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Abstract: For TCP linear dynamic systems with input time-varying and mismatched uncertainties, we 
propose an active queue management (AQM) scheme based on sliding mode control (SMC), which is 
aimed at robust stabilization of delay and uncertainties network system .The original uncertain time-delay 
system was first transformed into a delay-free system. Then based on the transformed system, an improved 
sliding mode control (ISMC) strategy is proposed; the robust sliding hyperplane is constructed from LMI 
with stability. The simulation experiments indicate that this scheme can track queue length very quickly 
under various network conditions, the system have strong robustness .The results also that this scheme 
outperformance the known ones with the traditional either proportional-plus-intergral or sliding mode 
controls. 

1. INTRODUCTION 

Active queue management (AQM), as one class of  packet 
dropping/marking mechanism in the router queue , has been 
recently proposed to complement the TCP network 
congestion control. Random early detection (RED) is 
regarded as the famous AQM scheme advocated by 
IETF(Floyd, 1993). It can prevent global  synchronization, 
reduce packet loss ratios, and minimize the bias against 
bursty sources. However, it is designed in an ad hoc way. 
Several experimental studies and theoretical analysis of 
RED’s performance have shown that it is very difficult to 
tune RED parameters to get well performance under various 
network conditions. In addition, it is difficult to reduce 
fluctuations by only adjusting RED’s parameters. The 
inefficiency of the original RED as AQM attracted much 
research work on improving its performance, and led to a 
number of AQM algorithm, such as Adaptive RED(ARED) 
(Floyd et al.,2001), Fairness RED (FRED)(Lin et al.,1997), 
Stabilized RED (Ott et al., 1999) and BLUE(Feng et al.,2002) 
have been proposed. Most of these are heuristic algorithms 
and very few systematic and comparion were done until 
recently. 

Recently, control theroy has been widely applied to the 
analysis and design of TCP networks and congestion 
controller for them. In (Misra et al., 2002) ,the theory of 
stochastic equations was applied to develop a fluid-based  
model of the dynamics of the TCP and AQM .This model 
describes the evolution of the characteristic variable of the 
network, including the average TCP window size and the 
average queue length. It was shown that the TCP model 
accurately captured the qualitative of TCP traffic flows. 
Several congestion control schemes based on this TCP model 
have been proposed to improved the performance of 
communication networks. For example, a proportional-
integral (PI) controller was developed for linearized system 

and implemented using difference equations (Hollot et al., 
2001). Compared to RED, PI controller is more stable. 
However, PI controller is sluggish with taking too long time 
to settle down to the reference queue length. In order to 
overcome the drawbavks of PI controller, we introduced the 
differential component in controller structure to advoid the 
overshoot and improve the damping and rise time of the 
controller. They do not seem to perform well under highly 
dynamic environments with diverse connections(responsive 
or unresponsive, short-lived or longed-lived and large round-
trip). The major reason is that such approaches are primarily 
based on precise mismatches under dynamic network 
environments. Because the TCP/AQM dynamics have time 
varying round-trip times (RTT) and uncertainties with respect 
to the number of active TCP sessions for the designed 
schemes. (Ren et al., 2002; Yan et al.,2003) introduced a 
robust variable structure based AQM schemes that exist good 
performances and robustness with respect to the uncertainties 
of the network parameters. But in these paper they analyzed 
the stability only using a simplified model without 
considering the time delay of the control signal, and the 
impact of uncertain time-delay only was discussed through 
simulation. In (Yin et al.,2006), considering the time delay of 
the control input signal , but they analye the stability only 
considering matched uncertainties. (Jing et al.,2007) 
designed a robust stabilization of state and input delay for 
internet network, but they can not consider uncertaities, so 
existing great conservation. In this paper we consider the 
problem of robust sliding mode control for a class of linear 
systems with time delay and mismatched uncertainties. As 
we know that  sliding mode control has attractive features 
such as fast response and good transient response. 

This paper is organized as followed. In Section , we Ⅱ
propose an improved TCP/AQM model including the state  
delay and nonlinear disturbance, through a particular linear 
transformation, the original uncertain time-delay system was 
first transformed into a delay-free system. In Section  the Ⅲ
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sufficient condition for the existence of stable surface is 
presented in terms of LMI and sliding mode control law is 
also presented, which guarantees the globle stability of the 
system. In Section , we compare the performanⅣ ce of the 
improved sliding mode controller(ISMC) and traditional 
sliding mode controller (SMC) and traditional PI controller, 
where we demonstrate the superiority of the ISMC. Finally, 
we summarize our paper in Section .Ⅴ  

2. TCP NETEORK DYNAMICAL MODEL AND 
WITHOUT TIME-DELAY TRANSFORMATION 

In (Misra et al.,2002), a non-linear dynamic model of TCP 
connection through a congestion AQM router was developed 
based on fluid traffic analysis, the following is a simplified 
version of that model. 

1 ( ) ( ( ))( ) ( ( ))
( ) 2 ( )

( )( ) ( ) ( )
( )

W t W t R tW t p t R t
R t R t

N tq t W t C t
R t

−⎧ = − −⎪⎪
⎨
⎪ = −
⎪⎩

&
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       (1) 

where is the capacity of link (in packets/sec); is the 
average TCP window size (in packets) ; is the 
instantaneous queue length (in packets) ; P is the packet-
dropping probability function ,which is the control input used 
to reduce the sending rate and to maintain the bottleneck 
queue ; 

c ( )W t
( )q t

N  is the number of  TCP sessions; R  is the 
transmission RTT , equal to . )(/)( tCtqTp +

The characteristics of congestion control based on window 
and the dynamic queue in the above-mentioned differential 
equation can be shown by fig.1. 
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Fig.1.TCP control frame based on window 

where W and  for state of system, p  for input feedback, 
suppose , and is normal value 
of ,  and .Sequently, we approximated this 
nonlinear and time-varying system as a linear constant 
system by small-signal linearization about an equilibrium 
point , we get a linear differential equation as 
follow： 

q
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where 0 0( ) ( ) , ( ) ( ) , ( ) ( )dW t W t W q t q t q p t p t pδ δ δ= − = − = − . 
It is known that a tracking control problem can be 
transformed into a stabilization problem in the error form. Let  
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( ) de q t q
x e
x e
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                            (3) 

Since parameter perturbation and external disturbance can not 
be avoided, therefore Eq. (2) is written as Eq. (4). 

( ) ( ) ( ) ( )x t Ax t Bu t h f t= + − +&                            (4) 
where                
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where, nx R∈  is the state vector,  , is the 

control input, which satisfy

( ) ( )u t p tδ= mu R∈

( )0 01p u t p− ≤ ≤ − ,  ( ) n mf t R ×∈ is 

the external disturbance, n nA R ×∈ and n mB R ×∈ are known 
constant matrices with appropriate dimensions. 
In process of designing controller, the following assumptions 
are taken: 

Assumption 1: the pair ( ,A B ) is controller, the input matrix 
 has full rank; B

Assumption 2: the disturbance ( )f t  satisfy norm –bounded; 

1( ) ( )df t B f t= , exist a positive constant β , get 1( )f t β≤ ; 
Assumption 3: AΔ  satisfy unmatched condition: 

1 11 1

2 21

2

22

A A A
A

A A A
Δ Δ Δ⎡ ⎤ ⎡ ⎤

Δ = =⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦
,even [ ]1 1( ) ( ) 2A DF t E DF t E EΔ = = , 

where ( ) ( )TF t F t I≤  , 2A αΔ ≤ . 

Linear transform is presented  

( )( ) ( ) ( )
t A t h

t h
m t x t e Bu dτ τ τ− −

−
= + ∫                      (5)                

Take differential for (5) as the following: 

( )( ) ( ) ( ) ( ) ( )
t A t h Ah

t h
m t x t A e Bu d e Bu t Bu t hτ τ τ− − −

−
= + + −∫& & −   (6) 

                                   
By substituting Eq. (4) and Eq. (5) into Eq. (6), we obtain: 

( ) ( ) ( ) ( )dm t Am t B u t f t= + +&                         (7) 

where, .  Ah
dB e B−=

Make use of Taylor formula, , leading 

to . 

2( )Ahe I Ah o h− = + +

( )T
12 2 22 21dB hA B hA B= − −

Considering uncertain of system, according to Assumption 1, 
system (7) can be transformed into a regular from by 
applying a linear transformation. Let us consider a 
transformation matrix  satisfyingT

T
20d dB TB B⎡ ⎤= = ⎣ ⎦ . 

where 1 1
2B R ×∈ is non-singular. Eq. (7) is written as followed: 
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 ( ) ( ) ( ) ( )dz t Az t B u t Tf t= + +&                                   (8) 

where 1A TAT −= ， ，( ) ( )z t Tm t= d dB TB=  

   11 121 1 2( )   z t A z A z A z= + + Δ& 1                                     (9)                           
21 222 1 2 2 2 1( ) ( ) [ ( ) ( )]z t A z A z A t z B u t f t= + +Δ + +&     (10)                                                                                                      

In the practical TCP/ IP network, a controller is designed 
according to the model of the system. The imperfect 
information will affect the accuracy of the model. so we must 
use simplified method for practical application. In addition, 
with varied environment conditional, transmission of the 
signal will delivers the deviation appear error in the control 
system, which can bring the influence for the control object. 

Note that the plant model (1) is only an approximate model 
and it ignores the timeout and slow start mechanism. 
Equation (2) is further made liberalization in the paper. So 
the system model is strongly uncertain, nonlinear and subject 
to additive noise. Taking the nonlinearly and the uncertainties 
into consideration, the sliding mode controller of AQM 
would be an ideal methodology for a robust AQM. SMC has 
strong robustness; hence it is suited for the complicated 
system of network. 

3. DESIGN OF CONTROLLER FOR AQM  

Sliding mode control (SMC) makes systems very robust with 
respect to parameter perturbation and external disturbances. 
Switching converters constitute an important case of sliding 
mode system and different sliding mode strategies to control 
this class of circuits have been reported in the last years. The 
design of these strategies is performed in two steps. In the 
first step, we choose among different sliding surface that one 
which provides the desired asymptotic behavior when the 
converter dynamics is forced to evolve over it. In the second 
step, the feedback circuit which directs the converter 
dynamics to sliding surface is designed. 

Sliding mode control is a robust nonlinear feedback control 
technique, a key point in the design of sliding mode 
controllers is to introduce a proper sliding surface so that 
tracking errors and output deviations can be reduced to a 
satisfactory lever. Unfortunately, an ideal sliding mode 
controller has a discontinuous switching function and it is 
assumed that the control signal can be switching from one 
value to another infinitely fast switching control because of 
finite time delays for the control computation and limitations 
of physical actuators. 

In this paper, the robust stabilization of the network system is 
discussed. A linear dynamical model of TCP network is 
obtained by control theories, the sliding surface 

corresponds to a combination of the queue length error, 
the error between incoming traffic rate and link capacity and 
a predictor. Designing a control input  to maintain 
system states on the surface  for all  will satisfy the 
tracking requirements dq  and d . Indeed, it will 
force 

( )S t

( )u t
( )S t 0t >

q→ q q→& &

1x  and 2x  to approach zero under any bounded initial 

conditions. So it can carry out accurate track, and maintain 
the highly utilization of the circuit and the low average time-
delay. 

3.1 designing sliding mode surface 

Without loss of generality, a sliding surface is defined as: 

[ ] 1

2

( ) ( ) 0
z

s t Cz t K I
z
⎡ ⎤

= = − =⎢ ⎥
⎣ ⎦

               (11) 

where ，  ( ),m n m n mC R K R× ×∈ ∈ −

1

In sliding mode, it will regard  as virtual input control of 
subsystem (11), designing state feedback: 

2z

2z Kz=                                           (12)                 

By substituting Eq. (12) into Eq. (9), we obtain as follow: 

1 11 11 1 12 12 1( ) ( ) ( )z t A A z A A K= + Δ + + Δ& z                   (13) 

If uncertainties AΔ satisfy matching condition, 11 12,A AΔ Δ  can 
not appear in Eq. (13), if 11 12( , )A A  is controllable, making 
use of pole assignment to find out K , which can make the 
system stabilization.  

If uncertainties AΔ  satisfied unmatched condition, in the 
paper, we will recur to LMI technology for K  , consequently 
designing a stable sliding mode surface of system (13).  

Lemma（Khargoneker et al.,1990）given constant matrix 
with appropriate dimensions Y, D and E， where Y is a 
symmetric constant matrix ，the following inequality holds:  

0T T TY DEF E F D+ + <  for ( ) ( )TF t F t I≤  ， if and only if 
for some constant 0ε < , 1 0T TY DD E Eε ε −+ + < . 

Theorem 1: if there exist a symmetric and positive definite 
matrix ， some matrix W and some positive e, such that 
the following LMI are satisfied，  then the reduced-order 
system Eq. (11) is asymptotically stabilizable via the sliding 
mode function (13). 

P

( )1 2

1 2

0
0

T

T

D E X E W
D I

E X E W I

ε
ε ε

ε

⎡ ⎤Φ +
⎢ ⎥

0− <⎢ ⎥
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          (14) 

where ( )11 12 11 12

T
A X A W A X A WΦ = + + + , 1X P−= , 1W KP−= . 

Proof: consider Lyapunov function candidate  
( ) 1

TV t z Pz= 1                                       (15) 
where  is a symmetric and positive definite matrix. P

( ) ( ) ( ) ( ) (
1 11
T TV t z t Pz t z t Pz t= +& & )1                  (16) 

By substituting Eq. (13) and assumption (3) into Eq. (16), we 
obtain as follow: 

1 11 12 1 2

11 12 1 2 1

( (

       ( ( ))

T TV z A A K DF E E K P

P A A K DF E E K z

))= + + +

+ + +

& +
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1 1 2 1 2

1 11 12 11 12

1 2 1 2 1
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T T T T
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T T T

z A A K P P A A K z

z E E K F D P PDF E E K z

z A A K P P A A K

E E K F D P PDF E E K z
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where ( ) ( )11 12 11 12

T
A A K P P A A Kψ = + + +   

If the right-hand of Eq.(12) is negative definite uniformly for 
all  except at , then the reduced-order dynamics Eq. 
(13) is asymptotic stabilization. Therefore, the following 
inequality is valid. 

1z 1 0z =

1 2 1 2( ) ( )T T TE E K F D P PDF E E Kψ + + + + < 0            (17) 

According to Lemma 1, the matrix inequality Eq. (17) holds 
for all satisfying F ( ) ( )TF t F t I≤  if and only if there exists 
a constant 0ε > such that 

          (18) 1
1 2 1 2( ) ( ) ( )T TPD PD E E K E E Kψ ε ε −+ + + + 0<

0⎥
⎥

⎤

Applying Schur to Eq. (18) result in 

( ) ( )

( )

1 2
1

1 2

0

0

T

T

PD E E K
PD I

E E K I

ψ
ε

ε

−

⎡ ⎤+
⎢ ⎥

− <⎢
⎢

+⎢ ⎥⎣ ⎦

           (19) 

The matrix inequality Eq. (19) is not a LMI, but a QMI, 
Define the following transformation matrix as 

⎦ , we make a toolbox to solve K  in the 
MATLAB, denoting

1, ,T diag P I Iε−⎡= ⎣ 1,X P W KX−= = , , yields the LMI Eq. 
(14). 

3.2 Designing sliding mode control law  

In the previous section, the designed sliding mode surface 
can guarantee the asymptotic stability of the system in terms 
of LMI; next, we need find feedback control law u to drive 
state trajectories of the system onto the sliding surface. The 
designed control law can satisfy the reaching condition. 

Theorem 2: For uncertain system (7), sliding mode function 
(11) is selected; sliding mode control law is chosen as follow: 

( ) 1

2 11 1 12 2 21 1 22 2 1 2sgn( )

N m

m

u u u

u B KA z KA z A z A z s sε ε
−

= +

⎡= − + + + + +⎣ ⎤⎦

( ) 1

2 2( ) sgn( )Nu B KD Ez z B sα β
−

= − + +            （20）                

where, 1ε  and 2ε  are both greater than zero, which is able to 
satisfy reaching condition  for system with any state, 
if and only if , .The system will approach to 
sliding mode surface. 

0Ts s <&
0=s 0Ts s =&

Proof：By substituting Eq. (20) into sliding mode reaching 
condition: 

11 1 12 2 1 21 1 22 2 2 1( )T Ts s s KA z KA z K A z A z A z B u f⎡= + + Δ + + + +⎣& ⎤⎦  

( )1 2 2 1 2 1 2sgnT T T
Ns K A z A z B f s B u s s sε ε⎡ ⎤= Δ + Δ + + + − −⎡⎣⎣ ⎦

( )2 2 1 sgnT T T
N 2s KD Ez z B s B u s s sα β ε⎡ ⎤≤ + + + + −⎡ ⎤⎣ ⎦⎣ ⎦ ε−

( )1 2

1 2

sgn

sgn( )
0

T

T T

s s s

s s s s

ε ε

ε ε

≤ − −⎡ ⎤⎣ ⎦
≤ − −
≤

 

Sliding mode reaching condition is satisfied. 

3.3  stability analysis of the AQM system 

The designed sliding mode surface guarantee the asymptotic 
stabilization of system, the stabilization of transformation 
system adopted the control law (20) is researched. The 
original system and the transformation system have the same 
poles and equivalent map. So we may use the transformed 
system to study the original system,  

Theorem 3:  the system (7) is asymptotic stabilization, so the 
system (4) is also asymptotic stabilization. 

 Proof: Form (5), we obtain  

        ( )( ) ( ) ( )
t A t h

t h
x t m t e Bu dτ τ τ− −

−
≤ + ∫                    (21) 

        
0

( ) ( ) max ( )A

h
x t m t h e B u tθ

θ− ≤ ≤
⎡ ⎤≤ + ⎣ ⎦                  (22) 

By substituting Eq. (20) into Eq. (22), we obtain as follow: 

0
( ) ( ) {max .A

m Nh
x t m t h e B u uθ

θ≤ ≤
≤ + +                (23) 

If external disturbance and parameter perturbation satisfy 
assumption condition, the designed sliding mode surface with 
LMI can guarantee the asymptotic stabilization of system (7), 
from Theorem 3, we can get ( ) 0s t =   , sgn ( ) 0s t = . 

Therefore, ( )lim 0
t

x t
→∞

→ , the system(4) is asymptotic 

stabilization . 

4. SIMULATION RESULTS  

In this section we validate the effectives and performance of 
the scheme of this paper by simulation. During the designing 
of the controller, the two conflicting requirement must be 
taken into consideration at the same time. The first requires 
the controller to have good transient response. The second 
emphasizes the steady performance. In this simulation, we 
will draw comparisons among PI controller , SMC and the 
controller proposed in this paper (ISMC) about the 
performance under the variations of network parameters. 

The choosing of the parameters are based on (Quet et 
al.,2004), 50N = , 300C = packets/s, , q  0 50R ms= 100d =

packets. To PI-AQM, the choosing of parameters is 
0.0023pk = , 0.004Ik = ;To SMC-AQM and ISMC-AQM, 

the choosing of parameters as 1 0.5ε = , 2 5ε = ,in addition, 
for ISMC-SMC, 2.5β = . 

⎤⎦  

Following we make simulation of the network system with 
Matlab/Simlink, Fig.2-Fig.4 plot the simulation results of 
different parameters of network. 

In Fig.2, we choose the parameters of network as above, we 
can see that  ISMC can obtain fast and stability responses. 
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SMC has big chattering. PI controller exhibits strongly 
oscilation and instability. 
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Fig.2. Queue length responses with fixed parameters of 
network  
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Fig.3.Queue length responses with varied network parameters 
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Fig.4.  Queue length responses with varied time delay and 
network parameters 

In order to test the robust performance of PI controller, SMC 
and ISMC for varied parameters, we vary N from 50 to 
100; from 300 to 250; the simulation results are given in 
Fig.3. The superior performance of ISMC is observed when 
network parameters change, but PI controller and SMC have 
strong instability. 

C

In Fig.4, we increase delay from 50ms to 100ms, and 
considering varied the network parameters, PI control scheme 
makes a longer response time and has oscillation, SMC is 
seriously influenced by the improper parameters and results 
in the instability of the control system, especially vibration. 
But ISMC gets short regulating time and maintains the queue 
length closed to the target. So we can conclud that only 
ISMC scheme performs well under varid network parameters. 

5. CONCLUSIONS 

Active queue manage is a hot technology in the TCP research 
field of congestion control from end to end. Most of AQM 
algorithm which existent at present do not consider the 
influence of unmatched uncertainties in the course of 
designing controller. For TCP linear dynamic systems with 
input time-varying and mismatched uncertainties, an AQM 
scheme based on a sliding mode control is proposed, and the 
robust sliding hyper plane is constructed from LMI with 
stabilization. ISMC algorithm can overcome the 
disadvantages to the stability, and can restrain the influence 
of chattering. Further more, when network parameters change, 
the control capability of ISMC algorithm is better than SMC, 
and can realize fast, true tracking, which translate into higher 
link utilization and small queue fluctuations.To avoid the 
network congestion better. So it is indicated that ISMC 
algorithm have fine practical value to adapt the uncertainty of 
actual network.   
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