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Abstract: Digital computing devices have a finite precision. Hence when digital controllers
are implemented, there is rounding on the variables and parameters resulting in the various
finite-word-length effects on the closed-loop stability and performance of the system. In this
paper we concentrate on the coefficient sensitivity problem. That is: to determine the controller
realization that minimizes the sensitivity of the closed-loop system to small perturbations on the
controller coefficients. The sensitivity minimization problem can be approximated by a stability
radius maximization problem. In this paper we consider the coefficient sensitivity problem for
digital implementations of linear parameter-varying controllers. The problem of maximizing the
stability radius for the coefficient sensitivity problem for linear parameter-varying controllers
reduces to the solution of a set of linear matrix inequalities. The approach is demonstrated
on an example. Furthermore, the example shows that eigenvalue sensitivity measures are not
generally suitable for linear-parameter-varying controller, finite-word-length problems.

Keywords: Finite-precision, digital controller, finite word length, digital implementation, linear
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1. INTRODUCTION

Gain scheduling is a common method of control in a va-
riety of practical applications. A particular framework for
designing such controllers is provided by the use of Linear
Parameter Varying (LPV) models. A number of analysis
and controller design methods have been developed for
such plants, generally resulting in LPV controllers. Re-
views of gain-scheduling and LPV design methods can
be found in Leith and Leithead [2000] and in Rugh and
Shamma [2000].

Unlike for Linear Time Invariant (LTI) controllers, there
has been little work on the implementation of LPV con-
trollers. The design methods are often in continuous time
[Gahinet et al., 1995], and so far there is no straightforward
method for discretizing the controllers that guarantees
performance and stability in the discrete time [Apkarian,
1997]. That however, is not the problem that is studied
here. We concentrate only on the problem of the optimal
quantization of the controller coefficients. This has been
fairly well studied for linear time-invariant controllers [see
Istepanian and Whidborne, 2001, for example] but almost
totally ignored for LPV and gain-scheduling controllers.
Kelly and Evers [1997] consider the problem of interpo-
lating the controllers for gain-scheduling problems, and in
order to get good numerical conditioning of the controllers,
advise that balanced realizations be used. The example
studied in this paper demonstrates that this is probably
sound advice. The special case of periodically varying

linear controllers has been studied by Farges et al. [2007],
and this is for a state feedback controller case only.

The problem of quantization of the controller coefficients
comes under the broader class of problems known as
Finite-Word-Length (FWL) problems and arises because
the set of real numbers that can be stored in a digital
computer is a subset of the real space. To store all real
numbers would require an infinite number of bits which
is not physically possible — hence the moniker “Finite-
Word-Length”. As a consequence, constants and variables
in a digital computer are subject to rounding and the
subsequent computational errors well-known in numerical
analysis. In addition, the range of possible numbers is also
finite. Hence for the implementation of a controller (or
filter) by a digital computer, consideration of the effects
of the finite-precision and range (the FWL effects) is
important.

There are three main FWL effects; (i) errors resulting from
finite precision in the controller coefficients (the coefficient
sensitivity problem), (ii) errors resulting from rounding of
variables after each arithmetic computation (the round-off
noise problem) and (iii) limitations imposed by the finite
range of variables and constants (the overflow/underflow
problem or the scaling problem). In this paper we confine
ourselves to just the coefficient sensitivity problem for LPV
digital controllers, and more particularly to the sensitivity
of the stability.
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In particular, it is well known that the FWL effects are
strongly dependent on the controller realization. An LPV
state-space controller has the form

x(k + 1) = A(θ(k))x(k) + B(θ(k))y(k) (1)

u(k) = C(θ(k))x(k) + D(θ(k))y(k). (2)

By means of a similarity transformation, all equivalent
state-space realizations are given by

x̃(k + 1) = T−1A(θ(k))T x̃(k) + T−1B(θ(k))y(k) (3)

u(k) = C(θ(k))Tx(k) + D(θ(k))y(k) (4)

where T is non-singular. The objective of this study is to
determine realizations that have low coefficient sensitivity
for the range of θ(k). Most previous studies of controller
coefficient stability sensitivity for LTI controllers have
considered minimization of eigenvalue sensitivity measures
[e.g. Li, 1998, Istepanian et al., 1998, Wu et al., 2000a,
Whidborne et al., 2001, Wu et al., 2001, 2000b, Yu and
Ko, 2003, Hilaire et al., 2006]. As we will see in Section
5, such measures are not generally appropriate for LPV
systems. Consequently, we will use a measure based on
the complex stability radius. This measure can be related
to the probability of closed-loop instability resulting from
the FWL [Fialho and Georgiou, 1994]. Furthermore, the
optimal realization problem using this measure can be
posed as a Linear Matrix Inequality (LMI) problem and
hence easily solved [Fialho and Georgiou, 2001]. In this
paper we extend this approach to a class of LPV problems.

After an introduction to LPV control systems in the next
section, the theory for LTI coefficient sensitivity minimiza-
tion using a stability radius approach is outlined in Section
3. An eigenvalues sensitivity measure is also defined. In
Section 4, the coefficient sensitivity minimization using a
stability radius approach is extended to LPV systems. In
Section 5, the method is illustrated with a simple example.
The paper concludes with some comments.

2. LPV SYSTEMS

Consider the LPV plant with m states, ℓ inputs and q
outputs that is given by

xp(k + 1) = Ap(θ(k))xp(k) + Bpu(k) (5)

y(k) = Cpxp(k) (6)

where Ap depends affinely on the time-varying parameter
vector, θ(k), and θ(k) is known at the sample instant,
k (i.e. the measurement is available in real time). Note
that here we restrict ourselves to plants where only the
plant Ap matrix is dependent on θ. This should not be a
great practical restriction [Gahinet et al., 1995, Apkarian
et al., 1995b] since parameter dependence in the Bp (Cp)
matrix can be moved to the Ap matrix by augmentation
of Ap with a high-bandwidth first-order lag inserted at the
inputs (outputs).

We assume that an n-state LPV controller of the form

x(k + 1) = A(θ(k))x(k) + B(θ(k))y(k) (7)

u(k) = C(θ(k))x(k) + D(θ(k))y(k). (8)

has been designed, and where R(θ(k)) depends affinely on
θ where

R :=

[

A(θ(k)) B(θ(k))
C(θ(k)) D(θ(k))

]

. (9)

The closed loop system matrix is then given by

Ac =

[

A(θ(k)) B(θ(k))Cp

BpC(θ(k)) Ap(θ) + BpD(θ(k))Cp

]

. (10)

Defining

A0 :=

[

0 0
0 Ap

]

, (11)

BI :=

[

I 0
0 Bp

]

, (12)

CI :=

[

I 0
0 Cp

]

, (13)

we get
Ac = A0(θ(k)) + BIR(θ(k))CI , (14)

which is also affinely dependent on θ.

3. FWL COEFFICIENT SENSITIVITY FOR LTI
SYSTEMS

The FWL problem has been fairly extensively studied
for LTI systems over the last 2 decades. In this paper
we will concentrate on the stability problem, that is:
what realization of the controller maximizes the stability
margins in the face of controller perturbations resulting
from the FWL? There have been two main approaches to
the LTI FWL stability margin problem, those based on
the eigenvalue sensitivity and those base on the stability
radius. These approaches are compared by Chen et al.
[2002].

In this paper we will use the complex stability radius,
originally proposed for FWL analysis by Fialho and Geor-
giou [1994] who also related it to a probability measure of
the required word-length for stable implementation. Note
that even though the probability of stable implementation
is not 100% guaranteed, this does not create a practical
difficulty, because the stability of the implementation with
a particular word length can be checked a posteriori. The
problem of determining the optimal realization in terms
of the complex stability radius can be posed as an LMI
[Fialho and Georgiou, 1999, 2001] and can hence be com-
pletely solved.

A common approach to determining the controller realiza-
tion that minimizes the coefficient sensitivity is by means
of the closed loop pole sensitivity. This was first considered
for LTI control systems by Li [1998] using the maximum of
the 2-norms of the closed loop eigenvalue sensitivities, but
the associated optimization problem was not completely
solved [Whidborne et al., 2000]. An alternative approach
using the weighted sum of the 2-norms of the closed loop
eigenvalue sensitivities can be solved [Whidborne et al.,
2001]. This sensitivity measure has nicer mathematical
properties than that of Li [1998] and other less conserva-
tive measures [e.g. Wu et al., 2001] and hence is considered
in this paper.

3.1 Stability radius

Let us consider the LTI versions of the set of equations
(5)–(10). As a result of the FWL, a digital controller is
not implemented exactly, but each of the coefficients of
the A, B, C, D matrices may be perturbed. The maximum
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perturbation will depend on the chosen representation
schemes, such as fixed-point or floating-point, and on the
number of wordlength. See Hilaire et al. [2007] for details.

Thus the controller matrix R is perturbed to R + ∆ and
the closed loop system matrix is perturbed to Ac+BI∆CI .
Let the maximum perturbation be given by the max norm

‖∆ ‖max := max
i,j

|∆i,j | (15)

and define the FWL stability margin as

η0 := inf {‖∆ ‖max : Ac + BI∆CI is unstable } . (16)

However, η0 is hard to compute. Fialho and Georgiou
[1994] instead propose the use of the spectral norm to
measure the perturbation

‖∆ ‖2 := max
{

√

λi : λi are the eigenvalues of ∆T ∆
}

(17)
with the FWL stability margin given by the complex
stability radius [Hinrichsen and Pritchard, 1986]

ηc := inf {‖∆ ‖2 : AC + BI∆CI is unstable } , (18)

which can be easily computed by

ηc =
1

‖CI(zI − Ac)−1BI ‖∞
, (19)

and ‖ · ‖
∞

denotes the H∞-norm. Since ‖∆ ‖max ≤ ‖∆ ‖2,
then ηc provides an upper bound on η0.

Now if we wish to find the realization of the controller that
maximizes the stability radius, ηc, then we wish to find
the non-singular transformation matrix, T , such that ηc

is maximized. The controller, and subsequently the closed
loop state matrix, Ac, are both dependent on T . Define

AT (T ) :=

[

T−1 0
0 I

]

Ac

[

T 0
0 I

]

(20)

then the problem to find the realization that maximizes ηc

is equivalent to [Fialho and Georgiou, 2001]

min
T non singular

∥

∥ CI(zI − AT (T ))−1BI

∥

∥

∞
(21)

Denoting the optimal value of (21) as γopt and the corre-
sponding transformation matrix as Topt, then Fialho and
Georgiou [2001] provide the following proposition to solve
the problem.

Proposition 1. The optimal value γopt is the minimum γ
for which there exists a matrix of the form

P =

[

P1 0 0
0 P2 0
0 0 I

]

(22)

with P1 = PT
1 > 0, P1 ∈ R

(n+m)×(n+m), P2 = PT
2 > 0,

P2 ∈ R
n×n, I ∈ R

q×q , such that

MT PM < P (23)

where

M(γ) :=

[

Ac BI/γ
CI 0

]

(24)

and P2 = T T
optTopt.

The above LMI for a γ > γopt can be solved using standard
software, and so γopt can be determined to an arbitrary
accuracy using a bisection search [Fialho and Georgiou,
2001].

3.2 Eigenvalue sensitivity

A measure of the closed-loop poles sensitivity [Whidborne
et al., 2001] to controller coefficient perturbation for an
LTI system is

Ψ =

n+m
∑

k=1

wkΨk (25)

where n+m is the number of closed loop poles/eigenvalues,
wk is a non-negative real scalar weighting and

Ψk =

nx
∑

i=1

(

∂λk

∂xi

)2

(26)

where {λi : i = 1, . . . , m + n} represents the set of unique
closed-loop poles/ eigenvalues and {xi : i = 1, . . . , nx} are
the controller parameters. In this paper, we take

wk :=
1

1 − |λk|
. (27)

The means to calculate Ψ is provided in Whidborne et al.
[2001].

4. FWL COEFFICIENT SENSITIVITY FOR LPV
SYSTEMS

4.1 Quadratic H∞ performance

Following [Apkarian et al., 1995b,a], we will consider poly-
topic LPV systems. Firstly we define a matrix polytope as
the convex hull of r matrices, N1, N2, . . . , Nr, that is

Co{Ni, i = 1, . . . , r} :=

{

r
∑

i=1

αiNi : αi ≥ 0,

r
∑

i=1

αi = 1

}

.

(28)
We assume that the discrete time varying parameter,
θ(k), is confined to the the polytope, Θ, with vertices

θ̂1, θ̂2, . . . , θ̂r, that is

θ(k) ∈ Θ, (29)

where
Θ := Co{θ̂1, θ̂2, . . . , θ̂r} (30)

and that the dependence of the state space matrices on θ
is affine. Such an LPV system is termed polytopic.

A polytopic system has quadratic H∞ performance [Ap-
karian et al., 1995b] of γ if and only if there exists a Lya-
punov function V (x) = xT Px with X > 0 that establishes
global stability and ensures that the L2 gain of the system
is bounded by γ. That is ‖ y ‖2 < γ‖u ‖2 along all possible
parameter trajectories θ(k) ∈ Θ.

It is shown in Apkarian et al. [1995b] that for polytopic
LPV systems, the vertex property means that quadratic
H∞ performance is ensured for all θ(k) ∈ Θ if H∞

performance is ensured at all r vertices of the polytopic
LPV system.

4.2 Coefficient Sensitivity Minimization for LPV Systems

Thus the way to determine the controller realization that
maximizes the stability sensitivity (in one sense) of the
closed loop polytopic LPV system is to determine the
controller realization that minimizes the quadratic H∞

performance of the closed loop polytopic LPV system.
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From (11) and (10), the closed loop system is affine
in θ and is hence a polytopic LPV system. So we just
need to solve a system of LMIs that minimizes the H∞

performance at each vertex using Proposition 1. Thus the
following is proposed.

Proposition 2. The optimal quadratic H∞ performance,
γopt is the minimum γ for which there exists a P = PT > 0
of the form

P =

[

P1 0 0
0 P2 0
0 0 I

]

(31)

such that

MT
i (γ)PMi(γ) < P, for i = 1, 2, . . . , r (32)

where

Mi(γ) :=

[

Ac(θ̂i) BI/γ
CI 0

]

. (33)

The optimal nonsingular transformation matrix is ob-
tained from P2 = T T

optTopt.

5. EXAMPLE

To illustrate the method, we consider a simplified mass-
spring-damper type model

J(t)ÿ(t) = −0.5ẏ(t) − y(t) + τ(t) (34)

where τ is the control, and 0.5 ≤ J ≤ 5 is the inertia term
which is assumed to be time-varying and measurable. The
control is augmented with a high frequency pole located
at −100 to remove the dependency of the input matrix on

J . We set θ(t) = 1/J(t), θ̂1 = 0.2, θ̂2 = 2 and define

α1 :=
θ − θ̂1

θ̂2 − θ̂1

, (35)

α2 :=
θ̂2 − θ

θ̂2 − θ̂1

. (36)

The resulting continuous-time state space description is
given by

ẋ = Ag(α1, α2)x + Bgu, (37)

y = Cgx, (38)

α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0, (39)

with

Ag =

[

−1/100 0 0
0 0 1

(0.2α1 + 2α2) −(0.2α1 + 2α2) −(0.1α1 + α2)

]

,

(40)

Bg =

[

1/100
0
0

]

, (41)

Cg = [0 1 0] . (42)

Weighting functions

W1(s) =
(s + 1/5)

1.8(s + 1/5000)
(43)

and

W2(s) =
(s/50 + 1)

(s/10000 + 10)
(44)

are defined. The MATLAB LMI Toolbox function, hinfgs,
with the criterion

∥

∥

∥

∥

[

W1S
W2KS

]
∥

∥

∥

∥

∞

< 1 (45)

is used to obtain an LPV controller [Gahinet et al., 1995].
The routine performs some order reduction so the resulting
controller is order 4.

The controller at each vertex is discretized using the Tustin
transformation with a sampling rate of 500Hz giving

K(z, α1, α2) = B(zI − A)−1C + D (46)

where

A = (α1A1 + α2A2), (47)

B = (α1B1 + α2B2), (48)

C = (α1C1 + α2C2), (49)

D = (α1D1 + α2D2) (50)

and

A1 =







701.85 −3950.8 892.66 97.320
−0.10476 969.03 11.910 25.007
−0.35992 3.0329 998.02 −6.4805
0.13622 0.22055 −0.22193 996.96






× 10−3,

(51)

A2 =







677.14 −3892.8 867.11 96.590
11.622 941.49 24.029 25.317
−3.4822 10.366 994.79 −6.5611
1.7715 −3.6618 1.6399 997.78






× 10−3, (52)

B1 =







18.355
−8.7698
2.0605
0.90468






, (53)

B2 =







12.055
−5.7663
1.2560
1.0273






, (54)

C1 = [1.2791 43.488 −9.8262 −1.0630] × 10−3, (55)

C2 = [1.5547 42.8403 −9.5412 −1.0551] × 10−3, (56)

D1 = −0.20511, (57)

D2 = −0.13473. (58)

To determine the optimal realization of the discrete-
time controller, the plant must be discretized. However,
a straight-forward discretization of (37) will result in the
discrete-time state-space input matrix, Bp, being depen-
dent on Ag and hence parameter dependent and time-
varying. To overcome this, the unaugmented model was
discretized and augmented with the filter 0.18127/(z −
0.8187); this being the filter 100/(s+100) discretized with
a sampling rate of 500Hz and a zero-order hold.

The LMI

MT
i (γ)PMi(γ) < P, for i = 1, 2 (59)

is repeatedly solved with a bisection search to obtain γopt

to a tolerance of 10−3. The optimal value is γopt = 2.736×
103. The resulting optimal state transformation matrix is

Topt =







154.9889 −11.4332 0.1092 −1.2230
−11.4332 2.9358 4.7713 1.8837
0.1092 4.7713 20.7874 6.3868
−1.2230 1.8837 6.3868 9.7101






. (60)

Denoting CI [zI − AT (Topt)]
−1BI by Mopt, the H∞-norm

of Mopt at frozen values of α1 is shown in Figure 1 along
with the optimum quadratic H∞ performance, γopt. It can
be seen that the optimum quadratic performance bounds
the frozen-α1 H∞-norm as expected.
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Fig. 1. Frozen-α1 H∞-norm against α1. The optimum
quadratic performance γopt is shown as the dashed
line.

For the purpose of comparison, two other realizations are
determined. The modal realization is calculated from the
MATLAB function, canon and the balanced realization
from the MATLAB function, balreal. Balanced realiza-
tions are known to have good open-loop FWL properties
[Gevers and Li, 1993]. The required transformation matrix
for both cases is calculated from the controller of (46) with
α1 = α2 = 0.5.

The complex stability radius, ηc, at frozen values of α1

is shown in Figure 2 for these two realizations as well as
for the optimal realization and the original realization. The
optimal realization has the largest complex stability radius
over all values of α1. Surprisingly, the modal form is not
as good as the original realization.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

α1

η
c

 

 

original

modal

balanced

optimal

Fig. 2. Complex stability radius, ηc, against α1 for
frozen α1.

The eigenvalue sensitivity measure, Ψ, at frozen values
of α1 is shown in Figure 3 for the four realizations. The
balanced realization is actually better than the optimal
realization. What is more significant is that for all four
realizations there is a singularity at α1 ≃ 0.634. This
can be explained by looking at the closed loop eigen-
values. For α1 = 0, the closed loop eigenvalues are
{0.7014, 0.8187, 0.9687, 0.9977, 0.9996, 0.9991 ± 0.0013j},
and for α2 = 0, they are {0.8187, 0.9996, 0.9975, 0.8083±
0.1757j, 0.9978 ± 0.0024j}. Hence two of the real eigen-
values have migrated to complex conjugate positions with
increasing α1. When α1 = 0.634, these two eigenvalues are
real and equal. First-order eigenvalue sensitivity can only
be determined for unique eigenvalues, hence the singular-
ity. We can thus conclude that eigenvalue sensitivity is not
generally suitable for LPV systems coefficient sensitivity.
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Fig. 3. Eigenvalue sensitivity measure, Ψ, against α1 for
frozen α1.

6. CONCLUDING REMARKS

In this paper, a method for minimizing the coefficient
sensitivity for FWL implementations of LPV controllers
is proposed. The problem arises because digital computing
devices have a finite precision. The problem is of particular
importance for Field Programmable Gate Arrays (FPGA)
which are increasingly being used for controller implemen-
tations [Fang et al., 2005].

The problem reduces to an LMI problem which can be
easily solved using standard software. The method is il-
lustrated with a simple example. The example problem is
not one that is particularly sensitive to FWL effects, but it
illustrates the method. More importantly, it demonstrates
a limitation in eigenvalue sensitivity measures for LPV sys-
tems where the closed-loop eigenvalues may be non-unique
for some values of the parameter, θ. This is not a general
concern for LTI systems, because generally engineers avoid
designs with multiple closed-loop eigenvalues.

Apart from testing on harder problems, future work will
include minimizing the FWL coefficient sensitivity for

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15224



observer-controller structures. This is of particular impor-
tance because it aids the implementation of the parameter
interpolation. The effect of rounding on the scheduling
parameter. θ, needs addressing. The problem of closed
loop transfer function sensitivity will also be addressed,
this can be done through use of the bounded real lemma.
In addition, the round-off noise problem and the scaling
problem [Boyd et al., 1993] can be reduced to an LMI
for LTI systems, it is envisaged that this approach can be
extended to LPV systems.
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