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Abstract: Dispatching rules are widely used to dynamically schedule the operations in a shop. Their 
efficiency depends on the performance criteria of interest. One of the most important objectives to deal 
with in a manufacturing system is the tardiness which can be measured through several performance 
measures. This paper proposes an effective procedure to estimate the first two central moments (i.e., the 
mean and the variance) of the conditional tardiness and from this to compute a probabilistic bound for the 
maximum tardiness. These estimates are computed from the evaluation of the total tardiness, the number 
of tardy jobs and the root mean square tardiness obtained through a stochastic simulation. Different 
evaluations done by simulation show the effectiveness of the bound obtained. 
Keywords : Simulation of stochastic systems; Discrete event systems in manufacturing. 

 

1. INTRODUCTION 

In a job shop dispatching decisions as to which job should be 
loaded on a machine when it becomes free are termed 
dynamic scheduling. One of the most common approaches to 
dynamically schedule the jobs is the use of dispatching rules 
(Blackstone et al., 1982). These are defined by Blackstone et 
al. (1982) as: "rules used to select the next job to process 
from jobs awaiting service". Their efficiency depends on the 
performance criteria of interest and on the operating 
conditions. The evaluation of their efficiency is usually done 
using simulation.  

In a job shop, each job i has associated with it a release date 
ri (i.e., the earliest that the job can start executing), a due date 
di (i.e., the time by which the job must complete or else be 
considered late), and is composed by a list of operations. 
Each operation j of a job i necessitates at least one resource 
for its completion and is characterized by a processing time 
pi,j. The completion time of the jth operation of job i is noted 
as Ci,j=ti,j+pi,j with ti,j as the starting time of the operation. 
The completion time of a job i is noted as Ci. Performance 
measures can be classified into regular ones and those that 
are not. A regular measure is one that is non-decreasing in 
the completion times (French, 1982). 

Literature specifies numerous performance measures, each 
focusing towards some particular objectives (e.g., keep 
delivery due dates, optimize the productivity of the system or 
minimize the work-in-process and the stock). This paper 
focuses on performance measures related to the tardiness. 
The tardiness of a job is computed as Ti=Max(0, Ci-di). To 
measure the effective performance of the system in regards 
with the tardiness, there are several performance measures of 
interest: the total tardiness noted as ∑ ௜ܶ௜ , the mean tardiness 
ܶ ൌ ∑ ௜ܶ௜ ݊⁄ , n being the number of completed jobs, the 
maximum tardiness ௠ܶ௔௫ ൌ max௜ ௜ܶ, the number of tardy 
jobs noted as ்݊ (i.e., the number of completed jobs for 
which Ti>0), the conditional mean tardiness noted as CMT = 

∑ ௜ܶ௜ ்݊⁄ , the root mean square tardiness noted as RMST = 

ටଵ
௡

∑ ௜ܶ
ଶ

௜ . All the performance measures cited above except 

CMT are regular performance measures. There are other 
performance measures as well related to the tardiness 
(French, 1982).  

In this paper, we propose an effective procedure to estimate 
the first two central moments of the conditional tardiness 
(i.e., the mean and the variance) and a probabilistic bound for 
the maximum tardiness. The conditional tardiness is the 
tardiness measured only over the tardy jobs. These estimates 
are computed from the evaluation of the total tardiness, the 
number of tardy jobs and the root mean square tardiness 
obtained through simulation. Different evaluations done by 
simulation show the effectiveness of the bound obtained. 

2. PERFORMANCE MEASURES FOR THE TARDINESS 

As already mentioned, there exist several performance 
measures to evaluate tardiness of an overall manufacturing 
system. The most used performance measure to evaluate the 
tardiness is the total tardiness (i.e., ∑ ௜ܶ௜ ). While using 
simulation to compare two different scheduling strategies, the 
number of completed jobs is usually fixed. Thus, in that case, 
the mean tardiness (i.e., ܶ ൌ ∑ ௜ܶ௜ ݊⁄ , n being the number of 
completed jobs) is equivalent to the total tardiness.  

The maximum tardiness can be of great interest for the 
decision-maker in the shop. But, frequently, the evaluation of 
a dynamic scheduling strategy is made through random 
processes, especially using simulation. Thus, the maximum 
tardiness obtained from a simulation run is only a single 
estimate of the true value of this output (i.e., the maximum 
tardiness). In practice, it would be more useful to have a 
bound of this value. 

The conditional mean tardiness measures the average amount 
of tardiness for the completed jobs which are found to be 
tardy. But this measure is not a regular measure. It means that 
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it can decrease while the completion times are not decreasing. 
For example, between two scheduling strategies with the 
same amount for the total tardiness, the one which has a 
greater number of tardy jobs will exhibit a conditional mean 
tardiness less than the other!  

The root mean square tardiness permits to differentiate a 
system which presents a little number of tardy jobs with 
higher tardiness from a system which presents a lot of tardy 
jobs with low tardiness. This performance measure exhibits 
higher values for the first kind of systems (Moser and Engell, 
1992).  

As said above, the evaluation of a dynamic scheduling 
strategy using simulation is frequently made through random 
processes and performance measures are consequently 
random variables. In that case, the simulation model is called 
a stochastic simulation model. 

Let X be a random variable, the distribution of X is 
characterized by two values: the expectancy E(X) which 
measures the mean µ and the variance Var(X) measuring the 
statistical dispersion of X. For X being a real-valued random 
variable, its expectancy is the first central moment and its 
variance is the second central moment. The variance can be 
computed as:  

ሺܺሻݎܸܽ ൌ ሺܺଶሻܧ െ  .ሺܺሻଶܧ

Let CT denote the conditional tardiness for a stochastic 
simulation, where CT is a real-valued random variable. From 
a single simulation run, one can estimate the total tardiness 
(i.e., ∑ ௜ܶ௜ ), the number of tardy job nT, and hence  E(CT) can 
be estimated as ܧሺܶܥሻ ൌ ∑ ்೔೔

௡೅
 which measures the 

Conditional Mean Tardiness (CMT). If n is fixed, one can 
also estimate in the same single simulation run, the root mean 

square tardiness RMST = ටଵ
௡

∑ ௜ܶ
ଶ

௜ . From this, it is easy to 

compute the variance of the conditional tardiness as 
ሻܶܥሺݎܸܽ ൌ ଶሻܶܥሺܧ െ  ሻଶܶܥሺܧ

ଶሻܶܥሺܧ ଶሻ can be estimated asܶܥሺܧ ൌ ଵ
௡

∑ ௜ܶ
ଶ

௜ ൌ  ଶܶܵܯܴ

So, ܸܽݎሺܶܥሻ ൌ ଶܶܵܯܴ െ  ଶܶܯܥ

It means that with the estimations of  

1. the total tardiness (∑ ௜ܶ௜ ),  

2. the number of tardy job nT and 

3. the root mean square tardiness RMST (ටଵ
௡

∑ ௜ܶ
ଶ

௜ ),  

we can compute an estimation for the first two central 
moments of the conditional tardiness (i.e., the mean and the 
variance). 

3. A PROBABILISTIC BOUND FOR THE MAXIMUM 
TARDINESS 

As already mentioned, in practice, a bound for the maximum 
tardiness would be helpful. In a stochastic simulation, the 
outputs are random variables, in which case, the bound for 
the maximum tardiness has to be a probabilistic one. In the 

previous section, we have proposed an effective way to 
compute estimates of the mean and the variance of the 
conditional tardiness. However with these first two central 
moments for this continuous random variable, we don’t have 
the distribution density function and consequently it is not 
possible to compute directly any quantile. 

Using only the first two central moments of any random 
variable, the Chebyshev's inequality permits to compute an 
interval where a given percentage of the observed values lie. 
Typically, the Chebyshev's inequality will provide rather 
loose bounds. However, these bounds cannot, in general be 
improved upon. The probabilistic formulation of the 
Chebyshev's inequality is as following: let X be a random 
variable with expected value µ and finite variance σ2. Then 
for any real number k > 0, ܲሺ|ܺ െ |ߤ ൒ ሻߪ݇ ൑ ଵ

௞మ 

The Chebyshev’s inequality can be used to compute a 
probabilistic bound for the maximum tardiness. Indeed, for 
CT to be a random variable for the conditional tardiness with 
expected value ߤ஼் and finite variance ߪ஼்

ଶ , if ଵ
௞మ ൌ  i.e., a) ߙ

fixed probability), then it comes 

ܲ ൬|ܶ െ |஼்ߤ ൒
஼்ߪ

ߙ√
൰ ൑ ߙ ֞ 

ܲ ൬
െߪ஼்

ߙ√
൑ ܶ െ ஼்ߤ ൒

஼்ߪ

ߙ√
൰ ൑ ߙ ֞ 

ܲ ቀߤ஼் െ ఙ಴೅
√ఈ

൑ ܶ ൒ ஼்ߤ ൅ ఙ಴೅
√ఈ

ቁ ൑ ஼்ߤ as ,ߙ ൒ 0, 

And it comes that: ܲ ቀܶ ൒ ஼்ߤ ൅ ఙ಴೅
√ఈ

ቁ ൑  (1)  ߙ

The probabilistic bound for the maximum tardiness is given 
by inequality (1). For a given probability ߙ, the bound for the 
maximum tardiness is computed as ̂ߤ஼෢் ൅ ఙ಴೅ෟ

√ఈ
, with ߤ஼ෞ்  the 

estimated conditional mean tardiness and ߪ஼ෞ்  the estimated 
standard-deviation of the conditional tardiness. The 
inequality (1) means that the probability for an observed job’s 
tardiness to be greater than the bound (i.e., ߤ஼ෞ் ൅ ఙ಴೅ෟ

√ఈ
) is less 

than or equal to ߙ. 

4. A SIMULATION PROCEDURE TO EVALUATE 
TARDINESS PERFORMANCE MEASURES 

In this section, we will describe the simulation procedure 
used to estimate the total tardiness, the number of tardy job 
nT, and the root mean square tardiness RMST, in order to 
compute the conditional mean tardiness CMT, the variance of 
the conditional tardiness ߪ஼்

ଶ  and a bound for the maximum 
tardiness. We will also present the experiments performed on 
a job shop model frequently used in the literature to evaluate 
dynamic scheduling strategies. 

A job shop simulation can be considered as a non-terminating 
simulation (Law and Kelton, 2000). It means that the outputs 
have to be measured in a steady state. Let X1, X2, ...Xm be m 
random variables measuring the performance of m entities 
through a single simulation run. These random variables 
define a stochastic process {Xi, i≥1} and the mean 
performance µ of this process in a steady state, is defined by : 
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ߤ  ൌ lim௠՜ן
∑ ௑೔

೘
೔సభ

௠
  

whatever the initial conditions are (Law and Kelton, 2000). 

It means that for a non-terminating simulation, whenever 
there is a steady state, the mean of an output can be estimated 
in a single run if it is long enough. In our study, the stochastic 
process of interest is the tardiness {Ti, i=1.. ்݊}, from where 
we can estimate the total tardiness (i.e., ∑ ௜ܶ௜ ሻ, the RMST 

(i.e., ܴܶܵܯ ൌ ටଵ
௡

∑ ௜ܶ
ଶ

௜ , the total number of completed jobs 

n being fixed). With a single simulation run, the number of 
tardy jobs ்݊ can be considered as a constant. Thus, from this 
single simulation run, it is trivial to compute an estimate of 
the conditional mean tardiness, ߤ஼ෞ் ൌ ∑ ்೔೔

௡೅
, and an estimate of 

the standard-deviation of the conditional tardiness, ߪ஼ෞ் ൌ

ට ଵ
௡೔

∑ ௜ܶ
ଶ

௜ െ ሺ∑ ்೔೔
௡೅

ሻଶ. 

From these estimates and from the inequality (1), a bound for 
the maximum tardiness at a given probability ߙ is equal to 
஼ෞ்ߤ ൅ ఙ಴೅ෟ

√ఈ
. 

Using independent replications would have been an 
appropriate method to estimate total tardiness, RMST and the 
number of tardy jobs ்݊. The problem is that using 
independent replications, each performance measure would 
have to be considered as a specific random variable, not 
independent from each other. Therefore their estimates 
cannot be used to compute ߤ஼ෞ்  and ߪ஼ෞ் . In order to avoid this 
drawback, and because the system can be considered as a 
stochastic process, only one simulation run (long enough) is 
carried out in order to get estimates of the outputs. 

5. EXPERIMENTS 

In order to try to make a comparison as relevant as possible, 
our test model is a job shop model used by several 
researchers. For example, Eilon and Cotteril (1968) have 
used this model to test the effects of the SIx rule, Baker and 
Kanet (1983) to demonstrate the benefits of the MOD rule, 
Baker (1984) to examine the interaction between dispatching 
rules and due-dates assignment methods, Russel et al (1987) 
to analyze the effects of the CoverT rule comparing with 
several other dispatching rules, Schultz (1989) to demonstrate 
the benefits of the CEXSPT rule, Pierreval and Mebarki 
(1997) to evaluate the dynamic scheduling strategy they 
proposed. 

The system is a four machine job-shop. Each machine can 
perform only one operation at a time. The number of 
operations of the jobs processed in the system is uniformly 
distributed, between 2 and 6. The routing of each job is 
random. More precisely, when a job leaves a machine and 
needs another operation, each machine has the same 
probability to be the next, except the one just released, which 
cannot be chosen. The processing times on machines are 
exponentially distributed with a mean of one. 

The arrival of jobs in the system is modelled as a Poisson 
process, and due to the particularities of this test model, the 

shop utilization rate is equal to the mean arrival. Due dates of 
jobs are determined using the Total Work Content (TWK) 
method (Baker, 1984).  

The dispatching rules used to evaluate the efficiency of our 
bound are FIFO, EDD, SLACK, CR/SI, CoverT, and MOD 
(see Annex 1 for a complete description of these rules). These 
rules have been chosen for their efficiency over a large 
variety of criteria, especially for performance measures 
related to tardiness. 

Table 1. Operating conditions tested. 

Factor Levels Number of 
levels 

Utilization rate 
of the 
resources 

ρ=80%, ρ=90% 2 

Due date  tight due dates 
moderate due dates 

loose due dates 

3 

There are 2×3=6 configurations to simulate. Two levels of 
shop load were defined. A moderate shop load level, which 
corresponds to a utilization rate of 80% for the resources, and 
a high level of shop load, which corresponds to a utilization 
rate of 90%. For each load level, three different levels of due-
date were established. Each given due date tightness (e.g., 
tight, moderate or loose) is computed differently depending 
on the utilization rate of the resources (Schultz, 1989; 
Pierreval and Mebarki, 1997).  

As indicated in the procedure described in section 4, one 
single simulation run was carried out for each configuration. 
The performance measures were collected for 500,000 jobs 
with a warm-up period of 1,000 time units (corresponding 
approximately to 500 jobs). The bound for the maximum 
tardiness is computed with α=0.01. The results are given in 
Table 2. 
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Table 2. Results obtained from a single simulation run. 

 0.Rule01 nT RMST Total tardiness CMT ஼்ߪ
ଶ  Bound on Tmax (α=0.01) 

H
ig

h 
lo

ad
 (ρ

=9
0%

) 

Ti
gh

t D
ue

 D
at

es
 

FIFO 316019 28.32 5229798.43 26.14 583.64 267.72 

EDD 235756 15.84 1908822.03 17.14 237.26 171.17 

SLACK 254385 16.63 2252680.93 17.38 241.03 172.63 

CR/SI 70407 14.10 94817.11 9.55 1318.69 372.68 

CoverT 194118 17.44 488070.89 6.46 740.60 278.60 

MOD 119328 22.92 339380.76 11.90 2055.65 465.29 

M
od

er
at

e 
D

ue
 D

at
es

 FIFO 189634 19.99 1684424.01 23.38 505.46 248.20 

EDD 57407 5.55 80203.32 12.15 119.82 121.61 

SLACK 61706 6.40 99994.57 13.11 159.69 139.48 

CR/SI 8851 3.32 1057.69 6.74 576.11 246.76 

CoverT 99133 6.83 59400.49 3.02 225.97 153.34 

MOD 67335 15.48 90632.91 9.98 1675.63 419.32 

Lo
os

e 
D

ue
 D

at
es

 

FIFO 147757 17.07 985376.66 22.53 477.23 240.98 

EDD 19939 2.96 8388.34 10.53 108.28 114.59 

SLACK 20763 3.26 9889.42 11.45 124.99 123.25 

CR/SI 3932 2.39 198.57 6.41 683.02 267.76 

CoverT 72045 3.33 20187.01 1.94 73.22 87.51 

MOD 50188 11.29 42318.52 8.39 1198.10 354.52 

M
od

er
at

e 
lo

ad
 (ρ

=8
0%

) 

Ti
gh

t D
ue

 D
at

es
 

FIFO 235522 10.97 1283312.27 11.55 121.74 121.88 

EDD 141916 5.33 285393.08 7.07 49.93 77.74 

SLACK 149142 5.52 317612.80 7.13 51.19 78.68 

CR/SI 52091 3.92 22451.22 4.13 129.84 118.08 

CoverT 130056 4.86 106320.78 3.14 80.97 93.12 

MOD 98580 6.98 99378.50 5.10 220.83 153.71 

M
od

er
at

e 
D

ue
 D

at
es

 FIFO 136923 7.78 398144.70 10.60 108.07 114.56 

EDD 27447 1.86 8135.29 5.39 33.89 63.61 

SLACK 29447 1.99 9605.61 5.53 36.85 66.24 

CR/SI 10085 1.38 621.24 3.05 84.50 94.97 

CoverT 68179 1.95 17297.01 1.86 24.38 51.23 

MOD 49643 4.76 21574.85 4.37 209.15 148.99 

Lo
os

e 
D

ue
 D

at
es

 

FIFO 106588 6.67 233502.33 10.26 103.00 111.75 

EDD 11614 1.17 1271.73 4.71 36.73 65.31 

SLACK 13138 1.20 1667.21 4.82 31.60 61.03 

CR/SI 5291 0.70 128.04 2.29 40.78 66.15 

CoverT 52185 0.94 8245.23 1.51 6.12 26.25 
MOD 36727 3.43 9890.58 3.66 146.65 124.76 
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To measure the effectiveness of the bound computed for the 
maximum tardiness, another series of experiments were 
conducted using the same configuration and the same rules. 
The performance measures however were collected over 100 
replications with each replication having number of jobs 
equal to 5,000 with the same warm-up period of 1,000 time 
units. Then for each replication, the percentage of tardy jobs 
that are less than the bound is measured. For each 
configuration and each rule the average is given in Table 3.  

Table 3. Average percentage of tardy jobs under 
the bound over 100 replications. 

High load (ρ=90%) Moderate load (ρ=80%) 

Due 
Dates Tight  Mode-

rate Loose  Tight  Mode-
rate Loose  

FIFO 100% 100% 100% 99.999 99.999 99.999 

EDD 100% 100% 100% 100% 100% 100% 

SLACK 100% 100% 100% 100% 100% 100% 

CR/SI 99.86 99.89 99.97 99.83 99.89 99.88 

CoverT 99.84 99.91 99.87 99.81 99.87 99.78 

MOD 99.85 99.85 99.76 99.84 99.84 99.81 

The percentages presented in Table 3 show that the bound 
computed for the maximum tardiness is quite effective, much 
more than 99% expected (the probability α has been set to 
0.01). In average, 99.94% of the tardy jobs are under the 
bound. It is consistent with the fact that the Chebyshev's 
inequality provides loose bounds.  

It is clear that the effectiveness of the bound doesn’t depend 
on the operating conditions but rather on the respective rule. 
We can consider two sets of rules:  

• {FIFO, EDD, SLACK} noted as set 1 for which the 
average percentage of tardy jobs under the bound is 
almost 100% 

• {CR/SI, CoverT, MOD} noted as set 2 for which the 
average of percentage of tardy jobs under the bound is 
found to be comparatively less, though their average is 
greater than the expected probability (i.e., 99.85% 
compared to 99%) 

The effectiveness of the bound is related to only one 
parameter which is the coefficient of variation, which 
measures the dispersion of a probability distribution (here the 
tardiness distribution). It is defined as the ratio of the 
standard deviation σ to the mean µ: 

cυ= ఙ
ఓ
 

Table 4 presents the average coefficient of variation for rules 
of set 1 and set 2, computed over all the operating conditions, 
in regards to the average percentage of tardy jobs under the 
bound. 

 

Table 4. Coefficient of variation versus average 
percentage of tardy jobs under the bound. 

Rule ܿజ Average percentage of tardy jobs under the 
bound 

FIFO 0.96 99.999% 

EDD 1.05 100.00% 

SLACK 1.02 100.00% 

CR/SI 3.33 99.89% 

CoverT 3.46 99.85% 

MOD 3.59 99.83% 

The less the coefficient of variation is, the higher the 
percentage of tardy jobs under the bound, and vice-versa.  

For rules of set 1, under high shop load, the coefficient of 
variation is always less than 1, with a remarkable stability for 
FIFO (i.e., between 0.989 and 0.924). It means that for rules 
of set 1, under high shop load, the standard deviation is less 
than the mean whereas for rules of set 2, as the coefficient of 
variation is always greater than 1, their standard deviation is 
always greater than their mean.  

For rules of set 1, the coefficient of variation under high shop 
load is less than under moderate shop load. It is the opposite 
for rules of set 2. 

Table 5 presents the average absolute difference between the 
probabilistic bound and the maximum of the maximum 
tardiness observed over 100 replications. This average is 
computed over all the operating conditions. 

Table 5. Average absolute difference between 
the bound and Max(Tmax) for each rule of        

sets 1 and 2. 

Rule ቚ݀݊ݑ݋ܤ െ max
ଵ..ଵ଴଴ ௠ܶ௔௫ቚ

FIFO 7% 

EDD 28% 

SLACK 26% 

CR/SI 233% 

CoverT 633% 

MOD 216% 

For rules of set 1, the bound is quite close to the maximum 
value observed. Most of the time it is greater than the 
maximum value observed, especially for rules EDD and 
SLACK for which the bound is always greater than any 
observed value for the maximum tardiness. 

For rules of set 2, there is a larger difference between the 
bound and the maximum value observed. But the bound is 
always smaller than the maximum value observed. So, 
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despite the fact that this probabilistic bound has been 
computed using Chebyshev’s inequality, which is known to 
give loose bounds, in our situation, it gives a probabilistic 
bound which is not so loose. Probably, this is due to the fact 
that in our test model not only the operating times are random 
but also the arrival times and the routings. Moreover, 
operating times follow an exponential distribution which 
presents a high variance (standard-deviation of an 
exponential distribution is equal to the mean) and in our test 
model, due dates greatly depend on the operating times. So, it 
seems that the less the rule depends on the operating times 
(such as FIFO), the more balanced is the rule in regards with 
the dispersion of the maximum tardiness. 

6. CONCLUSION AND PERSPECTIVES 

In this paper, we have discussed tardiness based performance 
measures in a stochastic context. We have proposed an 
effective procedure to compute estimates for the first two 
central moments (i.e., the mean and the variance) of the 
conditional tardiness and a probabilistic bound for the 
maximum tardiness. This bound is computed using 
Chebyshev’s inequality and necessitates no other information 
than estimates of the mean and the variance. 

This procedure has been tested on a job shop model used 
extensively in the literature on dynamic scheduling. The 
results obtained show the effectiveness of the bound. 
Discussion on the results show also the importance of the 
coefficient of variation on the effectiveness of this bound and 
this parameter enables to discriminate two sets of dispatching 
rules used in our job shop model.  

A future work will try to improve the computed bound by 
using more information about rules’ behaviour.  
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Appendix A. DEFINITION OF THE DISPATCHING 
RULES 

Definition of symbols 
d

i
  is the due date of job i 

p is the present date 
t
i,j

  is the operating time of the j
th
 operation of job i  

S
i
  is the set of all operations through which job i must still 

pass in  
si is the slack of job i si = d

i
 - p - ∑ ௌ೔א௜,௝௝ݐ  

w
i,j

 is the expected waiting time of the jth operation of job i 
 
d

i,j
  is the operation due date of the jth operation of job i  

 
FIFO First In First Out: the first job entered the queue is the 
first served 
 
EDD Earliest Due Date: Min(di) 
 
Slack: Min(siሻ  
 
Critical Ratio Shortest Imminent (CR/SI): Min(Zi) 
Zi=Max(p+ t

i,j
, p+ t

i,j
*(d

i 
- p)/ ∑ ௌ೔א௜,௝௝ݐ ) 

 
Cost Over Time (CoverT): Max(c

i
 / t

i,j
) 

ci=1 if (s
i
<0) 

ci=0 if (Control Parameter*w
i,j

<s
i
) 

ci=(Control Parameter* w
i,j

 - s
i
)/Control Parameter* w

i,j
 

otherwise 
 
Control Parameter is a parameter of the CoverT rule to be set 
by the user. In our test model, it has been set to 3. 
 
Modified Operation Due Date (MOD): Min(Zi) 
 Zi =Max(d

i,j
, p+t

i,j
) 
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