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Abstract: Control of the inner engine torque of a combustion engine is very crucial for the overall 
performance of a dynamical combustion engine test bench. The main problem thereby is the usually 
unknown system behavior of the combustion engine, the time delay of the accelerator actuator which is 
used to control the combustion engine. In general the combustion engine is mounted on a combustion 
engine test bench in order to adjust the parameters of the engine control unit (ECU). Hence the system 
behavior can change quite fast. In this paper we will present an adaptive approach to control the 
combustion engine torque. Measurements on a dynamical combustion engine test bench will verify the 
proposed approach. 

 

1. INTRODUCTION 

The use of combustion engine test benches is very helpful for 
adjusting the parameters of the ECU. Especially dynamical 
engine test benches are increasingly used in order to improve 
the performance of a combustion engine which means, to 
reduce exhaust emissions and fuel consumption while 
increasing the power of the combustion engine. Combustion 
engine test benches are used for e.g., vehicle simulations or 
simulation of different load patterns. Therefore MIMO 
control structures had been published ([Gruenbacher et al, 
2006a, 2006b], [Bunker et al, 1997], or an adaptive structure 
has been presented in [Yanakiev, 1998]). For engine testing it 
is further useful to control the inner engine torque of the 
combustion engine. This is quite complicated, since the inner 
engine torque in practice consists of the superposition of the 
combustion expansions of every stroke. Furthermore it 
cannot be measured directly and for closed loop control only 
the mean value of it is necessary. So it is necessary to do a 
fast estimation of this internal virtual quantity. For torque 
estimation but also for engine torque control it has to be 
mentioned that a mathematical model of the combustion 
engine will not be fully available. One possibility to describe 
the behavior of a combustion engine is to use an approximate 
model, which can be identified rather fast as shown in 
[Gruenbacher et al, 2006a, 2006b]. The main problem 
thereby is that the combustion engine behavior will change 
due to deterioration or parameter updates and the 
approximate model has to be adapted. Using an approximate 
model also means that it is necessary to run an identification 
process in order to identify and validate the model. To 
prevent such measurements, in this paper we focus on an 
adaptive strategy that is able to start with zero information 

and which achieves sufficient performance for the full 
operating range. Furthermore if the combustion engine 
changes its behavior the controller since it is continuously 
adapted, will not loose performance.  

In this paper we present a Model Reference Adaptive System 
(MRAS) control scheme which is similar to the well known 
MRAS controller (see e.g. [Astrom and Wittenmark, 1995]) 
but which is extended such that it is useful also for input 
delayed LPV systems.  

The paper is organized as follows. In the next section we 
explain the system and the approximate model of the 
combustion engine and then in the third section we discuss 
the full control structure. Furthermore in that section we 
present the main theoretical results and we further explain the 
extension from a standard MRAS controller to the MRAS 
controller for input delayed LPV systems. In section four we 
discuss some implementation issues and show the 
effectiveness of the proposed methods using measurements 
on a real combustion engine test bench. Finally we conclude 
the paper with final statements and comments to the result 
and to the quite useful control structure 

2. APPROXIMATE MODEL OF THE COMBUSTION 
ENGINE  

In the following we consider a part system of a combustion 
engine test bench where the input is the accelerator pedal, and 
the output is the engine torque. However as mentioned above 
the combustion engine torque cannot be measured and 
therefore an observer is necessary. Especially for this kind of 
problem it is possible to design an observer since on engine 
test bench it is possible to measure or at least to estimate the 
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shaft torque which is used to estimate the inner engine torque 
as well.  

For an approximate model of the combustion engine we 
apply an interpolation of local linear models. Several trials 
have shown that first order models are sufficient in order to 
describe the local behavior of the combustion engine. The 
structure of the engine model is fixed as shown in Fig.1.  

The system consists of a nonlinear static map and a 
dynamical part which depends on the actual operating point 
that is defined by the static torque EStatT  and the engine speed 

Eω  (consider Fig.1). The static behavior is described by  

 ( ),EStat EStat ET T ω α= , (1) 

where α  is the accelerator position which is the control input 
of the combustion engine. This nonlinear static map can be 
easily identified (see [Gruenbacher et al., 2007]). The 
dynamical subsystem in Fig.1 is a first order LPV – model. 
Hence it is locally linear but the time constant depends on the 
operating point. Thus with the two scheduling variables, the 
engine speed and the stationary engine torque, the resulting 
mathematical model of the dynamical subsystem is 

 ( ) ( ), ,E Estat E E Estat E EStat

Edyn E

T T T T T
T T

ρ ω ρ ω= − +

=
 (2) 

where ( ),Estat ETρ ω  is the operating point depending time 
constant. The dynamical engine torque is defined by EDynT  
which is equal to the state ET . At this point for a validation of 
the model we want to refer the reader to [Gruenbacher et al., 
2006c].  

 
Fig.1: Structure of the simplified engine model 

The accelerator pedal is operated by a mechanical accelerator 
pedal actuator. Usually the test benches are fitted by a 
mechanical accelerator pedal actuator which pushes the 
accelerator pedal. This actuator can be approximated by a 
time delay, a rate limiter and a first order dynamical system. 
This system is assumed to be well known. 

3. MRAS – STRUCTURE FOR UNKOWN ENGINE 
BEHAVIOR 

Because of the simple structure of the engine system (see (1) 
and (2)) it may be possible to apply a MRAS control scheme 
with some extensions. Extensions are necessary since the 
model parameters depend on its own operating point and 
there is a time delay of the accelerator pedal actuator which 
has to be considered. 

The time delay is considered in a smith – predictor like 
structure whereas the simulated state instead of the measured 

state of the combustion engine is applied to the state feedback 
control law. As it can be seen from Fig. 2 and as it will be 
discussed in the sequel this yields an adaptive feedforward 
control scheme at which the state of the reference system 
instead of the actual state of the system is used in the 
controller. The system state is used for adapting the controller 
gains. The parameter update then is done using the delayed 
signal. Therefore it is necessary to know the time delay of the 
accelerator pedal signal. Since this actuator is a standard 
product this time delay is well known and for this considered 
system it is 20ms.  

 
Fig. 2: Structure of the modified MRAS Control structure 

In the following the MRAS structure is described and 
discussed. For a better explanation the standard solution will 
be recalled first and afterwards the necessary extensions will 
be explained. 

3.1. MRAS Structure for engine torque control: 

A model reference adaptive controller for a first order system 
as it is discussed here is an adaptive pole placement 
controller. The aim of the control problem is to design a 
feedback controller such that the closed loop control system 
behavior converges to a reference system which is: 

 
ˆ ˆ

Ê

EDyn

b bT

T

ξ ξ

ξ

= − +

=
 (3) 

where b̂  is the reference time constant, ξ  the state of the 
reference system, ÊT  the input to the reference system and 

ET  the reference output. For the proposed method we assume 
a simplified engine model similar to (2) 

 ( ) ( ) ( ), , ,E E EStat E E EStat E

EDyn E

T T T T
T T

ρ ω ρ ω κ ω α α= − +

=
 (4) 

where  

 ( ) ( ),, EStat E
E

T ω ακ ω α
α

∂
=

∂
 (5) 

It is further assumed that there exist two positive constants 
Lκ  and Uκ  such that ( ),L E Uκ κ ω α κ< <  for all 

( ),E W Aω α ∈ ×  where W  and A  define the range of possible 
Eω  and α  respectively. It should be mentioned that this is 

not a general assumption but in order to achieve drivability of 
the combustion engine the engine torque should increase if 
the accelerator is pushed or if α  increases. Hence the 
gradient with respect to the accelerator position should be 
positive. With this assumption there always exists the local 
inverse of (5) which is ( )1 ,E EStat EStatT Tα κ ω−= . Hence the local 
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pole placement controller for system (4) to achieve a closed 
loop behavior equal to (3) is  

 ( ) ( )
( ) ( )

1
ˆ ˆ, ˆ,

, ,
E EStat

E EStat E E
E EStat E EStat

b T bT T T
T T

ρ ωα κ ω
ρ ω ρ ω

− ⎛ ⎞−
= − +⎜ ⎟

⎝ ⎠
. (6) 

However the control law (6) is not applicable since the real 
time constant and the nonlinear static map are not exactly 
known or are even totally unknown if there is no 
identification of the engine’s input-output behavior at first.  

If we assume a constant values for both ( ),E EStatTρ ω ρ=  and 
( ),E EStatTκ ω κ= , it is possible to define an adaptive control 

law using the MRAS theory (see e.g. [Astrom and 
Wittenmark, 1995]) which is  

 1

2
ˆ

E

E

k eT

k eT

γ

γ

= −

=
 (7) 

 1 2
ˆ

E Ek T k Tα = − +  (8) 

where Ee T ξ= −  is the difference of the state of the reference 
system (3) and the system (4). With (8) the error differential 
equation is 

 ( ) ( )1 2
ˆ ˆ ˆ ˆ

E Ee be b k T b k Tρ ρκ ρκ= − + − + − + +  (9) 

Note that (7) and (9) define one system and it is possible to 
prove asymptotic stability by applying the Lyapunov function  

 ( )
( ) ( )( )22

122
1 2

ˆˆ1 1 1, ,
2 2 2

b kb k
V e k k e

ρ ρκρκ

γρκ γρκ

− + −−
= + +  (10) 

where γ  is a positive constant (tuning variable) and 0ρκ >  
since 0ρ >  and 0κ >  for the full operating range. For a 
detailed proof of this standard solution we want to refer the 
reader to [Astrom and Wittenmark, 1995]. 

However system (7) and (9) is a nonlinear parameter varying 
system since the assumptions ( ),E EStatTρ ω ρ=  and 

( ),E EStatTκ ω κ=  are constant values are certainly not true, 
furthermore the stability proof will fail in this case. Hence in 
unsteady state conditions the controller may diverge and the 
error dynamics differential equation might be unstable. To 
ensure stability even in that case we extend the adaptive 
controller (7) and (8) such that the tracking error will be 
bounded even in dynamical operating. For proving this we 
will exploit the notation of practical stability referred in e.g. 
[Sontag and Ingalls, 2002] and [Yang, 2000]. Furthermore 
without loss of generality since the change rate of the 
operating point is bounded and the time constant is constant 
for this application we do the following assumptions (for 
convenience we omit the arguments ( ),E ETω  in ρ  and κ ) 

 L U L Uρ ρ ρ ρ ρ ρ< < < <  (11) 
 L U L Uκ κ κ κ κ κ< < < <  (12) 

Now we are ready to introduce the first extensions to the 
proposed controller given by (7) and (8). 

Preposition 1: If (11) and (12) is true, the model reference 
adaptive controller for system (4) which guarantees practical 
stability is given by   

 
( )

( )
1 1 2 1

2 1 3 2
ˆ

E

E

k eT dz k

k eT dz k

γ γ

γ γ

= −

= − −
 (13) 

 1 2
ˆ

E Ek T k Tα = − +  (14) 

with  

 ( ) _ _

_

0 i L i i U
i

i i M

k k k
dz k

k k otherwise

≤ ≤⎧⎪= ⎨ −⎪⎩
 (15) 

where 1 2,γ γ  and 3γ  are positive constants and _ _

_ 2
i L i Uk k

i Mk +=  
( _i Lk  and _i Uk  define the bounds of the allowed range of 
controller gains).  

Proof: With ( ) ( )1 2 1 2, , , , , ,V e k k V e k k ρ κ→  the time derivative 
of (10) is  

 ( )
1 21 2 1 2, , , , e k kV e k k V e V k V k V Vρ κρ κ ρ κ= + + + +  (16) 

Applying (13) and (14) to (16) after some computations we 
get (for convenience we write V  instead of ( )1 2, , , ,V e k k ρ κ ) 

 2ˆV be V= − + ∆  (17) 
for which if _ _i L i i Uk k k≤ ≤  it can be shown that 

 

( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 1 1

1
2

1 2

2 2
1 1

2

2

2 2
1

ˆ 1

ˆ ˆ

2

ˆ

2

b k k k
V

b k b k

b k

ρ ρκ ρ κ κρ

γ κρ

ρ ρκ ρκ κρ ρκ ρκ κρ

γ κ ρ γ κρ

ρκ ρκ κρ

γ κ ρ

− − − + −
∆ =

− − + − +
− +

− +
−

 (18) 

and if _ _i i L i i Uk k k k< ∨ >  the result is 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( )

1 1 1 2 1

1
2 2

1 2

2 2 2 2
1 1

2 3 2

1

ˆ 1

ˆ ˆ

2 2
ˆ

b k k k dz k
V

b k b k

b k dz k

ρ ρκ ρ κ κρ γ

γ κρ

ρ ρκ ρκ κρ ρκ ρκ κρ

γ κ ρ γ κ ρ

ρκ ρκ κρ γ

γ κρ

− − − + − +
∆ =

− − + − +
− −

− + +
+

 (19) 

In a first consideration equation (17) with (18) and (19) looks 
very complicated, but if this is considered in more detail one 
can see, that the square parts in (18) and (19) are always 
negative and hence are not critical. So we will concentrate on 
the rest. If _ _i i L i i Uk k k k< ∨ >  it is possible to show that there 
exist sufficient large positive constants 2γ  and 3γ  such that 
V  with (19) is negative definite. Hence  

 
( ) ( ) ( )( )1 1 1 2 1

1

ˆ 1
0

b k k k dz kρ ρκ ρ κ κρ γ

γ κρ

− − − + − +
<  (20) 

 
( ) ( )( )2 3 2

1

ˆ
0

b k dz kρκ ρκ κρ γ

γ κρ

− + +
<  (21) 

For proving this, we consider (21) and introduce the desired 
controller gain which is ˆ

2
bk ρκ= . Hence it is necessary to 

prove that  

 ( ) ( )( )2 2 3 2 2 _ 0Mk k k kρκ κρ γ− + + − <  (22) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9481



Now it is easy to see that if 2 2k k>  then 2 2 _ Mk k>  too, since 
we assumed that _ _i i L i i Uk k k k< ∨ > , and if  2 2k k<  then 

2 2 _ Mk k<  too and hence it is clear that with (11) and (12) 
there exist a constant 3γ  such that (22) is true. For (20) we do 
the same considerations. 

This proves that 0V∆ <  if the controller gains are outside the 
considered or allowed range. However, the desired values of 
the controller gains are inside this interval. In this case it is 
possible to check that V  is not negative definite for all 'ik s  
inside _ _i L i i Uk k k≤ ≤ , but it is bounded and it is possible to 
show that  

 
( ) ( )

_ _

* *
1 2 1 2

0,
ˆ ˆ, , , , , , , ,

i i L i i UD V k k k k

V e k k V e k kρ κ ρ κ

+ < ∀ < ∨ >

<
 (23) 

where D+  is the Dini derivative, * *
_ _i i L i i Uk k k k< ∨ >  and 

_ _
ˆ

i L i i Uk k k≤ ≤ . And this matches the condition of practical 
stability as it is recalled in [Yang, 2000]. Hence we can 
guarantee that the tracking error and the adapted controller 
gains are bounded.  ♦ 

From the considered application, practical stability is 
sufficient as long as the performance is still acceptable. 
However since in the standard operating conditions the rates 
of the static gain and the time constant of the engine system 
are small the positive value of V∆  in (17) will be small too. 
If V∆  is positive the set ( )1 2, ,e k k  will diverge as long as 

2b̂e V< ∆ . Note then since V∆  is bounded from above the 
tracking error will be bounded too. Furthermore in steady 
state V∆  become zero and therefore V  is negative. 

As we mentioned above the parameters of the combustion 
engine model are unknown. Hence it is not possible a priori 
to calculate the bounds of the controller gains _i Lk  and _i Uk . 
But these bounds are not critical. The constraints for the 
controller constants can directly be calculated from the 
assumption (11) and (12). 

 
1_ 1_

2 _ 2 _

ˆ ˆˆ ˆ, ,
,

ˆ ˆ
, ,

ˆ ˆ
,

U L
U L

L L U U
L U

U L

U U L L

L L
U U L L

b bb b
k k

b belse else

b bk k

ρ ρρ ρ
κ ρ κ ρ

ρ ρ
κ ρ κ ρ

κ ρ κ ρ

⎧ ⎧− −
< <⎪ ⎪

⎪ ⎪= =⎨ ⎨
− −⎪ ⎪

⎪ ⎪⎩ ⎩

= =

 (24) 

However the constraints for the local static gains ( ,L Uρ ρ ) and 
the local time constants ( ,L Uκ κ ) are unknown too but in 
general they can be roughly estimated. In the worst case if 
there is no knowledge about these constants one has to 
choose them carefully such that the range _ _i L i i Uk k k≤ ≤  is 
sufficiently large. In that case the constants 2γ  and 3γ  should 
be chosen very large such that the stabilizing part in the 
adaptation law (13) acts as a soft restriction of the controller 
gains. 

 

 

3.2.  Extension of the MRAS to the time delay problem: 

Because of the input time delay τ  of the accelerator actuator 
the adaptive controller (13) and (14) cannot directly be 
applied. Without further considerations the controller gains 
tend to wind up.  

Assuming 0ρ =  and 0κ =  the controller gains converge to 

 1 2

ˆ ˆ
,b bk kρ

ρκ ρκ
−

= =  (25) 

Hence, it is possible to reconstruct the system parameters 
from the estimated controller gains. 

 1

2 2

ˆ ˆˆ bk bb
k k

ρ κ
ρ

= − =  (26) 

Using these parameters, the system’s output and the system’s 
state without delay time can be simulated using the system  

 ξ ρξ ρκα= − +  (27) 
where ξ  is the state and u the input of the simulated system. 
Applying the control law 1 2 Êk k Tα ξ= − +  the closed loop 
system results in  

 ( )1 2 Êk k Tξ ρ ρ ξ ρκ= − + + . (28) 

With (26) the system (28) exactly matches the reference 
system (3).  

 ˆ ˆ
Êb bTξ ξ= − + . (29) 

Hence for considering the time delay we will now exchange 
the feedback law (8) with the adaptive feedforward control 
described in the following lemma. Instead of the measured 
state and output of system (4) we apply the state of the 
reference system. The measured values ( ET  and EStatT  (4)) are 
used in the adaptation law of the controller gains. This is 
control structure is now similar to a smith predictor control 
structure.  

Lemma 1: Given the system described by (4) and a control 
input delay τ , then, if (11) and (12) is true, the model 
reference adaptive controller which guarantees practical 
stability is given by  

 
( ) ( )

( ) ( )
1 1 2 1

2 1 3 2

1 2

ˆ ˆ ˆ

ˆ

ˆ

E

E

E

E

b bT

k e T e dz k

k eT t dz k

k k T

ξ ξ

γ γ

γ τ γ

α ξ

= − +

= − −

= − − −

= − +

 (30) 

where ( ) ( )Ee T t tξ τ= − −  and ( )idz k  is defined by (15). 

Proof: For the first step of the proof we again assume that 
0ρ =  and 0κ = . If in this case it is possible to proof 

asymptotic stability then in a second step it is possible to 
ensure practical stability in the same way as done in the proof 
of Preposition 1 in the case if the assumption ( 0ρ = , 0κ = ) is 
not valid. For 0ρ =  and 0κ =  the error differential equation 
is: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2

ˆ

ˆ ˆ ˆ
E E

E

e T t t b k T t e t

b k e t b k T t

ξ τ ρ ρκ ρ τ

ρ ρκ τ ρκ τ

= − − = − − − −

− − − − − − −
 (31) 

With 

 ( )
( ) ( )( )22

122
1 2

ˆˆ1 1 1, ,
2 2 2

b kb k
V e k k e

ρ ρκρκ

γρκ γρκ

− + −−
= + +  (32) 

it is possible to show that with (30)  

 
( )

( )( ) ( ) ( ) ( )

2

2 3
1 1 2 2

1 1

ˆ ˆ1

V e t

k b dz k k b dz k

ρ τ
γ γρ κ ρκ
γ γ

∆

= − −

− + − − − . (33) 

For sufficiently large 2γ  and 3γ  as mentioned above the term 
∆  in (33) is either zero if _ _i L i i Uk k k≤ ≤  or negative if 

_ _i i L i i Uk k k k< ∨ > . The first term in (33) is negative since 
without loss of generality the engine system is a stable 
system and 0ρ > .  

The second step of the proof consists of repeating the second 
part of the  proof of Preposition 1. Hence with 

 ( )
1 21 2 1 2, , , , 0e k kV e k k V e V k V k V Vρ κρ κ ρ κ= + + + + <  (34) 

we get 

 ( )2V e t Vρ τ= − − + ∆  (35) 

and since V∆  has the same structure than shown in (18) and 
(19) the proof is identical to the proof of Preposition 1 and 
practical stability can be shown in the same manner. ♦ 

4. IMPLEMENTATION AND MEASURMENT RESULTS 

For implementing the proposed algorithm some further 
extensions are necessary in order to consider the dynamics of 
the control input actuator as well. 

4.1. Dynamics of the control input actuator 

Because of the control input actuator the real system order is 
higher than one and hence the output cannot exactly follow 
the output of the reference system. Thus the controller gains 
cannot converge and furthermore the controller will – as 
usual in such a case – generate an overshoot in the step 
response. Our approach for the present system is very simple. 
The control idea is kept equal while the output of the 
reference system is simply filtered using a first order low 
pass system with the same cut off frequency than the control 
input actuator. This frequency is again a well known 
constant, since the actuator is a standard device with a 
defined dynamical behavior. The cut off frequency of the 
accelerator pedal actuator is 50Hz and the structure of a 
reference model can be seen in Fig. 3. 

 

Fig. 3: Structure of the reference model 

According to the structure in Fig. 3 the reference model is 

 
1 1

2 2 1

2

ˆ ˆ
Ê

act act

E

b bT

a a

T

ξ ξ

ξ ξ ξ

ξ

= − +

= − +

=

 (36) 

where 1ξ  is the state of the first order reference model, 2ξ  is 
the state of the first order low pass filter and acta  is the time 
constant of the actuator. Hence the final controller is 

 ( ) ( )
( ) ( )

1 1

2 2 1

1 1 2 1

2 1 1 3 2

1 1 2

ˆ ˆ ˆ

ˆ

E

act act

E

E

b bT

a a

k e T e dz k

k e t dz k

k k T

ξ ξ

ξ ξ ξ

γ γ

γ ξ τ γ

α ξ

= − +

= − +

= − −

= − − −

= − +

 (37) 

where ( ) ( )2Ee T t tξ τ= − − . 

4.2. Measurement results 

The following measurements have been done using a 
conventional combustion engine, a turbo charged diesel 
engine, which is fitted with an EGR (exhaust gas 
recirculation) and which is mounted on a dynamical 
combustion engine test bench. A test bench consists of the 
dynamometer and the combustion engine which are 
connected via a shaft (see Fig. 4). The dynamometer can be 
used either to control the speed of the combustion engine or 
to simulate different load patterns to the combustion engine.  

 
Fig. 4: Dynamical engine test bench system 

The general system’s inputs are the desired torque of the 
dynamometer DSetT and the accelerator pedal α . The engine 
test bench is fully controlled by a processor system. The 
measured quantities are the speed of the combustion engine 
and the dynamometer ( Eω  and Dω  respectively) and the shaft 
torque STT . 

As mentioned in the introduction for the controller 
implementation the mean value inner engine torque has to be 
estimated. Therefore a high gain Kalman filter in 
combination with an internal model observer is used (see 
[Gruenbacher and del Re, 2007]).  

In Fig. 5 we show the tracking result using the proposed 
MRAS controller for an engine torque control. The engine 
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speed during this measurement is kept constant at 3000 rpm. 
In this operating area the EGR valve is usually fully closed. 
The control structure works quite good but surely not perfect. 
The main reason for this is that the model assumption (4) is 
not fully valid. The real system of course shows nonlinear 
behavior which is mainly caused by the ECU and which 
cannot be exactly controlled using linear control theory. In 
Fig. 6 the same tracking result for an engine speed of 2000 
rpm is shown. Here one can see that the result is still good 
although in this speed region the EGR valve is controlled and 
due to this, the input – output behavior is strongly nonlinear. 
This effect can mainly be seen in increasing torque steps. 
From diesel engines it is well known that if the accelerator is 
pushed rapidly then the EGR valve is closed in order to 
generate more sudden power and to avoid a soot cloud as it is 
well known from old diesel engines. This is why the behavior 
totally changes and why the MRAS controller for increasing 
torque steps does not work as well as for decreasing torque 
steps and in Fig. 5.  

 
Fig. 5: Engine torque tracking at a speed of 3000 rpm using 
the proposed MRAS controller  

 
Fig. 6: Engine torque tracking at a speed of 2000 rpm using 
the proposed MRAS controller  

 

5. CONCLUSIONS 

In this paper we have presented a model reference adaptive 
control structure for controlling the inner engine torque of 
combustion engine. Therefore it is shown how to adapt a 
standard MRAS control structure to a LPV system which 
further includes input delay times. It has been proven that if 
the desired trajectory is in steady state the controller will 
converge and the tracking error will tend to zero as time goes 
to infinity. In the dynamical operation mode it has been 
shown that the tracking error is bounded. Hence the closed 
loop system is practically stable. 

Future work will consider a mapping update in order to store 
already learnt information. This will achieve a better 
convergence if the operating point of the combustion engine 
changes.  
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