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Abstract: An optimal iterative learning control (ILC) strategy is proposed to track product quality 
trajectories of batch processes by updating a linear time-varying perturbation (LTVP) model. To address 
the problem of model parameter variations from batch to batch, the LTVP model is renewed by using 
strong tracking filter (STF) algorithm. Comparing recursive least squares (RLS), STF can capture the 
changing dynamics of the process more accurately. The tracking error transition models can be built, and 
the ILC law with direct error feedback is explicitly obtained. Sufficient conditions of convergence are 
derived for the optimal ILC based on the LTVP model. It has also been proved that the tracking error will 
converge to a small constant but depend on the accuracy of the LTVP model error. If there is no model 
error, the tracking error can converge to zero. By using STF to update the LTVP model, the model 
accuracy is improved and the tracking control performance is also enhanced. The proposed strategy is 
illustrated on a typical batch reactor, and the results demonstrate that the performance of tracking product 
qualities can be improved under the proposed strategy when model parameter variations occur with respect 
to the batch index. 

 

1. INTRODUCTION 

The repetitive nature of batch process operations allows that 
the information of previous batch runs can be used to 
improve the operation of the next batch. Recently, iterative 
learning control (ILC) has been used in the batch-to-batch 
control of batch processes to directly update input trajectory 
(Lee and Lee, 2007). Refinement of control signals based on 
ILC can significantly enhance the performance of tracking 
control systems. Bristow et al. (2006) presents a survey of the 
major results based on linear models in ILC analysis and 
design over the past two decades.  

Since ILC is well developed for linear models, most of the 
ILC-based batch-to-batch control schemes are based on some 
kinds of linear models, for instance, linear time-invariant 
system (Saab, 1995). Optimal ILC is one of important 
methods for designing an iterative learning law, in which the 
ILC law is derived from a quadratic objective function 
(Owens and Hatonen, 2005). Amann et al. (1996) proposes 
an optimal ILC based on optimization principle by combining 
the Riccati feedback control with the typical ILC feed-
forward control. Shi et al. (2006) studied the optimal ILC 
further and proposed a general design framework for ILC of 
an injection mold process based on a two-dimensional (2D) 
system.  

Lee and co-workers in several related articles (Lee and Lee, 
1997; Lee et al., 2000; Lee and Lee, 2003) proposed the 
quadratic criterion-based ILC (Q-ILC) approach for track- 
ing control of batch processes. Lee et al. (2000) combines the 
advantages of ILC and MPC into a single framework. A 
batch MPC (BMPC) technique and its extension for tracking 
control are proposed by incorporating the capability of real-

time feedback control into quadratic criterion-based ILC (Q-
ILC). The proposed approach is applied to tracking control 
for temperature of batch processes based on a linear time-
varying (LTV) tracking error transition model. 

ILC can update the control trajectory for the next batch run 
using the information from previous batch runs so that the 
output trajectory converges asymptotically to the desired 
reference trajectory. Therefore, the convergence of iterative 
learning law is an important issue in the design and applica- 
tion of ILC. In our previous work (Xiong and Zhang, 2003; 
Xiong et al, 2005), an ILC strategy for the tracking control of 
product quality in batch processes is proposed based on an 
LTVP model. In practice, the LTVP model of product quality 
can be obtained by linearizing nonlinear model with respect 
to the nominal trajectories.  

However, in some cases that model parameters change with 
respect to batch index, previous control policy and learning 
algorithm may not as useful as previous experience has 
become invalid but the experience is still used in new batches. 
For example, in a chemical reactor, the process parameter 
may change along with time or iteration number because of 
those uncertainties in reactor conditions, such as impurities, 
raw material conditions and so on (Xiong et al, 2005). This is 
probably dangerous in some particular time for the reason 
that the model parameter change may result in instability. In 
other cases, this may slow the learning speed. When model 
uncertainties occur in such way, the LTVP model can be 
updated from batch to batch by using strong tracking filter 
(STF) algorithm (Zhou and Frank,1996; Wang et al., 2004), 
which can capture the renewed dynamics of the process when 
process variations exist. STF has strong tracking ability to the 
model no matter whether the model parameters change 
abruptly or slowly, and whether the process has reached 
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steady state or not, and it has definite robustness against 
model uncertainties (Zhou and Frank,1996). 

The optimal ILC based on updated LTVP model is proposed 
to address this problem due to model parameter variations, 
which is quite similar to the adaptive ILC (Owens. and 
Munde, 1998; Tayebi and Chien, 2006). Despite of system 
parameter variation, the ILC algorithm has the ability to 
ensure that the system is still stable and as well has a fast 
learning speed. Similar to our previous work, a nonlinear 
model considered is converted to an LTVP model. As the 
same as optimal ILC, a cost function is minimized to detain 
control profile. Parameters of the optimal ILC law will vary 
with the estimated LTVP model while batch index increases. 
Because of these features of the learning law, the algorithm 
can cope with nonlinear systems as well system parameters 
change.  

The rest of this paper is organized as follows: Section 2 
presents the problem solved by this paper. In Section 3, the 
approach based on LTVP model is proposed and convergence 
of the algorithm is also proved. In section 4, strong tracking 
filter is proposed to estimate the LTVP model. In Section 5, 
simulation results are given to demonstrate the proposed 
method. Finally Section 6 draws some concluding remarks. 

2. PPOBLEM FORMULATION 

In this study, the batch processes considered is written by 
(Xiong, et al., 2005) 

) )(  ),( ( )(
) )(  ),( ( )(
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where nRx∈  is system state, mRu∈  the input, qRy∈ the 
output, ],0[ fTt ∈ the time interval, subscript k the batch 

index, nmn RRR : →×f , qmn RRR : →×g , f and g 
nonlinear function, respectively.  

To relate control profile to output profile over the whole 
batch duration, a batch-wise nonlinear function can be 
derived as  

) )(  ( )( tuFty kk =                                    (2) 

where qm RR : →F . The time interval consists of Nf 
sampling times, and each sampling time h= Tf/Nf  is equal. 
Let us define 

T
fkkkk NuuuU ])1()1()0([ −= L                         (3) 

T
fkkkk NyyyY ])()2()1([ L=                             

The object of ILC is to find an optimal strategy of control 
policy Uk to make sure that system output Yk is in some 
neighborhood of expected output Yd despite of system 
parameters change when batch index increases, that is,  
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σkdk
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where T
fdddd NyyyY ])()2()1([ L= . 

3. OPTIMAL ITERATIVE LEARNING CONTROL 

3.1  Derivation of the Optimal ILC Law 

Model (2) considered above can be rewritten as 
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Let us define 
T

kkkk tuuutU ])1()1()0([)( −= L                    (6) 

where fNt ,,2,1 L= , then above (5) can be written as  

))(()( tUfty ktk =                                     (7) 

Taylor series expansion of model (7) with respect to the batch 
is calculated as follows (Xiong and Zhang, 2003) 
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where )(1 twk+  is high order of Taylor series which is called 
as model error.  

Let us define the following perturbation variables  
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Then the perturbation model of linearized form is derived as 

)()()()( 1111 twtUtGty kkkk ++++ +Δ=Δ                    (12) 

Rewriting all equations in (5) in the form of matrix, then we 
have  

1111 ++++ +Δ=Δ kkkk wUGY                          (13) 

Considering the expected output Yd, output tracking error of 
the (k+1)th batch is defined as 

11 ++ −= kdk YYe                                           (14) 

The object of optimal ILC is to find input Uk+1 to minimize 
the following cost function  

1k11111 )( ++++++ +ΔΔ=Δ QeeURUUJ T
kk

T
kkk                  (15) 

where Q and R  are definite symmetric matrices. By 
minimizing equation (15) and through straightforward 
manipulation, the following optimal ILC law is obtained  

      kkkk eKUU 11 ++ +=                              (16) 
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where Kk+1 is the learning gain, and 
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kk
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1
111 +

−
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It can be seen from (16)(17) that the learning gain Kk+1 of the 
optimal ILC varies from the change according to the model 
parameter Gk+1 and if model parameters change, Kk+1 will also 
change, then the optimal ILC learning law is obtained. 

3.2  Convergence Analysis 

Theorem: Let {ek+1} be the tracking error sequence under the 
above optimal ILC law (16). If the following conditions are 
satisfied, ∞=∀ ,,2,1 Lk  

1<≤− εkk KGI                              (18) 

∞<≤+ Ew 1k                                    (19) 

then system output will converge to a neighborhood of 
expected output, and output tracking error can converge to a 
small value. 

Proof:  Considering (16), we have,  

kkk eKU 11 ++ =Δ                                  (20) 

Substituting (20) to the LTVP model (13), we can obtain 

1111111 +++++++ +=+Δ=Δ kkkkkkkk weKGwUGY        (21) 

And we also have  

1111 -)-()-( ++++ =−=−=Δ kkkdkdkkk eeeYeYYYY     (22) 

Thus iteration relationship of tracking error can be obtained 

1111 ++++ −−= kkkkkk weKGee                    (23) 

If the above relationship of tracking error is calculated 
recursively, we have 
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where e1 is the initial tracking error and is assumed to be 
obtained. It can be found further that 
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Considering the conditions (18), we have  

∑ ∏
+

=

+

+=

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+≤

1

2

1

1

1
11 )K(

k

i

k

ij
jji

k
k GIwee ε               (26) 

Considering the condition (19) which is directly related to 
system model error 1+kw  in (13), we have 
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Substituting (27) to (26), we can find  

ε
εε

−
−

+≤ −
+ 1

)1(1
11

k
k

k
Eee                           (28) 

Then the following convergence of ek+1 can be obtained 

η
ε
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It means that the tracking error ek+1 converges to a small 
value with respect to the batch index.  

� 

From analysis above, we can derive that the accuracy of 
LTVP model has large contribution to the tracking perform- 
ance of system output. The smaller the system model error, 
the smaller the output tracking error. In particular, if there is 
no model error, the tracking error can converge to zero. 

4. MODEL PRARAMETERS IDENTIFICATION USING 
STRONG TRACKING FILTER 

In this section, strong tracking filter (STF) (Zhou and Frank, 
1996) is used to solve the problem when system model 
parameters change with respect to the batch number. STF has 
strong tracking ability to the model no matter whether the 
model parameters change abruptly or slowly, and whether the 
process has reached steady state or not, and it has definite 
robustness against model uncertainties. 

The model to use STF is 

)()()()( 1111 twtGtUty k
T

k
T

kk ++++ +Δ=Δ                 (30) 

And the algorithm to identify T
k tG )(1+ is 

)1()1()(ˆ)(ˆ
|11|1 +++= +++ kkStGtG T
kk

T
kk γ               (31) 

T
kk

T
kk tGtG )(ˆ)(ˆ

||1 =+                                                (32) 

where 

1)]()1()|1()1([                 

)1()|1()1(
−++++

⋅++=+

kRkHkkPkH

kHkkPkS
T

T

       (33) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13464



 
 

     

 

)|()1()|1( kkPkLkkP +=+                                          (34) 

)|1()]1()1([)1|1( kkPkHkSIkkP +++−=++             (35) 

T
kk

T
kk tGtUtyk )(ˆ)()()1( |111 +++ Δ−Δ=+γ                     (36) 

where 
T

k tUkH )()1( 1+Δ=+                                (37) 

)}1(,),1(),1({)1( 21 +++=+ kkkdiagkL tλλλ L    (38) 

⎩
⎨
⎧

≤+
>++

=+
1)1(                  1       
1)1(          ),1(

)1(
k
kk

k
i

ii
i ηα

ηαηα
λ               (39) 

∑
=

+

+
=+

n

i
iii k

kk

1

)1(

)]1([tr)1(

M

N

α

η                               (40) 

)1()1()1( 0 +⋅−+=+ kRkVkN β                             (41) 

)()1()1()()1( ij
T MkHkHkkPkM =++⋅=+                   (42) 

[ ]
⎪
⎩

⎪
⎨

⎧

≥
+

+++
=

≈

++=+

1,
1

)1()1()(
0),1()1(

             

)]1()1([)1(

0

0

kkkkV
k

kkEkV

T

T

T

ρ
γγρ

γγ

γγ

              (43) 

where ρ  is the forgetting factor, 1≥β  is weaken factor and 
determined reasonably, ),,2,1(  1 tii L=≥α  are coefficients. 

As we can see from (31)-(36) that, in some point of view, the 
STF algorithm is improved from the RLS algorithm. The 
main difference between these two algorithms is that the term 
L(k+1) in (34) is used. It is a key to the STF algorithm. In 
RLS, we often find that the matrix P in (34) converges to 
zero as the batch number increases, which is almost right if 
model parameters do not change. As a result, the model 
parameter Gk+1 converges to its real value. However, as 
model parameters change in some cases, for instance in our 
application to a typical batch reactor, it will cause that in (36), 
the term γ(k+1) changes along with real model parameter. 
Because matrix P is almost zero, and then is S(k+1) in (33) 
will be also zero, which causes in further steps that the 
estimated model parameter Gk+1 in (31) changes very little 
despite of real model parameter changes in a large scale. 
Considering the previous theorem in section 3.2, we can see 
that the model error will increase a lot and then the tracking 
error increases. It is for this reason that we proposed the STF 
algorithm in order to improve the model error, thus the 
tracking error is decreased compared with the RLS algorithm. 
As stated in Zhou and Frank (1996) and Wang et al. (2004), 
the matrix L(k+1) can be obtained through minimization of 
cost function. For details, see Zhou and Frank (1996). 

5.  APPLICATION TO A TYPICAL BATCH REACTOR 

Consider a typical nonlinear batch reactor with temperature 
as the control variable (Logsdon and Biegler, 1989). The 
reaction scheme is CBA kk ⎯→⎯⎯→⎯ 21 , and the operation 
objective of the reactor is to maximize the product (B) after a 
fixed time. The equations describing the batch process are 

2
111

1 )exp( xuTEk
dt
dx

ref−−=                                (44) 

222
2
111

2 )exp()exp( xuTEkxuTEk
dt

dx
refref −−−=              (45) 

where x1 and x2 are the dimensionless concentrations of 
product A and B, u=T/Tref is the dimensionless temperature of 
the reactor and Tref is the reference temperature, respectively. 
The parameters are set to be k1=4.0×103, k2=6.2×105, E1= 
2.5×103, E2=5.0×103 and Tref =348. The final time tf is 1.0h, 
initial conditions are x1(0)=1 and x2(0) =0, and the reactor 
temperature is constrained to 298 K ≤ T ≤ 398 K (i.e. 0.856≤ 
u ≤1.144). Here the batch length is divided into Nf =10 equal 
stages.  

In this study, the above mechanistic models (44) and (45) are 
assumed not to be available. Because the objective of the 
reactor is to maximize the product (B), an LTVP model is 
built to model the relationship between y=x2 and u. The 
desired product reference trajectory Yd was selected from 
Logsdon and Biegler (1989). The parameters of ILC were set 
as Q=I and R=0.02I, and the parameters in STF were set as 

95.0=ρ , 1=β  and ),,2,1(  1 tii L==α . 

Here the model parameter changes are simulated by batch-to-
batch parametric change. The scenario here is that the kinetic 
parameter k1 increases by 100 at the 10th batch and then 
keeps constant, E2 increases by 250 at the 10th batch, as 
shown in Fig 1. 
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Fig. 1. Model parameter variations of k1 and E2 
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To compare the performance of STF, the recursive least 
square (RLS) method is also used to estimate the LTVP 
model. Fig 2 shows the results that the output tracking errors 
converge along the batch index under the proposed optimal 
ILC using both STF and RLS to identify the model. It can be 
found from Fig 2 that when there is no model parameter 
variation before 10 batches, the output tracking error can 
converge quickly under the proposed optimal ILC while the 
perturbation model is gradually identified by STF and RLS.  

When model parameter variations occur after the 10th batch 
run, the tracking errors are under a small value with the 
optimal ILC due to the updated model and learning rate. 
After 30 batch runs, the tracking errors in the two cases 
converge to small values when the model parameters do not 
change. But the LTVP model is estimated more accurately by 
STF, the tracking error converges to a smaller value than the 
value in the case using RLS. It is also demonstrated that the 
tracking control performance of the optimal ILC is based on 
the model accuracy in the learning law. 
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Fig. 2. Output tracking error convergence under the optimal 
ILC based on LTVP model updated by STF and RLS 
 
Fig 3 and Fig 5 show that the output trajectories converge 
gradually with respect to the batch number under the 
proposed optimal ILC when using RLS and STF to estimate 
the LTVP model. To figure out the difference clearly, Fig 4 
and Fig 6 show the output profiles at time t=0.6~1.0h. It can 
be seen that at the 10th batch run, when there are model 
parameter changes, the output profiles are far away from the 
expected output trajectory due to model mismatches in both 
RLS case and STF case. After updating the model by RLS 
and STF, the output profiles approach to the expected one 
gradually. Due to the more accurate model by STF than that 
by RLS, the performance of ILC in STF case is improved a 
little, especially there are less tracking errors after 30 batch 
runs.  
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Fig. 3. Output trajectory convergence under the optimal ILC 
based on updated LTVP model by RLS 
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Fig. 4. Output trajectory convergence at time t=0.6~1.0h 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

Yd
trial 3
trial 10
trial 20
trail 30
trail 40

 
Fig. 5. Output trajectory convergence under the optimal ILC 
based on updated LTVP model by STF 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13466



 
 

     

 

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.54

0.56

0.58

0.6

0.62

0.64

time

Yd
trial 3
trial 10
trial 20
trail 30
trail 40

 
Fig. 6. Output trajectory convergence at time t=0.6~1.0h 

 

6. CONCLUSIONS 

An optimal iterative learning control algorithm based on 
LTVP model is proposed to address the problem of model 
parameter variations. To address the problem of model 
parameter variations from batch to batch, the LTVP model is 
updated by using strong tracking filter (STF) algorithm. 
Conditions of convergence are also derived for the proposed 
optimal ILC. It has been proved that the tracking error can 
converge to a small constant value. Simulation results on a 
typical batch reactor have shown that the output tracking 
error converges while the model parameters vary with respect 
to the batch index. 
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