) is Hurwitz uniformly in x e x. Now, the

new model is in standard form that can be composed into
separate reduced-order systems (Breusegem and Bastin 1991,
Glizer 2004).

4. DESIGN PROCEDURE

Usually singularly perturbed systems are controlled by
composite control that is designed to stabilize the fast and
slow subsystems (Kokotovic, Khalil and Oreill 1986).

In this part feedback linearization is used to the control of a
class of nonlinear singularly perturbed systems and the ¢ -
independent diffeomorphism is engaged to transform the
nonlinear systems into the linear singularly perturbed form.

The system (1) is rewritten as follows

x=f,,(x,z)+ g, (X, )u+ f,(x,2) + g,,(X,2)u
ez = [, (X%, 2)+ g, (X, D)u + f,,(X,2) + g,, (X, 2)u

(12)

For notational convenience the following function is defined.
_|:fil(X,Z):| _|:g11(x,z):|
f - . > g - >

2 (x,2) g (x,2)

7 _ |:f12(x,z):| 3= |:glz(xaz)i|
fn(x,2) ' g, (x,2)

Assume that the pair {f,g} is input-state lineazable part of

(13)

nonlinear system representation. By the theory that is
proposed in (Choi, Shin and Lim 2005) there exists a
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diffeomorphism ¢ =7(¢) which transforms (1) into (14) if
and only if the following conditions hold:

@) [f.adj}"g1=) a,adjs™"g, a,eR.j=1-.n
i=j

I —
(®) [f, adj” -fg]=;§b,,-ad]7 g+_A
Where A e span{g},b, €R, j=1,---,m—1.

(©) g € spanig}

g = a1,1§1 +4,

¢, :an,lgl +.“+an,n§u +¢0a

. (14)
g§n+l = bl,l§n+l + §n+2

&8 = bmfl,lénérl teeet b/n—l,m—lén—l +&0im

&,,, =v=0, (&) + () + (B, (&) + B(Eu

Where a, and b, are real numbers.

Assuming that g (&) + B(&) =0 around the equilibrium point,

the ¢-independent feedback linearization control law can be
applied.

u= (-, (&) =& + V(B (&) + F(&) (15)
Since the slow and fast dynamics are separated, two linear
controllers for each reduced subsystem can be designed

(v=v, +v, =k +k/§,-)-

The fast controller is designed (kf =[k 17) so that it

vk,
f1° > fn—r
stabilizes the fast dynamics. Then the fast dynamics is given
by

a1 0 - 0
by by, 1 0 (16)
=T TR 2

kp kpy kps Ky, 1

At & =0 the slow manifold is given as the following relation

__ e (17)
§)1+1 ‘A,‘ V/

Where the Hurwitz matrix 4 ; is

L1 0 0
Af— bz.!1 bz.’2 1 0 (18)
kpo kpy kps o kg,

Then the resulting slow dynamics is given by

.651 =a,,§+¢, (19)

: D"

é;" = an,légl +.“+an,n§n +

vS
4
This linear system is controllable and thus the stabilizing
controller y_can be designed (Choi, Shin and Lim 2005).

5. SIMULATION RESULTS

In this section, the proposed control methodology will be
applied to a chemical process with time-scale multiplicity.
Consider the catalytic continues stirred tank reactor shown in
Fig.1, where a homogeneous reaction 4 — B and a catalytic
A — C take place. The first reaction leads to the generation
of the side-product B, while the second reaction leads to the
production of the desired product C (Breusegem and Bastin
1991).

£,Ch0. T

A— B

A—)C FZ’CA/NTh’CB’CC

Fig. 1- A catalytic continues stirred tank reactor

The inlet stream F consists of pure species A of
concentration C, , and temperature 7, . The process dynamic

model consists of the following set of material and energy
balances:

dd’? _F-F, (20)
dac,, _ 1 E,
T_Z[E(CAO_C/M)_K}: exp(— RT, W, (21)
_KCAC(CAh - CAC )]
dT, 1
phcph dtl :7[phcphFl(TAo _Th)
+ (_AHA )Kh exp(— Eh )Vr (22)
RT,
_UWAW(Th _TW)_UCAC(Th _Tc)
dc K. A E
ﬁ = ;C < (Cu—Cue)— K. exp(- Ri;C)CAC (23)
dT. U_,.A -F
PcCoc— == %(rk ~T.)+(=AH K ¢ exp( RTCC)CAC @9

Where V7, denote the volume of the homogenous phase,
C, T, andC,.,T, denote the concentration and temperature

of species A in homogeneous and catalytic phases,
k,-k.-E,-E..AH, and AH, denote the pre-exponential

factors, the activation energies and the enthalpies of the two
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reactions, K c and U Uy, denote mass and heat transfer
coefficients of the wall and the catalyst.

The control objective is the regulation of the temperature of
the catalyst by manipulating the inlet flow rate F;, in order to

remain the generation of the product species C at the desired
level. The inlet concentration and temperature of the

species4, C,, andT, , as well as wall temperature 7, are

assumed to be the measurable disturbances. The value of the
system parameters and the corresponding steady-state values
of the system variable are given in Table 1.

Tablel. Process parameters

Parameter Nominal value in Steady-State

F, 500.0 Zmin™

C, 0.231 Kcal kg K™

C, 2.31Kcal kg K™

P 0.9 Kg L™

Do 90.0 Kg L'

K. A 1618.0
Ue 4c 6667.0 Kcal min™ K™
Uy A, 3340.0 Kcal min ™" K™

R 1.987 Kcal Kmol ' K™
K, 164.68 Lmol™" min™'

E, 8.0x10° Kcal Kg™'

K, 2000.0 min™'

E. 9.0x10° Kcal Kg™'
AH, 69.2006 Kcal Kmol™
AH, —-99.0781 Kcal Kmol™

V. 145.1 L

Vs 1000.0 L
C, 5.0 mol L™
T, 690 k
Ce 3.75 mol L™

T, 720 K
Fq 500.0 L min™"'

C s 10.0 mol L™

Tos 305.0 K

T, 310.0 K

The process exhibits two-time-scale behavior owing to the
large heat capacity of the catalytic phase. This implies
thaty ,c,, .7, and C,. are the fast process variable, while

T. is the slow process variable. In order to obtain a

singularly perturbed representation of the process, the
parameter ¢ is defined as

1 1

&= = _4810x10° KL (25)
PcCe 90x231 Kcal
Setting
Slow:T. =x,, Fast:V,=z,C, =z,, T,=2z,, C,. =2,
u=F-F, d=C,—-C,,d,=T,-T,,,d,=T, -T,,
t
y:xl’ tNew =

pCCpC
The original set of equation can be put in the following
singularly perturbed form:

UcAc -E
X, = z, —x, )+ (—AH )Kcex <)z
1 Ve (z3—x)+( ) p( Rxl) 4
& =u
1 -F
&g, =—[F.C,.—-K,ex hyy
2 Z1[ 1s“ 408 » €Xp( R, )z,
+(—F 3 —KcAc)z, + KcAcz, +(C  —z, )u+ Fi¢d,] (26)
. 1 UwAw
523:7[1:15(71,405_23)_ (Zz_Tws)
Z PrC o
UcAc (-AH)) -E
- (Z3 _x1)+ ! Kh exp( h)Z1
PrCo P’ pn Rz,
UwAw
+(Ty—z)u+ Fyd, +———d,]
phcph
KcA KcA -F
2, = ¢ cz2+[— ¢ C—Kcexp( )z,
Ve Ve

1
From the structure of the differential equation for 7 in the

above system, it is clear that the fast dynamic of the process
are singular. Since the process is in non-standard form, in the
first step, the regularization law of the form

u=i-z 27
was used to transform the original two-time-scale system into
a new one in standard form with exponentially stable
dynamics.

The relative orders of output, x, with respect to the input,

zand the disturbance input vector d is one. After that by
using feedback linearization the control law for the closed
loop reduced system can be designed.

i =V_ﬂ0x1 _:B1 (28)
Where the parameters B, and g were chosen to be B, =10,

B =11.

In simulation, the capability of the controller to keep the
output of the system at the operating steady state in the
presence of time-varying disturbances is evaluated. The
following disturbances were imposed atf = 0

d(t)=05* sin[z;ftj molL™
. (27 4
d,(t)=d,(t)=0.5% sm(th molL

Where T = 0.2 min
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The corresponding output and input profiles for control of
temperature are shown in Fig. 2 and 3.
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Fig. 2- control signal as inlet flow rate
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Fig. 3- Control of the temperature of the catalyst in order to
remain the generation of the product at the desired level

6. CONCLUSIONS

In this paper, a class of non-standard nonlinear two-time-
scale control systems with time-varing disturbances was
considered.

Because of the results in singular perturbation theory,
consider the systems in a standard form; a transformation to
change a system representation from non-standard to standard
form is proposed. After this transformation is made, a
systematic approach to control this class of systems and
disturbance rejection using feedback linearization 1is
formulated. With this fotmulation, the standard nonlinear
systems ared transformed into the linearized form so that a
linear controller can be systematically designed. The
application of the method is illustrated in the control of a
catalytic continuous stirred tank reactor.
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