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Abstract: Recovering the input of a system from a noisy lecture of the output is both a
typical inverse ill-posed problem and a transmission paradigm. If the input-output relation is
given by a convolution integral, we are concerned with the well-known deconvolution problem,
which occurs in several scientific frameworks. In this paper, we develop an original information
theoretic analysis and we design an encoding-decoding scheme for deconvolution. We propose
different decoding algorithms to identify the input and we show both theoretic and simulations’

results.

Keywords: Recursive identification; bit-MAP decoding.

1. INTRODUCTION

The deconvolution problem is ubiquitous in many scientific
and technological areas such as seismology, astrophysics,
image processing and medical applications (Banham et al.
[1997], Byrne et al. [1982], Jain [1989], Starck et al. [2002]).
Its most general formulation is as follows. We consider
a time horizon T (possibly infinite), a convolution kernel
K(t) and the input/output system

2(t) = /O K(t — s)u(s)ds (1)

(we implicitly assume that K and u are s.t. the above
integral makes sense). The problem is to estimate w from
some noisy version of x.

This is an instance of inverse problem. To see why the
problem is difficult we focus on a special case which will
be the one treated in this paper: the case when I = 1. In
this context, (1) can be written as

z(t) =wu(t), x(0)=0. (2)
Since the operation of differentiation is not robust with

respect to noise perturbation, the reconstruction of u from
2 cannot be simply done by differentiation.

To be more specific in this paper we assume that the
available output signal is a noisy sampled version of x(t):

Y = Tk + N
where 7 > 0 is some constant sampling time, xy = z(7k)
and ny are noises which we model as independent Gaussian
variables of 0 mean and variance o2. We will denote by y
the vector of all available measures:

y = (y1,...yx) € RE

where K = T'/7 is assumed to be an integer.
A deconvolution algorithm consists in a function I : R¥ —
RIOT]: 4 = T(y) is the reconstructed input. In general @

will not coincide with the true input u. What in general
we request to a deconvolution algorithm is a bound on
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the error u — @ and some consistency property: when the
variance of the noise and the sampling time go to 0, the
error should converge (in some sense) to 0.

Another important issue is causality: we say that a decon-
volution algorithm is causal (with delay kq7) if there exists
a sequence of functions I'j, : RFtFo — RIG=D7ATL where
k=1,2,..., such that

W) eeqk—1)rhr] = Tr (Y1, -+ Yrtho) -

Such an algorithm uses only past information (along with
a possible bounded future information) to estimate the
unknown function in the current time interval. This is es-
sential in many applications that require delays to remain
bounded. Most of the available deconvolution resolution
methods (e.g. Tikhonov [1963], Tikhonov et al. [1977]) are
not causal: the estimation @ at any time depends on the
whole sequence y. Causal algorithms have been studied
in Fagnani et al. [2002, 2003], where bounds on the error
have been obtained for the case of bounded noises and
regularity assumptions on the input signals u.

In this paper we focus on a different case: we assume u
to be a piecewise constant signal with values restricted
to a fixed known finite alphabet. This turns out to be
a quite important case in the context of hybrid systems
where continuous-time systems are driven by discrete
digital signals. Specifically, we assume that there is a finite
alphabet &4/ C R and we consider signals of type
K—1
u(t) = Z g L gr, (k41)7((F)
k=0
u(t), with ¢ € [0,T[ is then completely determined by
the sequence of samples ug,u1,...,ux_1. For simplicity
we assume the sampling time 7 to be the same than in
the output and to have an exact synchronization in the
sampling instants. The output signal is now identified by
samples x1,xo,...,xx € X, where X C R is a suitable
alphabet (recall that we have fixed xg = 0). Of course, in
principle, one could still use the deconvolution algorithms

up €U . (3)
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in Fagnani et al. [2002, 2003] or Tikhonov [1963], Tikhonov
et al. [1977], however, there would be no way to use inside
the algorithm the a priori information on the quantization
of u. Instead we now show that, in this case, our deconvo-
lution problem can completely be recasted into a discrete
decoding problem. Notice indeed that the input/output
system is simply described by

mo =" 1)
Tpy1 =Tk +TUK, k=0,...,K—1

The vector x = (z1,...xx) can thus be seen as a coded
version of u = (ug,...ux_1): we can write x = £(u).
Afterwards, x is transformed as it was transmitted through
a classical Additive White Gaussian Noise, or AWGN,
channel: the received output being given by yi = xp + ny.

It is on the basis of these measures that we have to estimate
the ’information signal’ u. Notice that the real time ¢ is
completely out of the problem at this point and everything
can be considered at the discrete sampling clock time. In
the coding theory language, a decoder is exactly a function
D : RE — UK which allows to construct an estimation of
the input signal: @ = D(y). Even in this context we can
talk about causal algorithm if there exists a sequence of
functions Dy, : R¥t*0 — 1/ such that

Uk—1 = Dr(Y1s - - Yhtho) -

In this paper we cast the problem in a purely proba-
bilistic setting assuming a uniform statistics on the input
sequence. In Section 2, we present a natural decoding
procedure which minimizes the mean square value of the
input error and which, in some cases, corresponds to the
popular bit-MAP (Maximum A Posteriori) decoding rule
in coding theory. The BCJR algorithm gives a practical
implementation of this scheme and is recalled in Section 3.
We also discuss causal variations of BCJR, while in Section
4 we introduce another causal sub-optimal low complexity
algorithm. In Section 5, we propose some numerical simu-
lations which prove the goodness of our simple algorithm.
Finally, in Section 6 a theoretic analysis of this algorithm
is carried on using techniques of Markov chains in random
environments.

2. DECODING PERFORMANCE: THE MEAN
SQUARE COST

To complete the statistical description of our problem
we need to fix an a priori probability distribution on
the information signals u. Notice that, from now on, we
will use the following notation: r.v. is short for random
variable; P indicates the probability on discrete r.v.’s,
while f is the probability density of continuous r.v.’s
and also of hybrid events, i.e., events involving both
continuous and discrete random variables; E is the mean.
For the sake of this paper we will assume that each wuy
is the realization of a uniformly distributed r.v. Uj and
that the Ug’s are independent among themselves. We put
U = (Uy,...,Uk_1). Corresponding to the coding rule
(4) we obtain a r.v. X = (Xy,...,Xk), a received r.v.
Y = Y1,...,Yk) (Yr = X + ni), and, finally, a decoded
rv. U= (Uo, ey UK—l) = D(Y)

A fundamental issue in the deconvolution problem is the

choice of the norm respect to which errors are estimated.
For our purpose, we shall consider the mean square cost:

K—1
]E[Uk—Uk }
k=0

d(U,0) =E [lu-T|7| =
The best estimate U(y) is that one that minimizes
d(U, U). In order to find this value consider that, for any
vEU,

B (U~ 7] =B [E [0 — 1Y =]
/]RKZu—v (Ur =ulY =y)fy(y)dy

ueld
hence

ur(y) —argmlnz (u—v)

velU weld

PUr=ulY =y) (5)

This is a finite combinatorial problem based on the prob-
abilities P(Uy = u|Y = y) which can be computed by
means of a marginalization procedure and a Bayesian
inversion:

Y=ylU=u)P(U=u
) (Y =y )P( )

uweu k.
up=u

PlU,=ulY =y)=

In the special case when |U/| = 2 the solution is particularly
simple. Indeed if U = {ug, u1}, (5) simply becomes

up(y) = argrrz{ax PU,=ulY =Yy) (6)
ue

This is the so-called bit-MAP decoding, an optimal de-
coding procedure whose decision rule is based on the
maximization of the a posteriori probability on each bit.
In this framework, we introduce the Bit Error Rate (also
denoted by BER or Py(e)), generically defined as the mean
probability of error on the information symbols:

K—1
Py(e) = % Z P(Uy # Uy) (7)
k=0

If U = {0,1}, Py(e) = LE [HU—IAJH?} = Ld(U,0).

Hence, minimize ﬁ(U,ﬁ) corresponds to bit-MAP decod-
ing and is equivalent to minimize Py(e). From now on we
will assume that ¢ = {0,1}.

Up to this point we have not enforced any causality on the
decoding procedure. If we impose instead that Ux_1 (k =

1,...,K) can only depend on the observations Ylf+k° =
(Y1,...,Yitk,), the decoding procedure minimizing the

cost functional d(U, U), becomes

U1 (y) = argmax P(Uy_1 = u|YITh = yhtho) ()
u€eU

If we pick kg = 0 then we have a purely causal decoding

procedure.

By definition 7, the BER is a parameter that evaluates
the mean performance of the transmission model and
it does not consider its behavior for each possibile sent
sequence. As our system turns out to be sensible to
the input (roughly speaking, some sequences are decoded
with more reliability than others, both with bit-MAP and
other decoding methods), we are interested in studying its
behavior in function of the input. This is why we introduce
also the Conditional Bit Error Rate, CBER for short,
which is a function of U:
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K—-1
P(e|U) = = 3 P(Ti # Ue[U) )
k=0

3. RECOVERING THE INPUT SIGNAL: THE BCJR
ALGORITHM

In practice, the bit-MAP decoding can be performed with
the well-known BCJR algorithm, named for the authors
of paper Bahl et al. [1974]. This algorithm computes the
probabilities of states and transitions of a Markov source,
given the observed channel outputs; in other words, it
provides the so-called APP (a posteriori probabilities) on
states and transitions, therefore on coded and information
symbols.

Let us briefly remind the BCJR procedure in our context.
Given the output r.v. Y = (Y1,...,Yxk) (or its realization
y = (y1,...,9K)), we indicate by Y? (or y?) its compo-
nents from time a to time b. For simplicity, from now on we
suppose 7 = 1; given U = {0,1}, then X = {0,1,... K}.

For i,j =0,1,2,..., K, we define the following probability
density functions:

ar(i) = f(Xp =14, Y =y}) k=1,..,K
Br(i) = f(Yri1 = yi | Xk = 1) k=0,..,K—1
Fk(l7]):f(Xk:jaYk:ylekfl:7’) k:177K

For any k£ =1, ..., K, the relevant APP are given by:
k(i) = f(Xp =1,Y =y)
or(i,j) = [(Xp = J, Xp1 =4, Y =)
divided for f(Y =y). Given
1 ifi=0

00) = P =) =00 = { . Shoraie.
Bk (i)=P®) =1for anyi=0,..., K
then, for k=1,..., K,
Ak (i) = (1) Br (i)
ok (i, 5) = ar-1(0)Tk (4, ) Br(J) (10)

where sequences ay, and (i can be respectively computed
with a forward and a backward recursions:

Br = Try1B8r41

Notice that, in our case, ag(i), ¢ = 0,1,..., K, is null for
any i > k, because, starting from state Xy = 0, X} cannot
exceed the value k. In fact, at each step, the state Xy
can only remain constant (this occurs if the transmitted
information bit is 0) or increase of one (if the transmitted
information bit is 1). For the same reason, matrices '
and o are non-null only on diagonal and superdiagonal.
In particular, recalling that the transition between X} and
Yy is modeled by an AWGN channel, the corresponding

probability density is
(yx — 3 )2)

1
Y = X = = — —
f(Ye = yi| X = ax) Py eXP( 570

Moreover,

ap = a1

_ _ 1/2 ifj=4d,i+1
P(Xy = jlXp-1=1) = { /0 otflerwise

therefore we have
Te(i,5) = f(Ve = yi| X = §)P(Xp = | Xp—1 = 1)

1 (Yx —j)z) L
exp | ——2— for j=14,1+1
2027 p( 202 J

Number of Storage Delay to deco-

computations | locations de the kth bit
BCJR O(K?) 6K2+K bits | (K — k)T
caus. BCJR | O(K?) 6K2+K bits | kor (bounded)
BBB O(K) 1+ K bits 0

Table 1. The complexities of the algorithms

Finally, to estimate the transmitted bit at time k we com-
pare the a posteriori probabilities on the corresponding
transition: if it is more likely that the state remains the
same, the decoding outputs a 0, otherwise a 1. The bit-
MAP decoding rule at time k is then the following one:

k—1 k—1
a0 if D owliyi+1) <> owliyi) (1)
1=0 =0

1 otherwise
3.1 Causal BCJR algorithm

Analogous causal versions of the BCJR algorithm can be
used to compute the decoding rule (8) with delay ko.
For k =1,..., K — kg, the APP on the transitions becomes

ou(inf) = F(Xe = X = X700 =y1™h) )

= ay—1())T'% (4, 7)Br(5)
where the function oy, and I'y, are defined as above, while
Br(j) = fF(YFTho = yitho| X, = j), while for k > K — ko
we come back to the classical formulation (10).

In the purely causal case, namely the special case when

ko = 0, the functions 8 do not show up at all, and we
have just the forward recursion of the functions ay.

4. RECOVERING THE INPUT SIGNAL: THE
ITERATIVE BIT-BY-BIT ALGORITHM

Remaining in the context of causal decoding, we propose
a recursive algorithm which is still less complex than the
causal BCJR. This algorithm decodes the sequence bit by
bit and requires, at each step, the estimation and storage
of a state value Z; that resumes all past information.
The decoder is then a function Dj : R?> — U such that
Gg—1 = Di(yk, Zrx—1). The pattern of the algorithm is the
following one (dg indicates the euclidean distance):

(1) Initialize state: Ty = 0;
(2) For k =1,..., K, given the received symbol y; € R,
Up,—1 = argmax P(Uy_y = u|Yy = yp, X1 = Tp—1)
u€{0,1}

0 ifde(yk, Tr-1) < de(yk, Tk—1 + 1)
11 otherwise

Tp = Tp—1 + Ug—1

At each step, the decoder estimates the achieved state
2, by Tp and decides on the current bit with the MAP
method, that here consists of a simple comparison between
two euclidean distances. This straightforward procedure,
that we name iterative bit-by-bit algorithm or BBB al-
gorithm, requires a lower number of operations and a
smaller storage than the causal BCJR. A detailed compar-
ison between the complexity’s characteristics of the three
decoding methods considered in this work can be seen in
table 1.
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5. SIMULATIONS” OUTCOMES

T T T T
—&- Causal BCJR
0.5 —— Causal BCJR+ 1 fut bit

i T BCIR

0.4

0.3

BER

0.2

0.1

5
SNR(dB)

Figure 1. The Bit Error Rates derived from simulations
with classical and causal BCJR algorithms

In this section, we present the simulations’ outcomes of
the different decoding methods above described. The sim-
ulations are performed on random sequences of K = 96
bits and the outcomes are represented in terms of BER,
which corresponds to T" = K times the mean square cost.
The BER curves are represented in function of the Signal-

to-noise ratio, here defined as SNR = —2 = 12, and are
expressed in dB In figure 1, we show the BER curves
derived from simulations Wlth different BCJR decodings.
First of all, we notice that all BCJR methods are con-
sistent: the BER converges to zero for high SNR values,
i.e., for low noise values. On the other hand, if the noise
is very large, the BER tends to %: the decoding becomes
absolutely random.

As expected, the classical BCJR gives the best perfor-
mance, i.e., the BER is the lowest. Afterwards, we can
appreciate the gain obtained with a causal BCJR with
just one future bit with respect to the causal BCJR: for
SNR> 5 dB, the first one is very close to the optimal
curve. From these observations, we can then deduce that
decodings considering some future bits perform consider-
ably better than the purely causal ones.

Afterwards, in figure 2, we compare the iterative bit-by-bit
decoding with the causal BCJR. The corresponding curves
are not distant: this means that, in the context of causal
methods, the incomplete past information resumed by a
state value represents the whole past sufficiently well. Our
iterative bit-by-bit algorithm is then suitable because its
low complexity does not incur a considerable performance
loss.

6. THEORETIC ANALYSIS OF THE ITERATIVE
BIT-BY-BIT ALGORITHM

In the next, we propose an exhaustive theoretic analysis of
our bit-by-bit algorithm and we provide a formal setting
in which analytically compute the performance in terms
of BER. According to definitions 7 and 9 in section 2, the
analysis is divided into two parts: first, we consider the
mean case and we explicitly compute the BER through

T T T
—&- Causal BCJR
—— Bit-by-bit iterative algorithm

05hsagag

SNR (dB)

Figure 2. The Bit Error Rates derived from simulations
with causal decodings

denumerable Markov chains arguments; afterwards, we
calculate the CBER in the stochastic framework of Markov
chains in random environments (or MCRE’s, see Cogburn
[1984, 1986], Nawrotzki [1981, 1982]). In fact, a perfect
correspondence between the BBB decoding procedure and
a particular instance of MCRE can be identified.

Consider the generic transmission of K — oo bits and
suppose to decode by bit-by-bit method; the starting point
of our analysis is the definition, at any step k = 1,2, 3...,
of the r.v. Dy taking values in Z:

Dy, = Xj. — X», (13)
Having fixed the initial value Dy = 0, the following
recursive relationship holds

Di41 :Dk—l—ﬁk—Uk. (14)

6.1 The mean BER

According to 14, (Dg)k=0,1,... is a denumerable homoge-
neous Markov chain on state space 7, with transition
probabilities

— 1
P,,=P(Dyt1 =y|Dr=2x) = §[ny(0) +P, (1))

where
P, ,(u)

In particular, P(0) and P(1) have, for any d € Z, the
following non-null entries:

1 d+ 1
Pd,d+1(0) = 5 erfc ( 2) Pd’d(O) =1- Pd’dJ’,l(O)

V20
1 erfc (d %> Pdd 1(1):1*Pdd(1)
Vir ) |
Hence, P is tridiagonal and for any z,y € Z, ?_ﬁw =
P_,_
We note that all the states of (D) communicate, i.e., for
any z,y € Z there exist n,m € IN s.t. P 2y > 0 and
?fo > 0; such a Markov chain is said irreducible. Further,
let 7, = min{n > 0|D, = j}: state j is said positive
recurrent if E(1;| Dy = j) < oc.

:P(Dk+1:y,Uk:u|Dk:.’L’) ue{O,l}

Pga(l) =

Lemma 1. (D) is positive recurrent (that is, all its states
are so).
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Proof It suffices to apply the following criterium pro-
posed in Stroock [2005]: if there exists a function g € RT%
so that g, > (Pg), + ¢ for any x € Z \ {y} and for some
€ > 0, then y is a positive recurrent state.

In our case, it is easy to prove that y = 0 is a positive
recurrent state considering g, = |x|. Moreover, given that
the chain is irreducible, if one state is positive recurrent,
all the states are so. |

We remind that a probability vector ® € R*?% such that
TP = &7 is called invariant for the denumerable Markov
chain. We have the following result:

Proposition 2. These statements hold:
(1) (Dg) admits a unique invariant probability vector ®;
(2) @ is defined by the recursive relation

ld| =

D, = D, H gi—l,i
i=1

ii—1

(15)

—1
where (DO = |:1 +2 220:1 H‘ld:ll ?i—l,i/ﬁi,i—l} .
Proof (1) It follows from a well-known result (see,
for instance, Stroock [2005]): any irreducible and positive
recurrent Markov chain admits a unique invariant proba-

bility measure.
(2) By (#TP), = @7, for any d € Z, it follows that

Dy 1Py_14—PiPyg_1=c (16)

In particular, as ®4; = ®_, for any d € Z (this is due to
the uniqueness of the invariant and to the symmetry of
P), it suffices to substitute values d = 0 and d = 1 in 16
to conclude that ¢ = 0; hence, relation 15 holds. |

(¢ constant)

Since ﬁi—l,i/ﬁi,i—l < 1 for i > 1, &4 has its maximum
in d = 0 and it is a symmetric monotone function
exponentially decreasing towards zero.

The invariant ® describes the long-time behavior of our
system and enables us to compute the BER for K — oo
and initial state Dy = 0, as stated by the following

Theorem 3.
lim Pb(e) = sz(pd
K—oo gz
Proof Define A; = P[Uk # Ug|Dy = d] = Pyas1 +
ﬁd,d—L Hence,

(17)

K-1 K—1
1 — 1 — —k
CICEED 3D SENIEEES 3) yeb
k=0 deZ k=0 deZ

The thesis is now a direct consequence of the standard
result: 1/KZ§=Blﬁ];,d — &4 for K — oo, Vz € Z
(Stroock [2005]). |

6.2 The conditional BER

Note that, from 14, we can also interpret (Dy) as a Markov
chain in a random environment (Cogburn [1984, 1986]),
thinking of the input Uy as the random environment at
time k. This is the right way to look at (Dy,) if we want to
understand its behavior with respect to typical instances
of the input U = (Uy, Uy, ...).

For any z,y € Z, we have

P(Dgy1=y|Dy =2, Dy—1,...,D0; U) =P, ,,(Uk)
As Cogburn states in Cogburn [1984], a MCRE can be
modeled as a Markov process and this leads to the pos-
sibility to apply standard ergodic theorems of Markov
processes to describe its behavior. In the next, we are going
to illustrate this key idea in our context.

Our MCRE naturally evolves in the state space 2 = Z x
{0,1}N. Let A and B be the discrete o-fields respectively
on Z and {0, 1} and B> = [[{ ™ B; then F = Ax Bf > is
a o-field on Q. We also provide Q2 of the measure = Kk x,
where & is the counting measure on Z and 7 is the usual
uniform Bernoulli measure on {0, 1}¥.
Now, let x,y € Z, U = (Uy,Uy,...) € {0,1}N and
B € B&; in the next, will denote by w or by (z,U) a
generic element in €. Considering the shift operator T" on
{0, 13N that is, TU = (Uy,Us, ... ), we define
P((x,U);{y} x B) = P, ,(Uy)15(TU) (18)

which turns out to be a transition probability in the Foguel
[1969] sense, hence we have well defined a Markov process
in (£, F, ) modeling our MCRE. We name it extended
Markov process, EMP for short.

A measure ¢ on (Q, F) is invariant for the EMP if
P(w, F)y(dw) = (F)
wel

for any F' € F. By explicit computation through @, we
prove that an invariant probability exists for our EMP:

Theorem 4. Let ¢ be a probability measure on (Z,.A)
defined by ¢({d}) = ®, for any integer d. Then, ¢ = ¢ x 7
is an invariant probability measure for the EMP.

Proof It suffices to prove that ¥ = ¢ x 7 verifies 19 for
any F = {y} x B,y € Z, B € Bf™. Let w = (v, U), then

[ P FIuld) = 3 Puy@on(B) = @n(B) = 6(F)
2 TEZ

where we have exploited the independence of the Uy’s to
split the integral on U into a sum on Uy and an integral
on (Ul,UQ...) =TU. [ |

(19)

Remark 1. By definition, ¢ ~ p (that is ¢ << p and
@ << ). Further, as a consequence of corollary 3.4
in Cogburn [1984], ¢ is the unique invariant probability
measure absolutely continuous with respect to p.

The evolution of our EMP is strictly linked to the behavior
of the CBER; in particular, in the asymptotic case, the
CBER can be computed by means of the ergodic theorem
of Markov processes:

Theorem 5.
Jim_Py(e|U) = > As2y for mae U
dez
Proof Defining A4(Uy) = P[Uk # Ug|Dy = d,Ug] =
Pya+1(Uk)+Paa—1(Uk), for any K € IN and given Dy = 0,
the CBER can be expressed as follows:
K—1
1
Py(e|U) = % Z ZAd(Uk)PO,d(UOaUlw--Uk—l) (21)
k=0 deZ
where P(Uo, Ul, ey Uk—l) = P(Uo)P(Ul) ce P(Uk_l)
A set F' € F is said invariant if P(w, F) = 1 for p-a.e.

(20)
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w € F and P(w, F) = 0 for y-a.e. w ¢ F. We denote by F;
the o-field of the invariant sets an we say that F; is trivial
if for every F € F;, w(F) =0or u(2\ F) = 0.

A condition to verify triviality is the following (Cogburn
[1986]): if for each =,y € Z and a.e. U there exist an
n = n(z,y,U) and a z = z(z,y,U,n) € X such that
Py (U, ...,Us)P, . (U, ...Uy,) > 0, then F; is trivial. In
our context, take any couple of starting states z and y
with distance | — y| = d: after n > d steps, we have a
non-null probability of having joined a common state z,
then triviality holds.

Now, consider any non- negative function g € L1 (Q, F,v);
deﬁmng Pg(w) = [, 9(w')P(w,dw’), the ergodic theorem
(Foguel [1969]) states that under the hypothesis that the
invariant sets are trivial:

- k
Kll—r>nooKZP V)

where E(¥) denotes the mean with respect to the invariant
probability . This general result can be applied to our
case considering the function gq(z, U) = A4(Up)da(z). In

for ¢Y-ae.w  (22)

fact, Aq(Ux)Pz.a(Uo, ... Uk—1) = Pkgq(x,U) and by the
ergodic theorem:
. 1 «— —
Iggnm 174 ; Pkgd(w) = E(w)(gd) = AP, for tp-ae w

where w = (2, U). Fixing # = 0 and recalling that ¢ = ¢ x
7, we obtain the thesis. |

Theorem 5 is stronger than theorem 3 because it states
that for almost all U € {0,1}N the CBER associated to
the BBB decoding tends to the mean limit. Hence, we
supply a characterization not only of the mean behavior
of the algorithm, but also of each possible input occurrence
except for a m-negligible set.

Notice also that in theorems 3 and 5 we have considered
the initial state fixed to Dy = 0; nevertheless, it follows
from their proofs that asymptotic results will be the same
choosing any other Dy = x € Z.
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Figure 3. Asymptotic case: analytical vs simulated BER

In figure 3, we can appreciate that the asymptotic BER
(or CBER) is very close to the BER obtained by a 96 bits
simulation with the BBB method. This suggests that our
system rapidly achieves the equilibrium distribution.

7. CONCLUSION

In this work, we have presented a deconvolution problem
and proposed an information approach to solve it. We
have discussed different consistent decoding methods and
in particular we have focused on the good features of the
iterative bit-by-bit algorithm, whose evolution turns out
to be an instance of MCRE.

Under an information theoretic point of view, our trans-
mission system results sensible to the input, i.e., the BER
is different for each transmitted bit sequence. However, we
have proved that the asymptotic performance is the same
for almost all sequences using the BBB decoding.

Our future work will envisage wider input sources, includ-
ing, for instance, discrete signals switching at unknown
time instants and continuous functions.
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