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Abstract: This work deals with the use of Generalized Predictive Control (GPC) with fractional order 
plants. Low integer–order discrete approximations will be used as models to design the controllers. The 
stability and robustness of the closed loop system will be studied with the Nyquist criterion. Three 
techniques will be proposed to enhance robustness: the improvement of the model response at low 
frequencies, the use of the prefilter T(z–1), and a new recommendation to choose two of the parameters (the 
control horizon Nu and the error weighting sequence λ) of the GPC controller. 

 

1. INTRODUCTION 

Fractional Calculus can be defined as integration and 
differentiation of noninteger order. Fractional differentiation 
(integration) is the generalization of the derivative (integral) 
operator Dn (D–n) using real or even complex values for the 
ordinary integer value n (Oldham and Spanier, 1974; 
Podlubny, 1999a). 

Fractional integro–differential calculus generally uses two 
definitions: (1) Grünwald–Letnikov (GL) and (2) Riemann–
Liouville (RL): 
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with α > 0 for derivation and α < 0 for integration. 

The Laplace domain is frequently used to describe the 
fractional operations. Expression (3) is given as Laplace 
transform of the Riemann–Liouville derivative/integral (2) 
under zero initial conditions (Oldham and Spanier, 1974): 

 { }( ) ( )L D f t s F sα α± ±=  (3) 

For a wide class of functions, which appear in real physical 
and engineering applications, the two definitions GL and RL 
are equivalent. For this reason, RL is usually used for 
algebraic manipulations and GL (together with the short 
memory principle), for numerical integration and simulation 
(Podlubny, 1999a). 

Fractional order controllers have been used to enhance  
system performance. Typical fractional order controllers 

include the CRONE control (Oustaloup, et al., 1995) and the 
PIλDμ controller (Petráš, 1999; Podlubny, 1999b). More 
control applications are described in (Vinagre and Chen, 
2002; Oustaloup, 2006). 

Model–Based Predictive Control (MPC) has been proposed 
to control plants with fractional dynamics (Romero, et al., 
2007). Predictive control has been in use in the process 
industries during the last 30 years, where it has become an 
industry standard due to its intrinsic ability to handle input 
and state constraints for large scale multivariable plants 
(Maciejowski, 2002; Rossiter, 2003; Camacho and Bordóns, 
2004). 

In this paper low integer–order discrete approximations will 
be used as models to design the controllers, so a model–
process mismatch will appear. For this reason the stability 
and robustness of a fractional order plant with a predictive 
control law will be studied and some methods to improve 
them will be proposed. 

This paper is organized as follows: In section 2 GPC, one of 
the most representative predictive controllers, is introduced. 
Section 3 describes how to study the stability and robustness 
of a GPC control loop with a fractional order plant. In section 
4 this study is illustrated with some examples. In section 5 
some techniques to improve the robustness are proposed. 
Finally, section 6 draws the main conclusions of this work. 

2. GENERALIZED PREDICTIVE CONTROL 

GPC stands for Generalized Predictive Control (Clarke, et al., 
1987a, 1987b), one of the most representative predictive 
controllers due to its success in industrial and academic 
applications (Clarke, 1988). 

All predictive controllers share a common methodology: at 
each “present” instant t, future process outputs y(t+k|t) are 
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predicted for a certain time window, k = 1, 2, …, N, using the 
process model. The optimal control law is obtained by 
minimizing a given cost function (4) subject to a set of 
constraints:  
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where E{·} is the expectation operator, Δ is the increment 
operator, N1 and N2 are the minimum and maximum costing 
horizons, respectively, Nu represents the control horizon, γ is 
a future error weighting sequence, λ is a control weighting 
sequence, and H and h are a matrix and a vector, respectively. 
In the minimization process, it is usually assumed that the 
control signal u(t) remains constant from time instant t + Nu 
(Maciejowski, 2002; Rossiter, 2003; Camacho and Bordóns, 
2004). 

GPC uses CARIMA (Controlled Auto–Regressive Integrated 
Moving–Average) models to describe the system dynamics: 
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where B(z–1) and A(z–1) are the numerator and denominator of 
the transfer function, respectively, and ξ(t) represents 
uncorrelated zero–mean white noise. In practice, T(z–1) is not 
considered a model parameter but a controller parameter, i.e. 
a (pre)filter that is chosen to improve the system robustness 
rejecting disturbance and noise. 

If constraints are not defined, the minimization of (4) leads to 
a linear time invariant (LTI) control law that can be pre–
computed in advance. 

Figure 1 shows equivalent control loop, where R and S are 
constant polynomials obtained from the model polynomials A 
and B and the controller parameters N1, N2, Nu,, γ, and λ 
(Clarke, et al., 1987a). (The actual plant polynomials A0 and 
B0 are generally different from the model polynomials A and 
B used to define the GPC controller, as no mathematical 
model can represent a physical system perfectly.) 

 

Fig. 1. Closed loop schema. 

The task of finding the parameters N1, N2, Nu, γ, and λ is 
critical, as they determine the closed loop stability. However, 
thumb–rules exist that help the user to find initial guesses of 
their values quickly. It is usually accepted that N1 = 1, 
N2 = 10, λ = 10-6, γ = 1, and Nu equal to the number unstable 
or badly-damped poles of the system are adequate for a wide 
range of applications (Clarke, et al., 1987a). 

3. STABILITY AND ROBUSTNESS 

The denominator of the transfer function of a fractional 
system 
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is a multievaluated function of the complex variable s. Its 
domain is defined by a Riemann surface that has an infinite 
number of sheets in the general case. The main sheet is 
defined by –π < arg (s) < π. 

H(s) = 0 has an infinite number of roots, but only a finite 
number of them will be in the main sheet of the Riemann 
surface and the system stability depends only on them 
(Vinagre, et al., 2002). Moreover, the discretization of 
fractional order plants has an infinite dimension (Vinagre, 
2001), and there are no polynomial techniques (such as Routh 
or Jury) to analyse the stability of fractional systems. For this 
reason, in the following the Nyquist criterion will be used to 
study the stability of the control loop depicted in Figure 1, as 
A0 and B0 define a fractional order plant. 

The Nyquist criterion applies the argument principle to the 
contour generally known as the Nyquist path. It states that, 
for discrete systems represented in the z–plane, 

 Z N P= +  (7) 

where Z is the number of unstable poles in closed loop, P is 
the number of unstable poles of the open loop transfer 
function, and N is the number of clockwise encirclements of 
the point –1 for a contour evaluation of the open loop transfer 
function. 

4. STABILITY ANALYSIS OF A FRACTIONAL PLANT 
CONTROLLED BY GPC 

In the following we shall consider the control of the 
fractional order integrator of order 0.4 and gain k = 1: 

 0.4( ) kG s
s

=  (8) 

Firstly, a discrete approximation of the fractional order plant 
(8) is needed to design the GPC controller. To do so many 
techniques exist (Vinagre, et al., 2000; Vinagre, 2001; Chen, 
et al., 2003; Dorcák, 2003). In this paper, two methods based 
on Chebyshev polynomials will be used due to their 
accuracy: the so–called Chebyshev–Padé –CP– (de Madrid, 
et al., 2006) and Rational Chebyshev –RC– (Romero, et al., 
2006) approximations. 

Expressions (9) and (10) show the third order CP and RC 
approximations, respectively, with sampling time Ts equal to 
0.1 seconds. (The backward rule has been used as generating 
function 1( )zω − ). Both of them fulfill the following 
conditions: be rational functions, be stable, be minimum 
phase and have a zero–pole interlacing along z ∈ (–1 1) 
(Vinagre, 2001; Chen, et al., 2003; Valério, 2005). Figure 2 
shows the step response of both approximations compared 
with the actual fractional plant. 
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Fig. 2. Step responses of the actual fractional order integrator 
and the Chebyshev based approximations. 
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Now, GPC controllers will be calculated using the previous 
approximations as models and the default settings. Both CP 
and RC approximations are stable in the following Nu = 1, if 
not stated otherwise. 

It is well known that the prefilter T can improve the system 
robustness against the model–process mismatch. In (Yoon 
and Clarke, 1995) some guidelines about how to chose T are 
given. However, for these initial simulations T(z–1) = 1. 

The actual response of the fractional order plant will be 
computed with the GL short memory approximation (1), with 
k = 100. A unit step at t = 0 will be used as the reference r(t) 
in the simulations. 

The performance of the control system obtained using the CP 
approximation as a model and the default settings is 
illustrated in Figure 3. The system output seems smooth and 
stable. Closed loop equations (see Figure 1) are as follows: 
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In order to check the stability of this control system, the 
Nyquist criterion will be used. The open loop transfer 
function is sys1·sys2·sys3,1 which has an unstable pole at 
z = 13.4148, a double pole at z = 1 and therefore P = 2. 
Figure 4 shows the corresponding Nyquist plot, where the 
contour encircles the point –1+0j counterclockwise twice, i.e. 
N = –2. Thus Z = 0. The Nyquist criterion establishes that this 

                                                 
1 sys1 has a structural root in z = 1. 

system is stable in closed loop, with gain margin k ∈ (0.9579 
1.0183). 

However, if the RC approximation is used as the system 
model the output becomes unstable. In this case, the open 
loop transfer function is given by (12). It has an unstable pole 
at z = 28.1224, a double pole at z = 1 and therefore P = 2. 
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The contour (Figure 5) does not encircle the point –1+0j: 
N = 0. Thus Z = 2, i.e., the system is unstable in closed loop. 

5. ROBUSTNESS IMPROVEMENT 

In this section, three techniques will be proposed to improve 
the system robustness against the model–process mismatch 
induced by the discrete models used to compute the GPC 
controller. Only the RC approximation will be considered, as 
it led to an unstable control loop. 
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Fig. 3. GPC response with model = CP and default 
settings. 
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Fig. 4. Nyquist plot using the CP approximation as model.
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Fig. 5. Nyquist plot using the RC approximation as model. 

5.1 Improvement of the model response at low frequencies 

Both CP and RC approximations lack precision when low 
frequencies are considered. In order to solve this, the 
fractional order integrator of order 0.4 (8) can be expressed as 
a conventional integer–order integrator multiplied by a 
fractional derivator of order 0.6: 

 0.6
1 0.4

1 1sys s
ss

= = . (13) 

The term s0.6 is approximated using RC, 
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On the other hand, the integer–order integrator is given by 

 1

1
1

sT
s z−=

−
. (15) 

Hence the new RC approximation of the fractional order 
integrator is 
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Figure 6 shows the frequency response comparison between 
the initial (10) and the new (16) RC approximations. Both of 
them are quite similar at high frequencies but only the new 
one keeps the integration effect at the low ones. 

The GPC controller using the new RC approximation as 
model and default settings is now given by: 
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In this case, the open loop transfer function has an unstable 
pole at z = 31.599830, a double pole at z = 1 and thus P = 2. 
The corresponding Nyquist plot is shown in Figure 7, with 

N = –2 and therefore Z = 0: the system is stable in closed 
loop. The gain margin is k ∈ (0.991 1.005). Figure 8 shows a 
simulation using the new GPC controller (17). 
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Fig. 6. Frequency response comparison between the initial 
and the new –with improved response at low frequencies–
RC approximations. 
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Fig. 7. Nyquist plot using the new RC approximation –
with improved response at low frequencies– as model. 
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Fig. 8. GPC response using the new RC approximation –
with improved response at low frequencies– as model. 
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5.2 Use of prefilter T(z–1) 

With the initial RC approximation (10) as model, now we 
shall use default settings and a simple prefilter T = A (the 
denominator of the approximation). The following 
expressions give the new GPC control loop: 
 1 2 3

2 1 2 3

1 2 3

3 1 2 3 4

1 0.4

1 2.679155 2.364368 0.685208
1 2.679155 2.364368 0.685208

1 2.679155 2.364368 0.685208
0.896252 2.731163 2.897622 1.186444 0.123733

(

S z z zsys
T z z z
T z z zsys
R z z z z
k ksys

s zω

− − −

− − −

− − −

− − − −

−

− + −= =
− + −

− + −= =
Δ − + − +

= = 0.41 0.4
1

) 1 (1 )
s

k

z
T

−

=
⎡ ⎤

−⎢ ⎥
⎣ ⎦

(18)

 

The system has a double pole at z = 1 in open loop and 
therefore P = 1. Figure 9 shows the corresponding Nyquist 
plot, where N = –1 and thus Z = 0. The system is stable in 
closed loop, with a gain margin k ∈ (0 3.8595). Finally, 
figure 10 shows the response of this controller. 
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Fig. 9. Nyquist plot using the initial RC approximation and 
the prefilter T = A. 
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Fig. 10. GPC response using the initial RC approximation 
and the prefilter T = A. 

 

5.3 New Nu and λ settings 

In the case of the initial RC approximation, the guideline 
given in (Clarke, et al., 1987a) has led to instability. For this 
reason we propose a different recommendation for choosing 
the control horizon Nu and the error weighting sequence λ: 

 Take Nu equal to the order of the transfer function 
used as a model, even in the case that it is stable. 
Increasing the value of Nu gives rise to a tighter 
control action (Clarke, et al., 1987a, 1987b). 

 Take λ equal to the binomial coefficients that appear, 
in a natural way, in the Grünwald–Letnikov approach: 

 ( ) , 1,2, , u
u

j j N
N j

α
λ ⎛ ⎞

= =⎜ ⎟−⎝ ⎠
…  (19) 

In this way, we get a sequence λ(k) < λ(k+1) that gives 
rise to smooth control (Camacho and Bordóns, 2004) 
that counteracts the tight action due to Nu (on the other 
hand, a sequence λ(k) > λ(k+1) would produce tighter 
controls). 

Following this new recommendation, we shall use Nu = 3, 
λ(1) = 0.12, λ(2) = 0.4, and λ(3) = 1, which produce the 
following GPC control loop: 
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Figure 11 shows the step response of this control system, the 
system output y(t) is stable and smooth with gain margin 
k ∈ (0.899 1.037). Finally, Figure 12 depicts the 
corresponding Nyquist plot. 
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Fig. 11. GPC performance with the initial RC approximation 
and the new Nu and λ settings. 
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Fig. 12. Nyquist plot with the initial RC approximation and 
the new Nu and λ settings. 

6. CONCLUSIONS 

This paper has focused on the stability of fractional systems 
controlled by GPC. The use of low integer–order discrete 
approximations as models to design the controllers has led to 
an intrinsic model–process mismatch. It has been shown that, 
even with the same GPC tuning, different approximations can 
lead to very different closed loop behaviours: an accurate 
approximation is not a sufficient condition to guarantee the 
stability. For these reasons, the study of the robust stability of 
the system is needed. As there are no polynomial techniques 
(similar to Routh or Jury) to do it, the use of Nyquist 
techniques has been proposed. 

Finally, three techniques have been suggested in order to 
improve the robust stability: an improvement at low 
frequencies of the approximated model itself, the use of a 
prefilter, and a new guideline to choose two of the controller 
parameters. 

To sum up, the predictive controller GPC has proved to be a 
versatile and valuable tool to deal with fractional order 
plants. 
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