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Abstract: Neural Network Identification (NNID) for modeling the dynamics of a miniature
Eagle helicopter is presented in this paper. Off-line and on-line identification is carried out for
both coupled and decoupled dynamics of the helicopter from the flight test data. For both
the cases, identification results and the error statistics are provided. The off-line identification
performs better due to sufficient training time and data. Results indicate neural network based
black-box method is suitable for modeling the nonlinear dynamics of the helicopter. This can
be further applied for the design of Automatic Flight Control System (AFCS).
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1. INTRODUCTION

Rotary wing Unmanned Aerial Vehicles (UAVs) have been
an active area of research in the last decade due to their
attractive features and capabilities. These include vertical
take-off and landing from unimproved terrain and flight
deck, hovering and different complicated maneuvers in
urban environments that may not be possible with con-
ventional fixed wing UAVs. Rotary-wing UAVs can be em-
ployed for various military and civilian applications such as
real-time reconnaissance, surveillance of enemy locations,
search and rescue missions, weather data collection, bush
fire monitoring, inspection of bridges and power lines, agri-
cultural crop dusting and different airborne operations.

Two autonomous helicopter platforms are under devel-
opment at UNSW@ADFA with an objective to develop
Flight Control System (FCS) for fully autonomous flight.
These are the Japanese built RMAX helicopter and Hi-
robo “Eagle” helicopter. These platforms have been in-
strumented with different sensor and avionics for measure-
ments, processing and control.

The complex, asymmetric and nonlinear dynamics make
the control of helicopter extremely challenging. To design a
suitable flight control system, a good mathematical model
of the helicopter is required. This can be obtained by suit-
able identification technique using the flight data. Besides
this, the flight vehicle (helicopter) system identification
can also be used for model validation, in-flight simulators,
simulator data base, and for expanding the flight test
envelope.

Various system identification techniques that can be
broadly classified as parametric and non parametric tech-
niques have been successfully applied for flight vehicle

system identification. These system identification methods
can also be classified as conventional and non conven-
tional methods. The parametric approach requires the
mathematical model, order and structure of the system
to be known a priori. In the parametric approach, conven-
tional methods such as Maximum Likelihood Estimation
method (MLE), Modified Maximum Likelihood Estima-
tion method (MMLE) and Kalman Filtering (KF) [Mettler
et al. (2002); Jategaonkar et al. (2004); Chowdhary and
Jategaonkar (2006); Kallapur et al. (2006)] have been
employed to model the flight dynamics. In this approach,
the stability and control parameters of the flight vehicle are
estimated and the computed parameters are then used in
the assumed aerodynamic model to model the dynamics.
Some research using the non conventional methods like the
neural network has also been applied in the parametric
approach [Raol (1994); Raisinghani and Ghosh (1998);
Ghosh et al. (1998)].

Sometimes, it may not be possible to know the exact order
and structure of the mathematical model to apply the
parametric estimation techniques. Due to the complex,
coupled and nonlinear dynamics of the helicopter, a higher
order model description is needed to completely describe
the system. In addition, the inherent measurement noise
from sensors and high level of vibration leads to further
complexity. Due to these problems, the alternate nonpara-
metric approach using non-conventional methods such as
Fuzzy logic and neural network have recently gained pop-
ularity for flight vehicle system identification. The Neural
network based black-box system identification technique is
used by Aydogan Savran and Becerikli (2006) and Kumar
et al. (2006) for flight vehicle system identifications using
flight data for piloted aircraft.
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In this paper, the neural network is applied to model
the coupled nonlinear dynamics of a rotary wing UAV.
The flight data from the miniature Eagle helicopter is uti-
lized for both off-line and on-line identification. Numerical
results as well as statistical analysis are carried out to
validate the proposed technique.

Section 2 details the platform used for the experimenta-
tion and data collection while section 3 deals with the
formulation for system identification and neural network
technique. Results and discussion are provided in section
4 and section 5 concludes the paper.

2. PLATFORM DESCRIPTION

In this section a brief overview of the platform and sensors
used for flight experiments is provided. The platform used
for experiments (Figure 1) is a Hirobo “Eagle” 60 size
radio controlled helicopter, modified to use a brushless
DC motor in lieu of the standard internal combustion
engine. The design incorporates a single main rotor and a
single tail-rotor for anti-torque compensation. Five servo
actuators: collective, throttle, aileron, elevator and tail
rotor pitch are used to control the helicopter.

Fig. 1. The miniature Eagle helicopter platform

2.1 Autopilot Systems

The autopilot system consists of the MPC555 based au-
topilot and PC104 based flight computer (Figure 2).

MPC555 based Autopilot: This unit is made in-house
based on a Motorola MPC555 microcontroller. The autopi-
lot is interfaced to an Inertial Measurement Unit (IMU)
comprising accelerometers, gyroscopes and magnetome-
ters which enable the autopilot to compute attitude at
50Hz. The autopilot is also connected to a blue-tooth
modem which enables bi-directional communications with
a ground based computer so that controller parameters
and telemetry may be exchanged between the two systems.
The autopilot decodes the servo position commands and
generate the Pulse Width Modulation (PWM) signals to
drive the servos.

For experimental purposes and safety, a mechanism is
provided to allow the helicopter to be switched between
manual and automatic control. A Hand Over Take Over
(HOTO) system has been implemented on the helicopter
allowing switching between these two modes. In automatic
mode, the helicopter controls are set by the autopilot.

PC104 Based Flight Computer: The computational
overhead required for real-time neural network based
black-box system identification and subsequent use of the
identified model for designing the adaptive controller of
the Eagle helicopter necessitates more processing power
than that provided by the MPC555. A PC104 based flight
computer comprising a 650 MHz Pentium III processor
and 256 MB of RAM, has therefore been implemented
to do high level computation. Data is passed between
the PC104 system and the autopilot using an RS-232
communication link (Figure 2).

A 2GB compact flash card on the PC104 allows the
system to boot the RTLinux Real Time Operating System
(RTOS) and the control software automatically on power
up. The operating system includes X-Windows and a full
set of development tools, so that a keyboard and monitor
can be connected to the PC104 and the system used as
a hardware in the loop development system. A convenient
feature of the PC104 architecture is a native USB interface
which has allowed a data logging feature using COTS
memory stick devices. Flight data is recorded to the USB
memory stick at 50Hz and downloaded to a PC after each
flight.
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Fig. 2. PC104 and autopilot integration on Eagle platform

2.2 Sensors:

An IMU comprising three accelerometers and three Mu-
rata ENV-05D gyroscopes and three magnetometers is
constructed to provide all the sensors needed for a com-
plete Attitude Heading Reference System (AHRS). A 16bit
Analog to Digital Converter (ADC) is installed in the IMU
and interfaced to a PIC microcontroller which samples
the sensors at 1600Hz and communicates the data to the
autopilot. The PC104 computer is interfaced to a Novatel
OEM4-2GL differential GPS which provides 2cm accuracy
in position at a 20Hz update rate using the real-time kine-
matic (RTK) mode and differential GPS corrections from
a GPS base station. A PC104 frame grabber is interfaced
to the PC104 to provide vision data from a small camera
fitted on the nose of the helicopter.

3. NEURAL NETWORK SYSTEM IDENTIFICATION

In this section, the architecture and learning algorithm
for the neural network based identification of a miniature
Eagle helicopter is presented.
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3.1 Formulation

The Neural Network based black-box method is used to
model the helicopter dynamics taking into account the
interaction between all the inputs and outputs of the
Multi-Input-Multi-Output (MIMO) system. The m input,
p output discrete time representation of the nth order
helicopter nonlinear dynamics is given by

ẋ(t+ 1) = f [x(t), u(t)]

y(t) = h[x(t)] (1)

where x ∈ ℜn is the state vector, y ∈ ℜp the output vector
and u ∈ ℜm is the input vector at discrete time step t.

The input output relationship of a dynamical system can
be described by AutoRegressive eXogenous inputs (ARX)
model structure [Ljung (1987)]

y(t) + a1y(t− 1) + · · · + any(t− n) =

b1u(t− 1) + · · · + bmu(t−m).
(2)

The parameter vector , θ is given by

θ = [a1 a2 · · · an b1 b2 · · · bm]
T
. (3)

The ARX model structure can be expressed as

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
, (4)

where
A(q) = 1 + a1q

−1 + · · · + anq
−n

and
B(q) = b1q

−1 + · · · + bmq
−m.

From the above model structure, the regressor vector can
be defined as

ψ(t) = [y(t− 1), · · · , y(t− n), u(t− 1), · · ·u(t−m)]
T
.

The number of past outputs and control inputs required
to be fed for the system identification depends upon the
order and the structure of the system. The number of
regressors used for identification is decided by considering
the sampling time and stabilization period of the dynamic
system [ Lalot and Lecoeuche (2001)]. It is given by the
relationship tst

ts

, where tst is the stabilization period and ts
is the sampling period of the system. The regressor vector
should cover the entire stabilization period of the system,
however this may not always be relied upon owing to the
long stabilization period of the system. In the present
study, the number of past inputs and outputs used were
decided based on the dynamics by trial and error to suit
the noisy data. This ARX model is used to identify the
dynamics of Eagle helicopter by Feed Forward Neural
Network (FFNN). The series parallel method suggested
by Narendra and Parthasarathy (1990) and shown in
Figure 3 is used for Neural Network Identification (NNID).
The series parallel model is given by

ŷ(t) =f [yp(t− 1), yp(t− 2), .., yp(t− n+ 1),

u(t), u(t− 1), .., u(t−m+ 1)],
(5)

where ŷ(t) is the predicted output of the network, u(t) is
the actual input to the plant, yp(t) is the true or measured
output of the plant at time t.
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Fig. 3. Series-Parallel Model for NN Identification

3.2 Neural Network Architecture and Training Algorithm

Artificial Neural Networks (ANNs) are massively parallel
distributed structures and have ability to learn through ex-
perience [Haykin (1994)]. Useful properties of ANNs such
as nonlinearity, input/output mapping and adaptability
have been exploited to model the dynamics of the Eagle
helicopter. As one hidden layer with sufficient number
of neurons is good enough to approximate any nonlinear
function [Haykin (1994)], only one hidden layer is used
for the present work. Levenberg-Marquardt (LM) opti-
mization algorithm is used to minimize the cost function
defined by the Mean Square Error (MSE) given by

MSE =
1

N

N∑

j=1

(dj(n) − oj(n))
2
, (6)

where dj(n) is the desired response vector and oj(n) is the
output vector of the jth element of the network output
layer at iteration n and N is the total number of data
points used for the training. The output of the network
is computed by proceeding layer by layer through the
network. The net internal activity level V k

j for a neuron j
in hidden layer k is given by

V k
j (n) =

p∑

i=0

W k
ji(n)Y k−1

i (n) (7)

where Y k−1

i (n) is the output of neuron i of the layer
k − 1, W k

ji(n) is the net weight of neuron j in the layer
k connecting to the ith neuron of layer k − 1. The output
of the neuron j in layer k is computed using the tan-
hyperbolic activation function given by

Y k
j (n) = 1 −

2

exp(2V k
j (n)) + 1

(8)

For NN training using LM algorithm, the gradient vector
can be calculated as

g(θ) = JT (θ)e(θ). (9)

where J(θ) is the system Jacobian matrix, θ is the param-
eter vector and e(θ) is the error vector defined by

e(θ) = [e1, e2 · · · en]
T
. (10)

The minimum is found by iteratively solving the equation
given by
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(J(θ)TJ(θ) + µI)∆θ = −J(θ)T e(θ), (11)

where µ is a scalar quantity and I is an identity matrix.

4. RESULTS AND DISCUSSION

In this section, the off-line and on-line identification of
coupled and uncoupled dynamics of a miniature Eagle
helicopter is presented.

4.1 Flight Test Data Collection

The Eagle helicopter instrumented to measure pitch rate
(q), pitch attitude (θ), roll rate (p), roll attitude (φ),
yaw rate (r), longitudinal (ax), lateral (ay) and normal
accelerations (az) was test flown and various flight data
was logged. The inputs to five servo actuators i.e. collective
(δcol), throttle, aileron (δlat), elevator (δlon) and tail rotor
pitch (δped) were also logged. A sampling frequency of
50Hz was used for data collection.

4.2 System Identification

The number of regressors and network structure was de-
cided by trial and error to obtain a best fit for input output
data. For off-line modeling, as the high computational
time can be afforded, the prediction accuracy decides the
structure of the network and number of regressors. But this
is not the case with on-line training as the training over the
complete stack of data has to be finished within the sam-
pling time which is 50Hz for the present study. Therefore
for on-line training, the structure of the system and the
number of regressors has to be decided judiciously which
would give minimum Root Mean Square Error (RMSE).

The dynamics of the UAV can be modeled either off-line
or on-line depending upon the requirements. For off-line
training, batch learning over all the patterns is performed
to achieve the desired performance i.e. root mean square
error (RMSE). In on-line training, one pattern is presented
at each time step and the root mean square error corre-
sponding to that pattern in that time step is minimized.
The dynamics of the system may not be adequately repre-
sented by using one pattern for training at each time step.
To improve the modeling accuracy, a batch or stack of data
is presented to the network for training at each sampling
time instead of only one pattern. The sliding window mode
where a finite number of previous sampling periods is
considered for minimizing the RMSE. The determination
of the size of the window depends upon the prediction
accuracy required and the processing time available. Large
stack size will lead to better model approximation and
transient performance at the cost of too much processing
time but on the other hand smaller stack size will allow the
training within the specified sampling time. For on board
real time implementation of identification algorithm, 20ms
of processing time is available for each stack. Based on this,
a stack size of 15 is used for on-line training in the present
work.

The aerodynamics around the helicopter decides the basic
characteristics of the helicopter dynamics. These change
continuously with flight regime, thus on-line adaptation
is necessary to model the dynamics of the system in real
time.

The dynamics of a UAV is a six-degree-of-freedom coupled
system. Under certain assumptions and conditions [Nelson
(1997)], this six-degree-of-freedom system can be broken
down into two 3 degree freedom dynamics. These are
represented as the longitudinal dynamics and the lateral
dynamics. The identification results are presented for both
the off-line and on-line, uncoupled and coupled dynamics
in the following subsections.

Off-line identification of longitudinal dynamics: For
identification of decoupled longitudinal dynamics, the out-
put vector x and the input vector u are considered as
x = [θ, q, Vx] and u = [δlon] respectively. Two past inputs
and two past outputs are used in the regressor vector. The
neural network has five neurons in the hidden layer. The
predicted response from the NNID is plotted against the
actual response of the helicopter in Figure 4. A statistical
interpretation in terms of RMSE and variance is presented
in Table 1. It can be seen from the Figure 4 and Table 1
that the NNID model captures the dynamics very well
and the method is suitable for modeling the longitudinal
dynamics of the Eagle helicopter.
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Fig. 4. Eagle Off-line NNID: Longitudinal Dynamics

Table 1. Off-line NNID Error Statistics: Lon-
gitudinal Dynamics

Statistics θ q Vx

RMSE 0.0051 0.0074 0.0007

variance 0.0062 0.5851 0.0002

Off-line identification of lateral dynamics: The output
vector x is represented by x = [φ, ψ, Vy] and the input
vector by u = [δlat, δped, δcol] for the lateral dynamics.
Same number of hidden neurons, past inputs and past
outputs as used for modeling the longitudinal dynamics are
employed for network training. The predicted responses
from the NNID model are plotted against the actual
responses of the helicopter in Figure 5 for comparison.
The statistical results for neural network model response
is presented in Table 2. Figure 5 and Table 2 suggests that
the NNID model is suitable for system identification with
acceptable error characteristics.
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Fig. 5. Eagle Off-line NNID: Lateral Dynamics

Table 2. Off-line NNID Error Statistics: Lat-
eral Dynamics

Statistics φ ψ Vy

RMSE 0.0318 0.2137 0.004

variance 0.0063 0.0208 0.0001

Off-line identification of coupled six-degree-of-freedom dy-
namics: Most of the times, it may not be possible to
decouple the six-degree-of-freedom system into two three-
degree-of-freedom systems. Therefore the dynamics of the
helicopter need to be modeled as a coupled six-degree-
of-freedom system. For identification of the coupled six-
degree-of-freedom dynamics of the Eagle helicopter, the
state vector is represented by x = [φ, θ, ψ, VxVy, Vz] and
the input vector by u = [δlong, δlat, δped, δcol]. Twelve
neurons in the hidden layer and two past inputs and
two past outputs were used for neural network training.
The identification results for attitudes and velocities are
plotted against the actual responses of the helicopter in
Figures 6 and 7 respectively. The error statistics of the
predicted responses are presented in Table 3. The results
indicate that the neural network is capable of imitating
the dynamics of the helicopter.
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Fig. 6. Eagle Off-line NNID: Coupled Dynamics
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Fig. 7. Eagle Off-line NNID: Coupled Dynamics

Table 3. Off-line NNID Error Statistics: Cou-
pled Dynamics

Statistics RMSE Variance

φ 0.0210 0.0059

θ 0.1237 1.0451

ψ 0.0002 0.0000

Vx 0.0196 0.0002

Vy 0.0019 0.0001

Vz 0.0056 0.0002

On-line identification of uncoupled longitudinal dynamics:
For the on-line modeling of helicopter longitudinal dynam-
ics, five hidden neurons were used in the hidden layer. The
predicted and actual responses of the helicopter are plotted
in Figure 8. The error statistics is provided in Table 4. Due
to the limited availability of processing time, accuracy has
been compromise as can be seen from the results.
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Fig. 8. Eagle On-line NNID: Longitudinal Dynamics

Table 4. On-line NNID Error Statistics: Lon-
gitudinal Dynamics

Statistics θ q Vx

RMSE 0.4292 0.700 0.0156

variance 0.3935 0.1010 0.0018
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On-line identification of uncoupled lateral dynamics:
Five neurons in the hidden layer are used for on-line
training of the lateral dynamics as well. The responses
and error statistics are presented in Figure 9 and Table 5
respectively. The deterioration in the results due to on-
line training is clearly visible. From the adaptive controller
design prospective, these results are acceptable.
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Fig. 9. Eagle On-line NNID: Lateral Dynamics

Table 5. On-line NNID Error Statistics: Lat-
eral Dynamics

Statistics φ ψ Vy

RMSE 0.5205 0.5504 0.0107

variance 0.0208 0.3122 0.0016

5. CONCLUSION

In the present study, the nonlinear dynamics of the Eagle
helicopter is identified from the flight data. Neural network
based black-box approach is used to model the dynamics
both off-line and on-line. The predicted responses from
these neural network models are compared with the actual
responses of the Eagle helicopter. The off-line model seems
to perform better as compared to the on-line model. This
can be attributed to the additional training time and
bigger batch size available for off-line training. Currently
the research is directed towards the design of suitable
controllers based upon these neural network models.
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