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Abstract: The paper focuses on the experimental identification and validation of recurrent neural 
network (RNN) models for air-fuel ratio (AFR) estimation and control in spark-ignited engines. 
Suited training procedures and experimental tests are proposed to improve RNN precision and 
generalization in predicting AFR transients for a wide range of operating scenarios. The reference 
engine has been tested by means of an integrated system of hardware and software tools for engine 
test automation and control strategies prototyping. The simulations performed on the test-sets show 
the ability of the RNN to reproduce the target patterns with satisfactory accuracy. Finally, real time 
implementation of RNN has been accomplished by developing and testing an inverse  neural 
network controller acting on the injection time to limit AFR excursions from stoichiometry. 
Copyright © 2008 IFAC. 
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1. INTRODUCTION 
Air-fuel ratio is a key challenge and keeps being an open 
problem for the engine control community. Since the 
eighties, the transition from carburetor to electronically 
controlled injection system motivated the researcher to 
concentrate on this topic. Proper control of air-fuel ratio is 
greatly beneficial to the three way catalyst performance in 
both steady and transient operations. Therefore this control 
task plays a fundamental role in limiting exhaust emissions 
in SI engines.  
Despite the considerable efforts made, the more stringent 
environmental regulations imposed throughout the world 
make the achievement of satisfactory conversion 
efficiency still an ambitious goal. Furthermore, the engine 
control system (ECS) designers have to deal with the on 
board diagnostics (OBD) requirements, introduced since 
1996 in US and later in Europe. This represents a more 
critical goal in the field of automotive control, since it 
requires to continuously monitor all powertrain 
components to prevent critical faults with respect to 
exhaust emissions.  
AFR control currently relies on a mean value engine 
model representation. The outstanding works of Aquino 
(1981) and Hendricks and Sorenson (1991) represent the 
foundation of the actual AFR controller implemented on 
mass market vehicles. Such a controller estimates in a 
feedforward way the air flow rate at the injector location, 
providing the right amount of fuel to be delivered with the 
appropriate time dependence. The implementation of this 
control within a feedback compensation loop allows 
further correction of the injection time based on the 
measurements performed by the oxygen sensor.  
Despite their accuracy, mean value models have some 
significant limitations, such as the high experimental 
burden requested for parameters identification and the 

intrinsic non-adaptive features. To overcome the latter 
problem, adaptive methodologies have been proposed in 
order to estimate the states and tune the parameters making 
use of real-time measurements (e.g. observers, Kalman 
filters) (Arsie et al., 2003; Locatelli et al., 2006; Powell et 
al., 1998; Turin and Geering, 1994) or robust control 
methodologies (e.g. H∞ control) (Vigild et al., 1999). On 
the other hand, the AFR signal delay represents a very 
critical issue to be overcome to improve the performance 
of the closed-loop control strategies (Powell et al., 1998; 
Choi and Hedrick, 1998). 
A promising solution for approaching these problems is 
given by Neural Networks based black-box models, which 
have high mapping capabilities and guarantee a good 
generalization even with a reduced set of identification 
data. Moreover, the possibility of implementing adaptive 
training procedures allows to take into account the 
influence of exogenous effects on control performance 
(Haykin, 1999; Patterson, 1995; Nørgaard et al., 2000). 
Some examples of NN models for automotive application 
have been proposed in the literature for engine control 
(Shayler et al., 1996), diagnostics (Ortmann et al., 1998; 
Capriglione et al., 2003), sensor data fusion and pattern 
recognition (Patterson, 1995), with satisfactory robustness 
even in presence of noisy data. Neural networks have also 
been proven useful for modeling nonlinear dynamic 
systems introducing feedback connections in a recursive 
computational structure (i.e. RNN). In the engine 
modeling and control fields, of particular interest are the 
contribution of Colin et al. (2007), Tan and Saif (2000) 
and Dovifaaz et al. (1999).  
In this work, RNN models are trained and tested to 
simulate both forward and inverse nonlinear dynamics of 
the intake manifold air-fuel flow. Suited training 
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procedures are proposed to develop RNN models of AFR 
excursions for both diagnostics and control applications.  
 
2. POTENTIALITIES OF RNN FOR AFR ESTIMATION 
The actual state of the art of AFR control relies on both 
feedforward and feedback control strategies. The base 
injection pulse is computed as function of desired AFR, 
engine speed, manifold pressure, throttle opening, 
feedback exhaust oxygen sensor and a number of factors to 
account for changes in ambient conditions, battery voltage 
and engine thermal state. During transient operation, in 
order to compensate for the different dynamic response of 
air and fuel path due to the wall wetting phenomenon, the 
base injected fuel is compensated by a feedforward 
controller. This latter is usually based on a mean value 
model (MVM) according to the approach originally 
proposed by Aquino (1981). The MVM parameters are 
computed accounting for the influence of engine operation 
and thermal state on fuel wall wetting and engine 
breathing, respectively. The output of the MVM-based 
feedforward controller is then further corrected by a closed 
loop control task and a long term fuel trim. The former is 
based on a PI controller aimed at keeping the AFR 
measured by the exhaust oxygen sensor as close as 
possible to the desired value, as addressed by the catalyst 
control strategies (Yasuri et al., 2000). Similarly to the 
MVM parameters, the PI gains are stored in look-up tables 
to account for their dependence on engine operating 
conditions. Long term fuel trim is intended to compensate 
for imbalance and/or offset in the AFR measurement due 
to exogenous effects, such as canister purge events, engine 
wearing, air leaks in the intake manifolds, etc. (Yoo et al., 
1999). 
The control strategy described above has been well 
established in the automotive industry for long time, 
thanks to its good performance during both steady and 
transient conditions. Nevertheless, the more stringent 
regulations imposed in the last years (i.e. OBD and Low 
Emission Vehicles) have pushed car manufacturers 
towards further developing the actual control strategies 
implemented on commercial ECU. On the other hand, 
design burden has increased and the reduction of 
calibration efforts, required to develop the parameter maps 
and to improve the feedback control performance, has 
become a stringent need. 
Recurrent Neural Network, whose modeling features are 
presented in the following section, have significant 
potential to face the issues associated with AFR control. 
The authors themselves showed how an inverse controller 
made of two RNNs, simulating both forward and inverse 
intake manifold dynamics, is suitable to perform the 
feedforward control task (Arsie et al., 2004 and 2006a). 
Network training can be fulfilled using only one highly-
informative data-set, thus reducing the calibration effort 
with respect to Aquino-based approaches. Moreover, the 
opportunity of adaptively modifying network parameters 
allows accounting for other exogenous effects, such as 
change in environmental conditions, construction 
tolerances and engine wear. 

The suitability of RNN AFR estimators to improve 
feedback control is twofold. On one hand, they can be 
used in virtual sensing applications, such as the prediction 
of AFR in cold-start phases. RNN training during cold-
start can be performed on the test-bench off-line, by pre-
heating the lambda sensor before turning on the engine. 
On the other hand, proper post-processing of training data 
enables to predict AFR excursions without the delay 
between injection (at intake port) and measuring (in the 
exhaust) events, thus being suitable in the framework of 
sliding-mode closed-loop control tasks (Yasuri et al., 
2000; Choi and Hedrick, 1998). In such an application the 
feedback provided by a UEGO lambda sensor should be 
used to adaptively modify the RNN estimator to take into 
account exogenous effects. 
Moreover, RNN-based estimators are well suited for 
diagnosis of injection/air intake system and lambda sensor 
failures (Maloney, 2001). Differently from control 
applications, in this case it is envisioned that the AFR 
prediction includes the measuring delay. 
Main contributions of the present paper are 
numerical/experimental methodologies aimed at 
improving RNN accuracy. Well-known problems 
associated with network training, such as data overfitting 
and overtraining, are addressed. Moreover, an error-based 
procedure is followed in order to identify the measuring 
delay and, eventually, removing it depending on the 
specific application the AFR estimator is developed for. 
Finally, an example of real-time implementation of RNN 
for AFR control is given, namely the development of an 
inverse RNN acting as a compensator to limit AFR 
excursions from stoichiometry.  
 

3. RECURRENT NEURAL NETWORK FOR AFR 
DYNAMICS MODELING 

3.1 RNN architecture 
The RNNs are derived from the static multi layer 
perceptron feed forward (MLPFF) networks by adding 
feedback connections among the neurons, thus introducing 
a dynamic effect in the computational system. Therefore, 
due to the non-linear mapping features of the MLPFFs, the 
RNNs are suitable for black-box non-linear dynamic 
modeling (Patterson, 1995; Haykin, 1999). 
Depending upon the feedback typology, which can either 
involve all the neurons or only the ones located in the 
output and input layers, RNNs are classified into global, 
local or external recurrent neural networks (Haykin, 1999). 
The latter being the class used in this work with one 
hidden layer of nodes. The sketch of Fig. 1 gives the 
schematic representation of the following general form: 

 ( ) ( ) ( )[
( ) ( ) ( ) ( )]mtxtxmtutu

ntytyFty
−−−−

−−=
,...,1,,...,1
,,ˆ,...,,1ˆ,ˆ θθθ   (1) 

where ŷ, u and x are the output, control and external input 
variables, respectively; while θ is the vector of parameters 
(weights). The indices n and m are set once the lag spaces 
of both external input x and feedback variable ŷ have been 
fixed. In Fig. 1 the lag space values are set equal to 2. The 
terms in square brackets of Eq. (1) compose the RNN 
regressors vector, which is representative of the past 
process dynamics. F is the non-linear mapping operation 
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performed by the neural network. The RNN described 
above is known in the literature as nonlinear output error 
model (NOE) (Nørgaard et al., 2000).  
In the current application, as the dynamic processes 
affecting AFR transient response depend on both air and 
fuel dynamics, the output, control and external input 
variables are, respectively: 
ŷ  = AFR 

injtu =  (2) 
x = [rpm, pman] 
Therefore, the NOE RNN resulting from Eq. (1) will be: 

[ ( )
( )

( )]mtptp

mtrpmtrpmmtt

ttntRFAtRFAFtRFA

manman

inj

inj

−−

−−−

−−−=

),...,1(...,

),(),..,1(,...,

,1),,(ˆ,..,),1(ˆ),(ˆ θθθ
 (3) 

It is worth to note that the output feedbacks in the 
regressors vector (i.e.  RFA ˆ   in Eq. (3)) are simulated by 
the network itself, thus the RNN does not require any AFR 
measurement as feedback to perform the online estimation. 
This represents a very appealing feature that makes the 
NOE structure a suitable solution for  AFR estimation 
when the oxygen sensor does not guarantee an accurate 
measurement, as it happens during cold start phases.  

D

D

u(t - 1)

u(t - 2)

y(t - 2)^

y(t - 1)^

y(t)^

 
Fig. 1. Structure of NOE RNN with one input variable, one 

output, one hidden layer and two output delays D. 
 
3.2 RNN training methodologies 
Network training is performed by minimizing a cost 
function estimated as function of the mean squared error 
(MSE). A weight regularization term is added to improve 
model generalization: 

( ) ( ) ( )( ) θαθθθ ⋅⋅⋅+−= ∑
=

T
N

t N
tyty

N
E

2
1|ˆ

2
1

1

2   (4) 

where α is a scalar and represents the weight decay. The 
above function minimization can be conducted in either a 
batch or an adaptive way. The former is usually preferred 
at the initial development stage, whereas the latter is 
greatly beneficial to online RNN implementation as it 
allows to adapt network weights to the exogenous 
variations of the controlled/simulated system. 
A proper design of RNN can be ensured by appropriately 
addressing the following issues (Sorrentino et al., 2007): i) 
generate a training data set extensive enough to guarantee 
acceptable generalization of the knowledge retained in the 
training examples, ii) select the proper stopping criteria to 
prevent overtraining and iii) define the network structure 
with the minimum number of weights.  
As far as the impact of point i) concerns the current 
application, AFR dynamics can be well learned by the 
RNN estimator once the trajectories of engine state 

variables (i.e. manifold pressure pman and engine speed 
[rpm]) described in the training-set are informative 
enough. This means that the training experiments on the 
test-bench are to be performed in such a way as to cover 
most of the engine working domain. Furthermore a proper 
description of both low- and high-frequency dynamics is 
necessary. Thus the required experimental profile is 
obtained by alternating steady operations of the engine 
with both smooth and sharp acceleration/deceleration 
maneuvers. 
Point ii) can be approached by introducing the early-
stopping method as stopping criterion. This technique 
consists in interrupting the search for the minimum, once 
the MSE computed on a data-set different from the 
training one stops decreasing. Finally, point iii) is 
addressed by referring to a previous paper (Arsie et al., 
2006b), in which a trial and error analysis was performed 
to select the optimal network architecture in terms of 
hidden nodes and lag space. Although some theories about 
MLPFF network sizing are addressed in the specific 
literature (Kolmogorov, 1965), finding the best 
architecture for recurrent neural network is a more 
challenging task due to the presence of feedback 
connections and past input values (Nørgaard et al., 2000). 
Therefore, the recourse to an heuristic error-based 
approach is suitable to satisfactorily fulfill point iii). 
   

4. EXPERIMENTAL SET-UP 
The RNN AFR estimator has been trained and tested vs. 
transient data sets measured on the engine test bench at the 
University of Salerno. 
The experiments have been carried out on a commercial 
engine, 4 cylinders, 1.2 liters, with Multi-Point injection. 
The test bench is equipped with a Borghi & Saveri FE-
200S eddy current dynamometer. A data acquisition 
system, based on National Instruments cards PCI MIO 
16E-1 and Sample & Hold Amplifier SC-2040, has been 
used to measure engine variables with a sampling 
frequency up to 10 kHz. An AVL gravimetric balance is 
used to measure fuel consumption in steady-state 
conditions to calibrate the injector flow rate. The engine 
control system has been replaced with a dSPACE© 
MicroAutobox equipment and a power conditioning unit. 
Such a system allows to control all the engine tasks and to 
customize the control laws. To guarantee the 
controllability and reproducibility of the transient 
maneuvers, both throttle valve and engine speed are 
controlled through an AVL PUMA engine automation tool 
(see Fig. 2). 
The exhaust AFR has been sensed by an ETAS Lambda 
Meter LA4, equipped with a Bosch LSU 4.2 UEGO 
sensor. This latter sensor has been placed right after the 
exhaust valve of the first cylinder.  
This choice allows to remove the dynamic effects induced 
by gas transport and mixing phenomena occurring in the 
exhaust pipes. Also non predictable effects generated by 
cylinder-to-cylinder unbalance due to uneven processes 
such as air breathing, thermal state and fuel injection can 
be neglected. Therefore, the time shift between injection 
timing and oxygen sensor measurement mostly accounts 
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for the intake and exhaust valve phasing. As mentioned 
before, the time delay could represent a significant 
problem for control applications (Powell et al., 1998). 
 

5. TRAINING AND TEST DATA 
The training and test sets have been generated by running 
the engine on the test bench in transient conditions. In 
order to span most of the engine operating region, 
perturbations on throttle and load torque have been 
imposed during the transients. Fast throttle maneuvers, 
with large opening-closing profiles and variable engine 
speed set points, are generated off-line and assigned 
through the bench controller to engine and dyno, 
respectively (see Fig. 2). Such an approach also allows 
exciting the wall wetting dynamics without being 
influenced by a dominant frequency. Furthermore, in order 
to excite the high frequency dynamics of the manifold wall 
fuel film, a uniform random perturbation has been added 
to the injection base time, limiting the gain in the range +/-
15 % of the nominal fuel injection. 

Engine

AVL-Puma

rpm Micro
Autobox

Pm, rpm

tinj, θs
Dyno

β

 
Fig. 2. Lay-out of the experimental plant. β = throttle 

opening, θs = spark advance, tinj = injection time. 
 
Fig. 3 shows the measured signals of throttle opening (a), 
engine speed (b), manifold pressure (c), injected fuel (d) 
and AFR (e) used as training-data (Set A). The throttle 
opening transient shown in Fig. 3 (a) allows exciting the 
filling-emptying dynamics of the intake manifold and the 
engine speed dynamics, as a consequence of both engine 
breathing and the energy balance between engine and load 
torque. Fig. 3 (b) and Fig. 3 (c) indicate that the transient 
spans most of the engine operating domain with engine 
speed and manifold pressure ranging from 1000 to 3000 
rpm and from low to high load, respectively. The variation 
of manifold pressure and engine speed affects the intake 
air flow rate and consequently the amount of fuel to be 
injected to meet the target AFR. The injected fuel transient 
(see Fig. 3 (d)), commanded by the ECS, excites the wall 
wetting dynamics, which in turn influences the in-cylinder 
AFR and the engine torque delivery in a broad frequency 
range. 
Fig. 4 shows the time histories of throttle opening, engine 
speed, manifold pressure, injected fuel and air fuel ratio, 
measured for the test-set (SET B). SET B has been 
obtained imposing square wave throttle maneuvers (Fig. 4 
a) to excite the highest frequencies of the air dynamics, 
while keeping the engine speed constant (Fig. 4 b) and 
removing the fuel pulse random perturbation. Fig. 4 (d) 
and (e) evidence that the resulting step variations of 
injected fuel generate wide lean/rich spikes of AFR, due to 
uncompensated effects of wall wetting dynamics during 
abrupt throttle opening/closing transients. Such features 
make SET B suitable as test data-set since RNN accuracy 

in predicting high frequency dynamic response is 
demanded. Moreover, the sharp variations in engine load 
(i.e. pman), obtained via stepwise throttle opening, allow to 
identify the AFR delay. Thus, SET B is also very suitable 
to assess the ability of RNN in understanding the pure time 
delay.  
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Fig. 3. Training data-set (SET A). 
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Fig. 4. Test data-set (SET B). 
 

6. RESULTS 
6.1 RNN estimator 
A Forward RNN Model (FRNNM) of AFR dynamics was 
identified considering an NOE structure consisting of 12 
hidden nodes, with a lag space n = 2 and m = 5. Following 
the indications provided by (Sorrentino et al., 2007), the 
AFR signal was back-shifted by a time delay 
corresponding to 5π crank-shaft interval. The latter value 
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was increased with respect to the value addressed in 
(Sorrentino et al., 2007) in order to better take into 
account, besides the pure time delay due to engine cycle, 
other delaying effects, such as: injection actuation; 
unsteadiness of gas flowing through the measuring section; 
mixing with residual gas present in the pipe from the 
previous cycle.  
The accuracy of the developed FRNNM is demonstrated 
by the small discrepancies between measured and 
predicted AFR, as shown in Figures 5-8. Particularly, Fig. 
7 and Fig. 8 show that the delay removal from the AFR 
signal enables the FRNNM to very well capture AFR 
dynamics in both rich and lean transients.  
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0

1
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5

6
Relative error (%) - SET B

Time [s]  
Fig. 5. Trajectories of relative error between measured and 
predicted AFR (SET B). 
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Fig. 6. Trajectories of measured and predicted AFR (SET 
B). 
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Fig. 7. Trajectories of measured and predicted AFR (SET 
B, time window [5, 8]). 
 
6.1 RNN controller 
In a previous paper (Arsie et al., 2004) it was discussed 
how an RNN-based controller of AFR excursion can be 
developed by training a network simulating inverse AFR 
dynamics. The general form of such an Inverse RNN 
Model (IRNNM) can be derived by inverting Eq. (3): 

[
( )]mtxtxmtt

tttAFRGtt

inj

injinj

−−−

−=−

),..,1(),,(ˆ
..,),.,2(ˆ),(),1(ˆ

2

22

θ

θθ  (5) 

Therefore, the IRNNM training task is performed almost 
in the same way as for the FRNNM, with the only 
difference that control and output variables are inverted. It 
is worth noting that past AFR values in Eq. (5) are not 

included (whereas in Eq. (3) they are), since this controller 
is conceived in such a way as to perform open-loop fuel 
compensation. 
Fig. 9 shows a comparison between experimental and 
simulated injection time, which confirms the high 
accuracy guaranteed by RNN in reproducing inverse AFR 
dynamics also. It is worth mentioning here that even the 
IRNNM was trained considering an AFR signal depurated 
of measuring delay. After the offline development, the 
IRNNM was embedded into dSPACE© MicroAutobox by 
replacing the actual AFR value (i.e. AFR(t)) by the desired 
value (i.e. AFRdes = 14.67), resulting in the following RNN 
controller: 

[
( )]mtxtxmtt

ttAFRGtt

inj

injdesinj

−−−

−=−

),..,1(),,(ˆ..,

.),.,2(ˆ,),1(ˆ

2

22

θ

θθ  (6) 

Fig. 10 shows the controlled AFR trajectory versus time. It 
can be seen how the online implementation of the IRNNM 
guarantees to satisfactorily limit AFR excursions within 
+/- 5% of the stoichiometric value, thus confirming the 
suitability of the proposed RNN-based controller. 
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Fig. 8. Trajectories of measured and predicted AFR (SET 
B, time window [36, 40]). 
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Fig. 9. Trajectories of measured and predicted injection 
time (SET B). 
 

7. CONCLUSIONS 
Recurrent Neural Network models have been developed to 
simulate both forward and inverse AFR dynamics.  
Training and test data sets have been derived from 
experimental data obtained by imposing throttle and load 
perturbations. To enhance RNN generalization, the input 
variables have been uncorrelated by perturbing the fuel 
injection around stoichiometry. 
The removal of a 5π delay from the measured AFR signal 
was proven to be necessary to ensure accurate prediction 
of AFR dynamics in correspondence of both rich and lean 
transients.  
In the validation phase, the comparison between simulated 
and experimental transients indicated that AFR predicted 
by the RNN estimator (FRNNM) follows the reference 
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trajectory without any significant delay, thus proving that 
the RNN dynamic behavior is satisfactorily close to the 
real system dynamics.  
Online implementation of RNN was accomplished by 
developing an inverse model (IRNNM) that is suitable for 
real-time control of AFR. Experimental test of the IRNNM 
controller, embedded in the framework of a dSPACE© 
MicroAutobox control unit, confirmed the great potential 
of RNN for limiting AFR excursions from stoichiometry. 
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Fig. 10. Experimental trajectory of AFR controlled by 
means of the IRNNM compensator (i.e. Eq. 6). 
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