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Abstract: In this paper, a novel identification technique, that is high-gain observer-based
identification approach, is proposed for systems with bounded process and measurement noises.
For system parameters with abnormal changes, an adaptive change detection and parameter
identification algorithm is next presented. The presented technique and algorithm is finally
applied to the parameter identification of the gas turbine engine by using the recorded input
data from the engine test-bed. The identified parameters and the response curves are desired.
The simulations have proved the effectiveness of the proposed procedure compared with the
previous identification approach.
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1. INTRODUCTION

System identification is essentially important for establish-
ing system model, and it is a starting point for system
analysis and control synthesis. During the past decades,
there were huge results reported in this field (see Ljung
[1987]). Basically, there are two kinds of identification tech-
niques: polynomial model identification and state-space
model identification. The polynomial identification ap-
proach (e.g. see Villadsen et al. [1978], Evans et al. [2000],
Sakai et al. [2005], Diversi et al. [2007]) is particularly
suitable for a single-input-single-output (SISO) model.
However, for multiple-input-multiple-output (MIMO) sys-
tems, the polynomial model identification approach may
give rise to numerically ill-conditioned mathematical prob-
lems. So far, state-space model identification is still a
hot research direction for MIMO systems. Specifically, in
the literature by Larimore [1990], Verhaegen [1994] and
Overschee et al. [1994], subspace identification technique
was adopted, and the resulting identification toolbox n4sid
was developed. In the meanwhile, on the basis of different
observers/filters, several parameter estimation algorithms
were developed by Friedland [1997], Liu et al. [1998]
and Rajaraman et al. [2005]. However, it is not difficult
to find that all the results in Larimore [1990], Verhaegen
[1994], Overschee et al. [1994], Friedland [1997], Liu et al.
[1998] and Rajaraman et al. [2005] are based on the noise-
free or white noise assumption. Obviously, this kind of
noise assumption cannot meet some practical situations.
Recently in the reference by Baev et al. [2006], based on
a high-order sliding-mode observer, a parameter identifi-
cation approach was proposed under the bounded noise
assumption rather than the white noise assumption. The
bounded noise assumption is obviously popular in many
? This work is supported by the EPSRC grant EP/C015185/1 and
the NSFC grant 60574026.

control issues. Unfortunately, only the measurement noise
was taken into account by Baev et al. [2006]. Actually,
a process noise always exists in any practical processes.
Therefore, this motivates us to develop a novel parameter
identification technique for systems with both bounded
process and measurement noises.

Very recently, an interesting high-gain observer was de-
veloped by Gao et al. [2007] with application in fault
estimation and fault-tolerant control design. In this study,
by using the high-gain observer technique with slight
modifications, the system state, the bounded output noise
and the process uncertainty, composed of the parameter
perturbations, are estimated simultaneously. Using the es-
timated state, estimated process uncertainty and the mean
method, the parameters are then identified. The dynamic
response curves of the identified parameters are also given.
When the parameters to be identified have obvious changes
in different time intervals, it is indispensable to detect the
abnormal changing points and identify the parameters in
the resulting changing intervals. A new adaptive identifi-
cation technique is addressed to simultaneously detect the
abrupt changing points and identify the parameters over
the resulting time intervals.

Gas turbine engines are widely used in many fields such as
aerospace, marine and power generating etc (see Tim et al.
[2005]). It is a fundamental and key task to identify the
model of the gas turbine engine accurately. In the paper, by
using the proposed high-gain observer-based identification
technique and the recorded input data from the engine
test-bed, simulation study is investigated in detail. The
identified parameters are desired for the gas turbine en-
gine with unexpected bounded process and output noises.
The abnormal change detection and adaptive parameter
identification has also proved effective in this simulated
study.
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2. HIGH-GAIN OBSERVER DESIGN

Consider the following dynamic system{
ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t) + ωi(t)
y(t) = x(t) + ωo(t)

(1)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rm represents a
control input vector, y(t) ∈ Rn is a measurement output
vector, ωi(t) ∈ Rn and ωo(t) ∈ Rn are input and output
noise vectors, respectively; A and B are known constant
matrices, and ∆A and ∆B are unknown matrices to be
determined. Denote

d(t) = ∆Ax(t) + ∆Bu(t),

x̄(t) =

[
x(t)
d(t)
ωo(t)

]
, B̄ =

[
B

0n×m

0n×m

]
,

Ḡ =

[
In

0
0

]
, H̄ =

[ 0
In

0

]
, N̄ =

[ 0
0
In

]
,

Ē =

[
In 0 0
0 In 0
0 0 0n×n

]
,

Ā =

[
A In 0
0 0n×n 0
0 0 −In

]
,

C̄ = [ In 0 In ] . (2)
As a result, an augmented descriptor system can be
obtained from (1) and (2) to give{

Ē ˙̄x(t) = Āx̄(t) + B̄u(t) + Ḡωi(t) + H̄ḋ(t) + N̄ωo(t)
y(t) = C̄x̄(t).

(3)

In this study, ḋ (t), ωi(t) and ωo(t) are all assumed to
bounded. In this context, the following observer can be
constructed{

S̄ξ̇(t) = (Ā− K̄C̄)ξ(t) + B̄u(t)− N̄y(t)
ˆ̄x(t) = ξ(t) + S̄−1L̄y(t)

(4)

where ξ(t) ∈ R3n is the state vector of the dynamic
system above, ˆ̄x(t) ∈ R3n is the estimate of x̄(t) ∈ R3n,
S̄ = Ē + L̄C̄, and K̄, L̄ ∈ R3n×p are the gain matrices to
be designed.

Here we choose

L̄ =

[ 0
0
M

]
(5)

where M ∈ Rn×n is a non-singular matrix. One thus can
calculate:

S̄ =

[
In 0 0
0 In 0
M 0 M

]
,

S̄−1 =




In 0 0
0 In 0
−In 0 M−1


 . (6)

In terms of (2) and (6), it is further derived that
C̄S̄−1L̄ = In, ĀS̄−1L̄ = −N̄ . (7)

Using (7), the estimator (4) can be expressed as

S̄ ˙̄̂x(t) = Āˆ̄x(t) + B̄u(t) + K̄(y(t)− C̄ ˆ̄x(t)) + L̄ẏ(t) (8)

The dynamic equation of the plant (3) can be expressed
as

S̄ ˙̄x(t) = Āx̄(t) + B̄u(t) + Ḡωi(t)

+H̄ḋ(t) + N̄ωo(t) + L̄ẏ(t) (9)

Letting ē(t) = x̄(t) − ˆ̄x(t) and subtracting (8) from (9),
one has

˙̄e(t) = S̄−1[(Ā− K̄C̄)ē(t) + Ḡωi(t) + H̄ḋ(t) + N̄ωo(t)]

= S̄−1(Ā− K̄C̄)ē(t) + N̄M−1ωo(t)

+H̄ḋ(t) + (Ḡ− N̄)ωi(t). (10)

From (10), one can choose a high-gain M to reduce the
effect from ωo(t) on the estimation error dynamics.

According to the work by Gao et al. [2007], the high-gain
matrix K̄ can be computed as

K̄ = S̄P̄−1C̄T , (11)
where P̄ is solved from the following Lyapunov equation

−(µI + S̄−1Ā)T P̄ − P̄ (µI + S̄−1Ā) = −C̄T C̄, (12)
with µ > 0 satisfying <[λi(S̄−1Ā)] > −µ, ∀i ∈
{1, 2, . . . , 3n}.
Remark 1.
By letting d(t) = ∆Ax(t)+∆Bu(t), the augmented system
(3) is constructed. Therefore, the observer (4), stemmed
form the design technique proposed by Gao et al. [2007],
can be used to estimate the state x, the input uncertainty
d and the output noise ωo simultaneously:

x̂(t) = [ In 0n×2n ] ˆ̄x(t), (13)

d̂(t) = [ 0n In 0n ] ˆ̄x(t), (14)

ω̂o(t) = [ 0n×2n In ] ˆ̄x(t). (15)
It is noted that, the observer (4) does exist without any
constraints since C = I. It it worthy to point out that the
estimates of x(t) and d(t) pave the way for the parameter
identification in the succeeding section.

3. NOVEL PARAMETER IDENTIFICATION
TECHNIQUES

3.1 Observer-based parameter identification

The estimates of x(t) and d(t) will be used to identify
the unknown parameters ∆A and ∆B. The d(t) and its
estimate d̂(t) can be expressed as

d(t) = [ ∆A ∆B ]
[

x̂(t)
u(t)

]
+ ∆Aex(t) (16)

d̂(t) =
[
∆Â ∆B̂

] [
x̂(t)
u(t)

]
(17)

where ex(t) = x(t)− x̂(t) = [ In 0n×2n ] ē(t); ∆Â and ∆B̂
are the estimates of ∆A and ∆B, respectively.

Subtracting (17) from (16), one can derive that
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d(t)− d̂(t)

=
[
∆A−∆Â ∆B −∆Â

] [
x̂(t)
u(t)

]
+ ∆Aex(t) (18)

Since ex(t) and ed(t) = d(t)− d̂(t) both tend to be desired
small as time tends to infinity, one can conclude that
∆Â → ∆A and ∆B̂ → ∆B as time tends to infinity.

From (17), one has

Γ(t)θ(t) = d̂(t) (19)
where

Γ(t) =




(x̂T uT ) 0 · · · 0
0 (x̂T uT ) · · · 0
...

...
. . .

...
0 0 · · · (x̂T uT )


 ∈ R

n×n(n+m),

and

θ(t) =




∆ÂT
1

∆B̂T
1

...
∆ÂT

n

∆B̂T
n



∈ Rn(n+m)

where
[
∆Âi ∆B̂i

] ∈ R1×(n+m) represents the ith row
of the matrix

[
∆Â ∆B̂

]
, θ(t) is the parameter to be

identified.

An important formula (19) has been given. However, there
are n(n + m) identified parameters in the n equations
described by (19). Therefore, the equation (19) can not
be solved uniquely. Motivated by the work (Baev et al.
[2006]) for continuous-system parameter identification and
with slight modifications, the following equations can be
constructed in terms of (19):

Γ(t− δ1)θ(t) = d̂(t− δ1)

Γ(t− δ2)θ(t) = d̂(t− δ2)
...

Γ(t− δn+m−1)θ(t) = d̂(t− δn+m−1) (20)
where δi = iδ, i = 1, 2, · · ·n + m − 1, δ is some constant
time interval, and t > (n + m)δ.

Equations (19) and (20) can be grouped into the one
(n + m)n-order linear algebraic system:




Γ(t)
Γ(t− δ1)

...
Γ(t− δn+m−1)




︸ ︷︷ ︸
ΓH

θ(t) =




d̂(t)
d̂(t− δ1)

...
d̂(t− δn+m−1)




︸ ︷︷ ︸
d̂H

(21)

The solution to (21) is

θ(t) = (ΓH)−1d̂H

=
Adj(ΓH)
det(ΓH)

d̂H (22)

By using the well-known Cramer’s rule (e.g. see Lay
[2003]), one has

θj(t) =
det(ΓHj)
det(ΓH)

(23)

where θj(t) is the jth component of the vector θ(t), and
ΓHj is the matrix obtained by replacing the entries in the
jth column of ΓH by the entries in the matrix d̂H .

In order to avoid possible jumps at some points due to the
numerical computation, a way is to take the integral to
give the following formula:

θj(t) =

∫ t

t−TL
det(ΓHj) det(ΓH)dt

∫ t

t−TL
[det(ΓH)]2dt

, t > (n + m)δ + TL

(24)
where t is the end time of the current integral window, and
TL is the selected integral length. Therefore, the response
curve of θj(t) can be given as t increases along the time
axis. In (24), the least-square idea proposed by Smith et al.
[2002] is used actually.

In order to further smooth the response curve, we can take
the mean calculation over the time interval as follows:

θ̄j(t) =
1
N

∫ t

t−N

θj(t)dt, t ≥ N (25)

where θj(t) is the identified parameter obtained from (24),
and N is the length to take the mean calculation.

The identified parameter θj(t) is assumed to stay con-
stantly (not to change abnormally) over the whole sim-
ulation interval, the identified parameter can be thus cal-
culated as

θ̄j(T2) =
1

T2 − T1

∫ T2

T1

θj(t)dt (26)

where T1 > (n + m)δ is the starting time, and T2 is the
end time of the simulation.

Now it is ready to give the following identification algo-
rithm.

Algorithm 1. High-gain observer-based identification
(HOI) algorithm.

1) Construct the augmented matrices as in (2).
2) Select the observer gains L̄ as in (5) and calculate S̄

and S̄−1 in terms of (6).
3) Solve the Lyapunov equation (12) and compute the

high-gain matrix K̄ according to (11).
4) Implement the real-time estimation using (4), and

obtain the estimates of x̂, d̂ and ω̂o in the forms of
(13)-(15).

5) Construct the equation (19).
6) Select a time interval δ and construct the equation

(20).
7) Calculate the identified parameters θj(t), j = 1, 2,
· · · , n(n+m), according to the integral (24), and plot
the parameter curves.

8) From (25), further calculate the refined identified
parameter θ̄j(t), j = 1, 2, · · · , n(n + m), and plot the
response curves of the parameters.
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9) Finally, a set of constant identified parameters is
given by (26).

3.2 Adaptive parameter identification

In the last subsection, the concerned case is that the
identified system parameters do not have obvious changes
or the changes are tolerable under the whole identification
interval. However, if some parameter changes in ∆A and
∆B are obvious in different time intervals, the obtained
identified parameters in terms of (26) will be inaccurate.
Moreover, in practical systems, the system parameters
may change abnormally due to the age or the accidents
of the components. Therefore, it is very important to
detect the changes and identify the changed parameters
simultaneously for improving identification accuracy and
system reliability. In this study, the simultaneous change
detection and parameter identification is called adaptive
parameter identification.

For a system parameter with a single abnormal changing
point only, the constant threshold method can work well
when the system runs at some known steady state. If a
series of abrupt changes happen, it is more likely that
such an approach can only detect the first change, but
fail to detect the succeeding changes, due to the constant
threshold.

In this study, we assume that the considered system
parameters may have multiple intolerable abrupt change
points. In order to solve this issue, adaptive threshold is
adopted for detecting a sequence of changes. The basic
concept is to re-calculate the threshold after detecting
each change. The adaptive threshold is expressed as the
tolerable maximal relative varying ratio with respect to
the nominal value of the identified parameter. Actually, the
nominal value is defined as the mean value of the identified
parameter under some selected steady period. Firstly, we
should calculate the nominal value over a selected initial
period, and determine the first threshold. If any a real-time
parameter calculated by (25) is beyond the threshold, and
keeps the overflow over a confirmed time interval, a change
alarm is given. By calculating the new nominal value after
the change, and determine a new threshold, the change
detection process can keep going. The adaptive change
detection and parameter identification technique can be
described by the following algorithm.

Algorithm 2. Adaptive parameter identification.

1) Choose T0 such that
T0 > (n + m)δ + TL + TD

where TD is the selected time length for the nominal
parameter identification; n, m, δ and TL are defined
as before.

2) Calculate the nominal value of the identified param-
eter as

θ0
j =

1
TD

∫ T0

T0−TD

θj(t)dt (27)

where θj(t) is given by (24).
3) Set the adaptive thresholds for the changes detection:

θ+
j =





(1 + ρ)θ0
j if θ0

j > 0

(1− ρ)θ0
j if θ0

j < 0
(28)

and

θ−j =
{

(1− ρ)θ0
j if θ0

j > 0
(1 + ρ)θ0

j if θ0
j < 0

(29)

where 0 ≤ ρ < 1; ρ is the tolerable maximal relative
varying ratio with resect to the nominal value θ0

j ; θ+
j

and θ−j are the up and low boundaries, respectively.
4) Select Tc as the so-called confirm window for the

change. If the current time t satisfies
∃j, θ̄j(τ) < θ−j or θ̄j(τ) > θ+

j , ∀τ ∈ {τ |t−Tc 6 τ 6 t}
(30)

where the real-time parameter θ̄j(τ) is given by (25),
then a change is detected at the time t.

5) If any change is detected, calculate the following mean
value:

θ̂j =
1

t− T0

∫ t

T0

θj(t)dt (31)

Set T0 = t + TD, and go back to step 2.
6) Otherwise, continue Step 3 until the simulation ends.

Then go to next step.
7) Calculate the following mean value:

θ̂j =
1

Tend − T0

∫ Tend

T0

θj(t)dt (32)

where Tend is the end time of the simulation.

4. PARAMETER IDENTIFICATION FOR A GAS
TURBINE SYSTEM

A gas turbine model is characterized by{
ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t) + ωi(t)
y(t) = x(t) + ωo(t)

(33)

where the input u(t) is the mass flow rate to the combus-
tion chamber, the components of the output y(t) are the
low-pressure and high-pressure shaft speeds, respectively.
The coefficient matrices

A =
[−0.9426 0.1601

3.9439 −3.2348

]
, B =

[
86.7941
154.6907

]
,

C =
[

1 0
0 1

]
(34)

are known. In the meanwhile, the matrices ∆A and ∆B,
due to the modeling accuracy, the aging of physical ap-
paratus and the noise effect, are the parameters to be
estimated. In this simulation, we assume

∆A =
[

∆a11 ∆a12

∆a21 ∆a22

]
=

[
0.3000 0.1000
0.8000 −0.8000

]
,

∆B =
[

∆b1

∆b2

]
=

[
1.2000
−1.2000

]
. (35)

4.1 Parameter identification: standard n4sid algorithm

For the gas turbine system (33), the input data are
gathered from the engine test-bed at the normal engine
operating point Tim et al. [2005]. Using the standard
system identification toolbox n4sid with the input and
output data, one can obtain the perturbed parameters ∆A
and ∆B as shown in third row (see Identification 1) of
Table 1. Comparing the identified parameters in the third
row with the true parameters in the second row, one can
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Table 1. Identified parameters via standard n4sid technique

Parameters ∆a11 ∆a12 ∆b1 ∆a21 ∆a22 ∆b2

True 0.3 0.1 1.2 0.8 -0.8 -1.2

Identification 1 0.3000 0.1000 1.1864 0.8000 -0.8000 -1.1038

Identification 2 -9.1684 7.0839 -55.6453 -8.2551 5.8790 -10.9569

Table 2. Identified parameters via the proposed technique

Parameters ∆a11 ∆a12 ∆b1 ∆a21 ∆a22 ∆b2

True 0.3 0.1 1.2 0.8 -0.8 -1.2

Identification HOI 1 0.290257 0.107670 1.126614 0.815732 -0.812296 -1.110485

Identification HOI 2 0.288044 0.109498 1.120677 0.813510 -0.810460 -1.116432

see that the standard subspace identification approach is
obviously effective for systems without noises.

Let

ωi = 0.2sin(20t) (36)

which is corrupted by a random signal with the variance
0.0001; and

ωo =
{

0, t < 5,
r(t), t ≥ 5

where r(t) = 0.025sin(120t) corrupted by a random signal
with the variance 0.00005. The noises considered are not
white noises, but quasi-stationary noises.

Using the standard system identification toolbox n4sid,
one can obtain the identified parameters as shown in
the fourth row (see Identification 2) of Table 1. One
can see that the identified parameters are not acceptable
compared with the real parameters as shown in the second
row. It is not strange, because the standard subspace
identification approach is only valid for systems under
white noise environment.

4.2 Novel parameter identification approach

(i) High-gain observer-based identification (HOI)

The augmented plant in the form of (3) can be constructed.
Choose

L̄ =
[

0 0 0 0 10 0
0 0 0 0 0 10

]T

.

Select µ = 1000, the high gain K̄ is computed as

K̄ =




0.01199014349023 0.00001675489315
0.00002430658075 0.01196732057822
7.99579705740000 0.01579720213789
0.00066280862061 7.98669223765000
0.00000599790547 0.00000000411038
0.00000000411038 0.00000599333828



× 1010

The identified parameters are given as shown in Table 2.
Compared with the true values (see the second row of
Table 2), the identified parameters for systems without
noises (see HOI 1, the third row of Table 2) and subjected
to noises (see HOI 2, the fourth row of Table 2) are both
desired.

Fig. 1. Responses of the identified parameters with chang-
ing intervals

(ii) Adaptive parameter identification

In this case, we assume the perturbed parameters with
obvious changes at different time intervals:

∆Am =

{ ∆A, 0 ≤ t < 25
1.4∆A, 25 ≤ t < 50
1.9∆A, t ≥ 50

∆Bm =

{ ∆B, 0 ≤ t < 25
1.2∆B, 25 ≤ t < 45
1.7∆B, t ≥ 45

(37)

where ∆A and ∆B are defined in (35).

From (4.2), there are three abnormal changing points in
∆A and ∆B, which occur at 25s, 45s and 50s, respectively.
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Table 3. Identified parameter changes: subjected to noises

Interval Parameters ∆a11m ∆a12m ∆b1m ∆a21m ∆a22m ∆b2m

1a True 0.3 0.1 1.2 0.8 -0.8 -1.2
Identified 0.28355 0.11304 1.1083 0.81108 -0.80857 -1.1283

2b True 0.42 0.14 1.44 1.12 -1.12 -1.44
Identified 0.41006 0.1481 1.3485 1.1373 -1.1341 -1.3153

3c True 0.42 0.14 2.04 1.12 -1.12 -2.04
Identified 0.48237 0.17378 1.9078 1.3316 -1.3291 -1.9257

4d True 0.57 0.19 2.04 1.52 -1.52 -2.04
Identified 0.55374 0.20412 1.895 1.5411 -1.5385 -1.8791

a : ∆A & ∆B; b : 1.4∆A & 1.2∆B; c : 1.4∆A & 1.7∆B; d : 1.9∆A & 1.7∆B.

Table 4. Identified parameter changes: noises free

Interval Parameters ∆a11m ∆a12m ∆b1m ∆a21m ∆a22m ∆b2m

1a True 0.3 0.1 1.2 0.8 -0.8 -1.2
Identified 0.28941 0.10839 1.1264 0.81696 -0.81325 -1.1103

2b True 0.42 0.14 1.44 1.12 -1.12 -1.44
Identified 0.4102 0.14792 1.3433 1.1375 -1.1344 -1.3215

3c True 0.42 0.14 2.04 1.12 -1.12 -2.04
Identified 0.48855 0.16964 1.9326 1.3395 -1.3362 -1.9008

4d True 0.57 0.19 2.04 1.52 -1.52 -2.04
Identified 0.55733 0.201 1.9003 1.5447 -1.5416 -1.8736

a : ∆A & ∆B; b : 1.4∆A & 1.2∆B; c : 1.4∆A & 1.7∆B; d : 1.9∆A & 1.7∆B.

Using the proposed algorithm 2, the three changing points
are detected respectively at 27.247s, 49.97s and 54.708s
for systems subjected to noises. The adaptive identified
parameters are shown in Table 3. One can see that the
parameters under four time intervals are identified adap-
tively and satisfactorily. For systems without noises, the
three changing points are detected at 27.27s, 50.024s and
54.709s, respectively. The desired identified parameters
are given by Table 4. Moreover, the dynamic responses of
the identified parameters are given by Figure 1. In conse-
quence, the performance of the adaptive changes detection
and parameters identification is desired.

5. CONCLUSIONS

On the basis of the high-gain observer technique, two novel
parameters identification algorithms have been proposed.
The presented algorithms are effective for systems under
bounded process and measurement noises environment,
which is more realistic in practical cases. The proposed
procedures have been applied to the simulated study of the
gas turbine engine. The simulated curves and the identified
parameters are both desired.
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