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Abstract: The stabilization problem for the class of linear continuous-time systems with fixed
but unknown delay is solved when the additional condition that the states are nonnegative is
studied. In particular, the synthesis of state-feedback controllers is solved by giving necessary and
sufficient conditions in terms of Linear Programs. The solution is also extended to stabilization
by bounded control (including nonnegative control) and stabilization under uncertainty.
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1. INTRODUCTION

The objective of this paper is to characterize the state-
feedback controllers that make the state of feedback sys-
tems nonnegative, whenever the initial conditions are non-
negative. In the literature, systems with nonnegative states
are referred as positive systems (see [4, 13] for general
references). These systems appear in many practical prob-
lems, when the states represent physical quantities that
have an intrinsically constant sign (Absolute tempera-
tures, levels, heights, concentrations, etc).

For the stabilization of positive systems, some previous
works, based on algebraic approaches, can be found in
[4, 7]. Note that these works are only concerned with
the single-input case. Based on Gersgorin’s theorem, a
sufficient condition is provided in [12] and formulated as
a quadratic programming problem. Recently, in [10] a
necessary and sufficient Linear Matrix Inequality (LMI)
condition is proposed for the stabilization of positive linear
systems, similar to that previously proposed in [5].

In comparison with these previous works, the recent work
of two of the authors [1, 2] provides a new treatment
for the stabilization of positive linear systems where all
the proposed conditions are necessary and sufficient, and
expressed in terms of Linear Programming (LP).

This paper proposes to extend those results to systems
with delays, presenting a new approach for the stabiliza-
tion of MIMO positive linear systems with delay by means
of state feedback. This extension to systems with delay is
prompted by the existence of transport delays in many
control problems that involve positive systems (In process
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control, irrigation systems, thermal systems, etc.). The
stabilization problem of this kind of systems is a problem
of interest, because the existence of a delay is known to
cause instabilities [11]. The stabilization of systems with
delays has been extensively studied in the literature (see
[16, 9] and references therein), but only a few authors have
considered positive systems in this context of time-delay
systems: we can cite [14, 18]. Unfortunately, so far, no one
has come up with a complete solution to the stabilization
problem for delayed positive systems. This paper, for the
first time, presents necessary and sufficient conditions,
which turn out to be easily checkable and computable
in terms of LP. The issue of control limitations is also
dealt with: it is shown that the proposed approach can
easily be extended to handle other constraints, such as
componentwise lower and/or upper bounds on the con-
trols, that includes the interesting case of positiveness of
the control. The paper concentrates on memoryless control
(that is, no information on the delayed states is used),
as they are simple to implement and do not depend on
precise knowledge of the delayed state or the length of
the delay. However, it is possible to extend the results
to controllers with memory, where the delayed state is
known. Some previous results on global stabilization via
memoryless control laws for general systems with delays
have been presented in the literature (see [8, 11, 16] and
references therein).

Thus, following the approach proposed in this paper, the
problem of stabilization in the nonnegative state space of
systems with delay and (maybe) control constraints can be
solved. Although these systems might also be studied using
general results from stabilization of constrained plants (a
problem that has been extensively studied in the liter-
ature: see [17, 15] and references therein), the approach
in this paper is original and the proposed conditions are
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simple to check (they are necessary and sufficient condi-
tions expressed in terms of Linear Programs). In fact no
previous work has been done on imposing positiveness in
constrained systems with delay [8].

The remainder of the paper is structured as follows:
Section 2 deals with the problem statement and some
preliminary results. Section 3 presents the main results.
Finally, section 4 gives some concluding remarks.

1.1 Notation and definitions

e R" denotes the non-negative orthant of the n-dimensional
real space R”.

o M7 denotes the transpose of the real matrix M.

e A matrix M € R™* " is called a Metzler matrix if its
off-diagonal elements are nonnegative. That is, if M =
{mi;}i =1, M is Metzler if m;; > 0 when i # j.

e A matrix M (or a vector) is said to be nonnegative if
all its components are nonnegative (by notation M > 0).
It is said to be positive if all its components are positive
(M >0).

2. PRELIMINARIES
2.1 Delayed Systems

This paper deals with the following set of governed delayed
linear systems with delay:

x(t) = Ax(t) + Ar1z(t — r) + Bu(t) 1

w(6) = 6(0) € R", 6 € [~r,0] (1)
where z € R™ is the state, u € R™ is the control vector,
r € R is the delay (fixed but unknown), and the matrices
Ae R"™ A; € R™™ and B € R™™ ™ are supposed to be
constant and known (this last assumption will be lifted in
section 3.5).

Remark 2.1. It must be pointed out that although for
simplicity a single delay is considered in the model, the
technique proposed can be easily generalized to systems
with multiple delays (see the observation problem for
systems with multiple delays in [3]).

The main problem considered in this paper is the following:
consider the control law u € R™*™ as a memoryless state
feedback and not restricted in sign. This control law must
be designed in such a way that the resulting governed
system is positive and asymptotically stable for any r > 0.
In other words, the main problem reduces to look for a
memoryless state feedback law u(t) = Kx(t), leading to
the delayed closed-loop system defined by:

z(t) = (A+ BK)z(t) + A1z(t — 1), (2)
where the matrix K € R™*™ has to be determined to
satisfy the following problem:

Find necessary and sufficient conditions on matrices
A, Ay € R™*™ B € R™*™, such that there exists a matrix
K € R™ ™ satisfying:

e Positivity in closed-loop (A, = A + BK is a Metzler
matrix).

e Closed-loop stability.

To solve this problem, some useful results on delayed
positive systems are now given.

2.2 Delayed Positive Systems

Definition 2.1. Given any positive initial condition z(0) =
#(0) € R, 0 € [—r,0], the delayed system (1) is said to be
positive if the corresponding trajectory is never negative:
x(t) € R} for all t > 0.

According to this definition, we need to find under which
condition the delayed system (1) is positive (see for exam-
ple [6], [14]).

Lemma 2.1. System (1) is positive (i.e.: z(t) € R}) if and
only if A is a Metzler matrix and A; is a nonnegative
matrix.

The following result presents a necessary and sufficient
condition for the asymptotic stability of the delayed sys-
tem (1).
Theorem 2.1. Assume that system (1) is positive (or
equivalently that the matrix A is a Metzler matrix and
A; is a nonnegative matrix); then the delayed system (1)
is asymptotically stable for any r > 0 and initial condition
z(0) = ¢(0) € R, 6 € [—r,0], if and only if there exists
A € R™ such that,

(A+A)A <0, A>0. (3)

Proof:

(Necessity): Assume that system (1) is asymptotically
stable. Since system (1) is linear and any initial condition
can be expressed as the difference of two positive vectors,
then consider zy > 0. Then, by integrating the terms of
the system (1), after simple manipulation, it is possible to
obtain

2(t) — 0 = A/Ot 2(F)dr + Ay /Ot o(r—r)dr. (4)

If ¢ goes to infinity, as z(t) converges to 0, then

Lz — Ay /0 2(t)dt = (A+A1)/OOO s(tdt.  (5)

-7
By taking into account that xy > 0 and the positiveness
of the initial condition of (1), this leads to

20— Ay /_0 2(t)dt = (A+ Ay) /OOO s(t)dt < 0.  (6)

Consequently, condition (3) holds by defining A =
fooo z(t)dt, which is positive by construction and the fact
that x(t) € R’}

(Sufficiency): Knowing that the dual system z(t) =
ATx(t) + ATz (t — r) is positive and asymptotically stable
if and only if system (1) is positive and asymptotically
stable, it suffices to prove that condition (3) implies the
asymptotic stability of the dual system. For this, consider
the following functional:

V(z(t)) = 2T (A + /

t—r

which is obviously definite positive, and also fulfills
V(z(t)) = 0 if and only if z(t) = 0: to prove that
V(z(t)) = 0 implies x(t) = 0 it is only necessary to check
that V' (z(t)) = 0 is equivalent to

—aT (A = /t_ 27 (5) Ay Ads. (8)

t

2T (s) A ds, A >0 (7)

~——
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The left side of this equation is nonpositive (because A > 0
and z(t) > 0) and the right side is nonnegative (because
A >0, z(t) > 0 and A; > 0). Thus, the only possibility is
that z(t) = 0.

Computing the rate of variation of V(x(t)) gives
V(z(t) =T (N + 2T (AN — 2Tt —r)A X (9)
Substituting &(t) = Az (t) + A1z(t — r) leads to:
V(@(t) = a7 () (A + ADA. (10)
Recalling that z(f) > 0, condition (3) implies that

V(z(t)) < 0, consequently the delayed system (1) is
asymptotically stable. O

The following Lemma will be used in the sequel:

Lemma 2.2. Consider the autonomous delayed system (1):
for a given & > 0 we have 0 < z(t) < Z, for any condition
satisfying 0 < ¢(0) < z, 6 € [—r,0] if and only if

A is Metzler
(A + A1)"f <0

Proof:
(Sufficiency): Let us present the solution for system (1) in
the following form:

¢
x(t) = eMay + / A Ay a(r — r)dr
0

t
=eftry + / e Ayx(t — v —r)dv.
0

Let,

0<z(0) <z6el-r0. (13)
By using (13) and the fact that eA* > 0 (V¢ > 0), we obtain
that

¢
0<x(t) < ez + / e Ayx(t — v —r)dv.
0

Using the well known formula e4? — I = fot e Ady (given
for example in [8]), it follows that

¢
[et — Iz = / eV Azdv, Yt > 0. (14)
0

Thus, it is possible to deduce that

¢

0<z(t)<z+ / eW[AZ + Ayx(t —v —r)dv].  (15)
0

From (12), the following equation can be written:

(A+A)Z=—p1, p1 > 0.

Using the facts that A; > 0, and 4 > 0 (Vv > 0) it is
possible to obtain that

t
0<z(t)<=Z +/ e A [zt — v —71) — T]dv.
0

By using the same reasoning as [8], it follows that for
0<v<tand0<t<r, wecanobtain —r <t—v—r <0.
Thus, using (13), the integral is not positive, so it follows
that 0 < z(t) < z for t € [0,r]. In the same way, it
is possible to obtain that 0 < z(¢) < Z in the intervals
[r, 2r],[2r, 37|, ete.

(Necessity): Assume that the delayed system (1) is positive

and condition (12) is not satisfied while 0 < z(¢) < z for

any initial condition satisfying 0 < ¢(t) < z, t € [0,r].

That is, there exists a subscript 7, such that
n n

> ali, )z + Y ai(i, j)z; >0,
j=1

j=1

(16)

where a(i,j) represents the element (i,7) of the corre-
sponding matrix A. Consider the following positive vec-
tors: £(t) = T and &£(t — r) = Z. It follows that £(¢) =
AE(t) + A1€(t — 7), with the " component given by

&(t) = Za(i,j)fj + Zal(i,j)fj > 0. According to
j=1 j=1

(16), &(t) > 0, which implies that &(t + 7) > Z;, for

any 7 > 0. This contradicts the assumption, consequently

(A+ Az <0. ]

Remark 2.2. : Condition (12) can also be seen as the neces-
sary and sufficient condition for the set { € R",0 < x < Z}
to be positively invariant with respect to the delayed
system (1). Thus, this condition can be obtained as a
particular case of the results of [8].

3. MAIN RESULTS

This section contains the main results: first the stabiliza-
tion problem for general systems is studied and solved.
After that, the result will be extended to solve related
problems, when some signals are bounded or the state
matrices are uncertain.

3.1 Controller Synthesis

In this subsection, necessary and sufficient conditions
for positive asymptotic stabilization are presented for

memoryless feedback control when the control is not
bounded.

Theorem 3.1. The delayed system (1) under feedback u =
Kz is asymptotically stable for any » > 0 and the closed
loop states are nonnegative if and only if A; > 0 and there

exist vectors d = [dy,...,d,|T € R" and yy,...,y, € R™
such that
(A+A)d+B> ;<0 (17)
i=1
d>0 (18)
al-jdj—i—biijOi,jzl,...,n,i#j, (19)
with A = [a;;] and BT = b1, ... bI].
Moreover, the gain matrix K is given by:
K =1[d{ 'y, .., d; yn) (20)

Proof. Assume that condition (17) holds and define the
matrix K = [k1,...,k,] with k; = di_lyl-. It is easy to
see that A+ BK is a Metzler matrix, since condition (19)
implies for for 7,7 =1,...,n and 7 # j that

a5 + bidjlyj = a;j + bikj = (A + BK)ij >0 (21)
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n
Then, computing BKd = BZyi and using condition

=1

(17) leads to (A + A; + BK)d < 0. Since A + BK is
a Metzler matrix, A; is nonnegative and d > 0, using
Theorem 2.1, we can conclude that the delayed closed-
loop system (2) is positive asymptotically stable for any
r > 0. O
Remark 3.1. The result of Theorem 3.1 has been devel-
oped for systems where A is not assumed to be a Metzler
matrix (only A; is assumed to be nonnegative). This
makes the proposed result interesting for problems where
the original system is not positive (think of an electrical
system, where the input current might be positive or neg-
ative), that must be made positive and stable by feedback
(in the electrical device, the current can be required to be
always positive). This is shown in the following numerical
example.

Remark 3.2. The necessity that A; is nonnegative can be
lifted using other feedback laws, such as the state-feedback
law with memory u(t) = Kx(t) + Fa(t — r).

3.2 FExample: State-feedback Stabilization with Nonnegative
States

Consider a delayed system described by (1), with the
following system matrices:

—1 -05 0.1 02 ~0.4
A= {0.3 0.7] A= [0.3 0.1]  B= [0.2} '

It can be seen that the open-loop system is not positive
(Although A; is nonnegative, there are off-diagonal neg-
ative elements in A). The objective is to design a state
feedback controller u = kx that stabilizes the system and
makes the closed-loop states nonnegative for any value of
the delay r (starting from any nonnegative initial condi-
tion). For this, the conditions of Theorem 3.1 must be
fulfilled. The gain of a stabilizing control is given by any
feasible solution to the above LP problem, for example:
K = [—1.5481 —1.3269]. If can be seen that with this
controller, the feedback system is positive and the state
evolution for the system remains always within the non-
negative orthant. For example, the state trajectories from
several random initial positive conditions can be seen in
Figure 1.

3.8 Synthesis with Bounded Controls
This section studies the problem of closed-loop stabiliza-

tion and positiveness for bounded positive controls. Con-
sider the following constrained system:

x(t) >0
0 <u(t) <a.

() = Ax(t) + Ajz(t —r) + Bu(t),
{ (22)

That is, the trajectory of the system is positive and the
input is constrained to be positive and bounded by a given
value .

The aim here is to address the following problem:
Given @ > 0 find Z > 0 corresponding to the set of initial
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Fig. 1. Trajectories of the states from random initial values
(unbounded control example)

conditions I' = {x(0) € R™™™ | 0 < z(0) < z} for
which a nonnegative and bounded state feedback control
law 0 < u = Kz(t) < @ can be determined, such that the
following closed-loop system is positive and asymptotically
stable:

() = (A+ BE)a(t) + Aya(t — ) (23)

Now, we state the main result of this section:
Theorem 8.2. For system (1), with A; > 0, consider the

following LP problem in the variables T = [z, z,)T €
R™ and y1,...,yn € RP:
(A+ AT+ BY y <0,
i=1
z>0,
(LP)d 4 >0,i=1,....n, (24)

> i<,
=1

ai;T; + biy; >0, 1#£7=1,...,n.

Then, the closed-loop system (23) is positive and asymp-
totically stable for any r > 0 and any initial condition
z(0) satisfying 0 < z(f) < Z, under the state-feedback
bounded control law 0 < u = Kz < u, with K =
[y - 2yl

Proof 1. Take any T = [T ..
solve (24) and define K = [z} 'y,
fori£j=1,...,n,

a5 + bii‘glyj = a;; + bikj = (A + BK)ij >0,
we have that matrix A + BK is Metzler. The inequality

z,)T and y1,...,y, that
%, y,]. Then, since

(A+ Az + BZyi < 0 is equivalent to (A + A; +
i=1
BK)z < 0. Since Z > 0 and A; is nonnegative, then by
using Theorem 2.1, we can conclude that A+ A; +BK is a
stable nonnegative matrix (in the continuous-time sense).
Further, by Lemma 2.2, the trajectory of the system (23) is
such that 0 < z(¢) < T from any initial condition satisfying
0 < z(0) < z. Using this fact and recalling the inequalities
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n
Zyi <a,y; >0fori=1,...,n, (or, equivalently, K > 0
i=1
and Kz < ), it is easy to see that the state-feedback
control w = Kz is such that 0 < u(t) < Kz < @ for any
initial state satisfying 0 < z(0) < Z. O

3.4 FExample: Delayed System under Bounded Control

Consider a delayed system described by (1) with the same
system matrices as the previous example:

1 —05 0.102 0.4
A= [—0.3 —0.7} A= {0.3 0.1} B = [0.2]

Using a state feedback control, we want to impose for
the controller to stabilize the system, that the closed-
loop system is positive, and that the control signal is
nonnegative and with a value always smaller than u = 10.
Thus, the conditions of Theorem 3.3 must be fulfilled.
One feasible solution to the LP problem (24) provides
K =[0.0127 0.7884 ], with & = [97.8633 9.7391]

It can be seen that the feedback system is positive, that
the states are bounded by & and the control signal is
always nonnegative and smaller than @ = 10. For example,
the state evolution from some random initial positive
conditions (smaller than Z can be seen in Figure 2. The
corresponding control signals are shown in Figure 3, where
it can be seen that the imposed bounds on u are fulfilled.

3.5 Synthesis for uncertain system

An important extension of the proposed approach is the
possibility of handling the case when the dynamics of the
system are not exactly known, as is now presented in this
subsection.

Consider the following delayed uncertain system:
(t) = Ax(t) + A1z(t — r) + Bu(t),

z(d(0)) =  o(6) eRY, 0 € [-r,0].

Matrices A, A, € R™*", B € R™*P are supposed to be
not exactly determined, but it is assumed that they belong
to the following convex set:

(25)

1 l
P::{Zai[Ai All Bl] | ZO&Z‘:L 04120}7(26)
i=1 i=1

where [A' Al B'],... [A! Al B!] are given matrices.
The proposed robust synthesis problem consists in deter-
mining the set of matrices K, such that the following
closed-loop system is positive and asymptotically stable
for every [A A; B] € P:

#(t) = (A + BK)z(t) + (A)a(t — ) (27)

Theorem 3.3. There exists a robust state-feedback law
u = Kz such that the resulting closed-loop system (27)
is asymptotically stable and the closed-loop states are
nonnegative for every [A A; B] € P, if the following
LP problem in the variables d = [d; d,)T € R™ and
Yi,.--,Yn € RP is feasible:

x2

0 10 20 30 40 50 60 70 80 90 100
x1

Fig. 2. State Trajectories from random initial values
(bounded control example)

0 5
0 100 200 300 400 500 600 700 800 900 1000
t

Fig. 3. Control evolution from random initial values
(bounded control example)

(A" + AR)d+ B¥ > "y <Ofork=1,...,1,

LP i=1
(LP) d> 0, '

afd; +bfy; > 0fori#j=1,... nik=1,...1,

(28)

with A¥ = [al], A} = [(af);;] and B¥" = [pk" ... oh7), k=

1,...,1L.
Moreover, the gain matrix K of the robust controller can
be computed as

K= [dl_lyl . dT_Llyn]’
where d, vy ...,yn correspond to any feasible solution of
the LP problem (3.3).

Proof 2. Tt is straightforward, following the proof of The-
orem 3.1 and using a simple convexity argument.
O
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4. CONCLUSIONS

This paper has solved the problem of imposing nonneg-
ativeness to closed-loop states using state feedback for
continuous-time systems with unknown delay. First, neces-
sary and sufficient conditions, using linear programming,
have been proposed for system with unbounded controls
and states. The same idea was then followed to solve the
same problem in the presence of uncertainty or bounded
control. It has been pointed out throughout the paper
that these results are easy to obtain, as they are based
on simple Linear Programming problems. Some examples
have illustrated the the proposed approach, showing its
feasibility and simplicity.
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