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Abstract: We study a closed-loop control system with feedback transmitted over a noisy discrete
memoryless channel. We design encoder–controller pairs that jointly optimize the sensor measurement
quantization, protection against channel errors, and control. The design goal is to minimize an expected
linear quadratic cost over a finite horizon. As a result of deriving optimality criteria for this problem,
we present new results on the validity of the separation principle subject to certain assumptions. More
precisely, we show that the certainty equivalence controller is optimal when the encoder is optimal and
has full side-information about the symbols received at the controller. We then use this result to formulate
tractable design criteria in the general case. Finally, numerical experiments are carried out to demonstrate
the performance obtained by various design methods.

1. INTRODUCTION

Networked control based on limited sensor and actuator infor-
mation has attracted increasing attention during the past decade.
A significant interest in this research area has been devoted to
the analysis and synthesis of quantized feedback control over
data-rate limited communication links to stabilize an unstable
plant. The work so far has mostly assumed control over error-
free communication links, where the only limitation imposed
by the channel is the limited data rate, see e.g., Baillieul (2002);
Brokett and Liberzon (2000); Elia and Mitter (2001); Fagnani
and Zampieri (2003), and the survey in Nair et al (2007). More
recently, control over noisy channels has motivated a great deal
of challenging research topics. Some influential works include
Mahajan and Teneketzis (2006); Matveev and Savkin (2007);
Sahai and Mitter (2006), and Tatikonda and Mitter (2004).
For the purpose of the stability, solutions are often based on
a kind of separation principle. The basic concept is to design
the stabilizing control (or observation) assuming the channel
is noise-free; then, require the control/observation to be reli-
ably transmitted over the noisy channel. The control–channel
separation relies essentially on information-theoretic results
on coding schemes which ensure reliable communication over
noisy channels. But, how to construct those coding schemes is
still an open question. Compared to stability properties, opti-
mal designs for general criteria are much less explored in the
literature. However, the problem of optimal stochastic control
over communication channels is addressed in e.g., Matveev
and Savkin (2004); Tatikonda et al. (2004). Concerning en-
coder design, some related results can be found in e.g., Borkar
et al. (2001); Mahajan and Teneketzis (2006); Tatikonda et al.
(2004).

The main contribution of the present paper is a practical syn-
thesis technique for joint optimization of the quantization, error
protection and control for state observations over a bandlimited

� This work was partially supported by the Swedish Research Council,
the Swedish Strategic Research Foundation, and the Swedish Governmental
Agency for Innovation Systems.

noisy channel. We extend our previous work on the subject,
cf., Bao et al. (2007a), by constructing an iterative optimization
algorithm applicable to more general systems, especially in
situations where the communication between sensors and the
controller is highly constrained such that only a few bits can
be transmitted. At low transmission rates, there are many ad-
vantages in employing designs that accomplish source coding,
protection against channel errors and control simultaneously.

The paper is organized as follows. In Section 2 we define the
control system with encoder, controller, and communication
channel. Thereafter, a problem statement which concerns a lin-
ear quadratic (LQ) objective over a finite horizon is formulated.
Important features of the optimal controller and encoder are
investigated in Section 4 and Section 5. Based on these results,
joint and separate design methods are developed in Section 6.
Finally, we present numerical experiments in Section 7 and
conclusions in the last section. The following notation will be
used in this paper. Bold-faced characters describe a sequence of
signals or functions, e.g., xb

a = {xa, . . . ,xb} denotes the evolu-
tion of a discrete-time signal xt from t = a to t = b. We use E{·}
for the expectation operator, tr(·) for the trace operator, and
Pr(·) the probability. The notations (·)′ and (·)† stand for matrix
transpose and matrix pseudoinverse, respectively. To indicate
an optimal solution, the notation (·)∗ is used.

2. PRELIMINARIES

In the most general case, we consider a control system with
a communication channel as depicted in Fig. 1. The multi-
variable linear plant is governed by the equations

xt+1 = Axt +But + vt ,

yt = Cxt + et ,
(1)

where xt ∈R
n,ut ∈R

m,yt ∈R
p are the state, the control, and the

measurement, respectively. The matrices A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, are known; moreover, (A,C) is state observable
and (A,B) is state controllable. Process noise vt ∈ R

n and
measurement noise et ∈ R

p are zero-mean, independent and
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Fig. 1. A general system for feedback control over a discrete memoryless
channel. The dashed line indicates potential side-information from the
controller to the encoder.

identically distributed (iid) and mutually independent. They are
also independent of the system initial state x0.

We consider an encoder as a mapping from the set of encoder
information to a discrete set of symbols. We take each symbol
to be represented by an integer index. At time t, the index is
it ∈ LI = {1, . . . ,LI}, and LI is an integer. In particular, we are
interested in the class of encoder mappings described by the
function

it = ft(yt
te ,k

t−1
0 ), te = t −Mt , (2)

where, Mt specifies the memory of past measurements at the
encoder. For example, Mt = 0 is the case when only the latest
measurement is available; while, when Mt = t, the encoder
knows all past measurements yt

0. Given the history of side-
information kt−1

0 , the encoder maps past measurements yt
te to an

index it ∈ LI . The side-information kt represents the feedback
to the encoder about the symbol jt ∈LJ = {1, . . . ,LJ} received
at the controller. In this paper, we define the side-information at
the encoder to be

kt = ηt( jt) ∈ LK = {1, . . . ,LK}, 1 ≤ LK ≤ LJ , (3)

where ηt : LJ → LK is deterministic and memoryless. Ac-
cordingly, kt = jt and LK = LJ when full side-information is
available, while, kt = 0 and LK = 1 when there is no side-
information at the encoder (cf., the Internet User Datagram
Protocol). Between the extremes, there are a variety of cases
with incomplete side-information, for which 1 < LK < LJ . By
means of side-information the encoder will be informed about
the potential transmission errors. In contrast to the conventional
Automatic Repeat re-Quest (ARQ) protocol, no re-transmission
will take place, instead, the control is designed to maintain
robustness against transmission errors.

Let the discrete memoryless channel have input variable it and
output jt , with one channel use defined by

jt = κt(it), (4)

where κt : LI → LJ is a random memoryless mapping. Con-
ditioned on the transmitted symbol it , the mapping to jt is
independent of other parameters in the system, e.g., the process
and measurement noise. The fact that the channel is bandlimited
is captured by the finite size of the input-alphabet LI . The
expression (4) encompasses many well studied channel models,
for example, the Binary Symmetric Channel (BSC), and the
Binary Erasure Channel (BEC). The latter is commonly used to
model Internet-like channels which suffer packet dropouts. At
the receiver side, we consider a controller that causally utilizes
all past channel outputs jt0, to produce the control command

ut = gt(jt0) ∈ R
m. (5)

Note that past controls are completely specified by past received
symbols. We denote the conditional mean estimator of the state
xs, based on the history of the received indexes jt0, as

x̂s|t = E
{
xs|jt0

}
, s ≤ t. (6)

We will use x̂t as a short notation for x̂t|t = E
{
xt |jt0

}
. Let x̃t be

the error in estimating the state xt based on jt0, that is,

x̃t = xt − x̂t = xt −E
{
xt |jt0

}
. (7)

Given the channel outputs, we also define the measurement pre-
diction and its corresponding prediction error as ŷt− = ŷt|t−1 =
E

{
yt |jt−1

0

}
and ỹt− = ỹt|t−1 = yt − ŷt|t−1, respectively. In the

paper we use “encoder” and “controller” in quite general terms
(“the corresponding boxes in Fig. 1”), as well as specific terms
(“the components/mappings ft and gt at time t”).

3. PROBLEM STATEMENT

Our goal is to solve an optimal encoder–controller problem and
thereby finding the suitable encoder and controller mappings.
The adopted performance measure is the following LQ cost
with finite horizon T > 0

JT =
T

∑
t=1

(
x′tVtxt +u′t−1Pt−1ut−1

)
, (8)

where the matrices Vt and Pt are symmetric and positive defi-
nite. The objective is to find the encoder–controller mappings
which minimize the expected value E{JT}. For ease of refer-
ence, we refer to the main design problem as Problem 1, and
summarize it below.
Problem 1. Consider the system in Fig. 1. Given the plant (1)
and the memoryless channel (4), find the encoder ft and con-
troller gt that minimize the expected value of the cost (8).

We use the notation
{ f ∗t (yt

te ,k
t−1
0 )}T−1

t=0 and {g∗t (jt0)}T−1
t=0 , (9)

for the optimal (not necessarily unique) mappings that solve
Problem 1. Problem 1 can be viewed as an extension of the
traditional LQ problem that the optimal encoder–controller
minimizes the cost function with respect to initial state, process
noise, measurement noise, and a bandlimited noisy channel. In
general, finding an exact solution to Problem 1 is not feasible,
because the optimization problem is highly non-linear and non-
convex. In the next two sections, we simplify the overall prob-
lem by studying the controller and encoder separately. First,
the problem of finding the optimal control strategy for a fixed
encoder is addressed in Section 4. Thereafter, in Section 5, we
consider the problem of optimizing one single encoder compo-
nent, assuming the controller and other encoder components are
fixed.

4. OPTIMAL CONTROLLER

In this section we investigate the optimal controller mapping
gt , assuming the encoder fT−1

0 is fixed. In the general case,
we obtain a recursive equation which is typically difficult to
solve, therefore, the solution of the special case of full side-
information is utilized to approximate the optimal solution.

4.1 GENERAL CASE

The problem of finding the optimal control assuming the en-
coder is fixed fits well into the setting of stochastic optimal con-
trol, e.g., Aoki (1967), where in our problem the observations
at the controller are the integer-valued indexes jt0. Applying dy-
namic programming, the result is summarized in Proposition 2,
see also Bao et al. (2007a).
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ỹt−

−
Encoder

f̃t(ỹt−
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Fig. 2. The measurement prediction error encoder system where a prediction
error encoder f̃t(ỹt−

t−e
, jt−1

0 ) is employed.

Proposition 2. Consider a fixed encoder fT−1
0 . Given the plant (1)

and the memoryless channel (4), a controller mapping ut =
gt(jt0) that minimizes the expected value of (8) fulfills the fol-
lowing recursive relation
u∗t−1 = argmin

ut−1
{γt},

γt = λt +E
{
γ∗t+1|jt−1

0

}
,

λt = E
{
(Axt−1 +But−1 + vt−1)′Vt(Axt−1 +But−1+

vt−1)u′t−1Pt−1ut−1|jt−1
0

}
, t = 1, . . . ,T,

(10)

initialized with γ∗T+1 = 0.

Unfortunately, it is in general not possible to efficiently solve
(10). One main obstruction lies in how E

{
γ∗t+1|jt−1

0

}
is affected

by past controls. In the next sub-sections we will first inves-
tigate the case of full side-information and demonstrate that
this assumption significantly simplifies the problem. Then we
will discuss how to apply the conclusions derived assuming full
side-information in the general case.

4.2 FULL SIDE-INFORMATION

In this sub-section we look at the special case that the encoder
has full side-information. In this case we are able to provide
a characterization of the optimal system. Assume full side-
information is available, kt = jt , and the encoder mapping
is ft(yt

te , j
t−1
0 ). Then, consider the new system in Fig. 2 that

encodes the measurement prediction errors. In particular, we
consider the mapping from prediction errors ỹt−

t−e
(cf., Section 2)

and jt−1
0 to index it . Define the measurement prediction error

encoder f̃t : R
(Mt+1)×p ×L t

J → LI ,

it = f̃t(ỹt−
t−e

, jt−1
0 ). (11)

Consequently, we call the system in Fig. 2 the (measurement)
prediction error encoder system. For a given prediction error
encoder system as in Fig. 2, with the prediction error encoder
f̃T−1
0 and controller gT−1

0 specified, one can construct a system
with the original structure of Fig. 1 which has exactly the
same performance. The corresponding system in Fig. 1 utilizes
the same controller gT−1

0 , together with an encoder whose
components are determined by f̃T−1

0 and gT−1
0 as

ft(yt
te , j

t−1
0 ) = f̃t

(
yte − ŷte|te−1, . . . ,yt − ŷt|t−1, j

t−1
0

)
. (12)

For the prediction-error-encoder system, we formulate Prob-
lem 3.
Problem 3. Consider a prediction error encoder system as in
Fig. 2. Given the plant (1) and the memoryless channel (4), find
the prediction error encoder and controller mappings

{ f̃ ∗t (ỹt−
t−e

, jt−1
0 )}T−1

t=0 and {g∗t (jt−1
0 )}T−1

t=0 , (13)

that minimize the expected value of (8).

Given the plant, memoryless channel and design criterion,
the solutions to the original Problem 1 and the corresponding
Problem 3 are closely related, as revealed by Proposition 4.2.

Proposition 4. I. Consider a solution { f ∗t (yt
te , j

t−1
0 ),g∗t }T−1

t=0 to
Problem 1. The same controller g∗T−1

0 and the prediction error
encoder whose components are specified by { f̃t(yt

te , j
t−1
0 ),g∗t }T−1

t=0
according to

f̃t(ỹt−
t−e

, jt−1
0 ) = f ∗t

(
ỹte− + ŷte− , . . . , ỹt− + ŷt− , jt−1

0

)
, (14)

jointly solve Problem 3.

II. Consider a solution { f̃ ∗t (ỹt−
t−e

, jt−1
0 ),g∗t }T−1

t=0 to Problem 3.

The same controller g∗T−1
0 and the encoder { ft(yt

te , j
t−1
0 )}T−1

t=0

specified by { f̃ ∗t (yt
te , j

t−1
0 ),g∗t }T−1

t=0 according to

ft(yt
te , j

t−1
0 ) = f̃ ∗t

(
yte − ŷt−e , . . . ,yt − ŷt− , jt−1

0

)
, (15)

jointly solve Problem 1.

Proof. I. If the prediction error encoder { f̃t(ỹt−
t−e

, jt−1
0 )}T−1

t=0

derived according to (14), and g∗T−1
0 do not jointly solve

Problem 3, then another solution to Problem 3 provides a
cost lower than the one given by { f̃t(ỹt−

t−e
, jt−1

0 ),g∗t }T−1
t=0 . If this

is the case, using the encoder specified by the solution to
Problem 3 according to (12), jointly with the controller of the
same solution, must lead to a lower cost than the one resulting
from { f ∗t (yt

te , j
t−1
0 ),g∗t }T−1

t=0 . This contradicts the statement that
{ f ∗t (yt

te , j
t−1
0 ),g∗t }T−1

t=0 is a solution to Problem 1. Hence, the
statement in Proposition 4 must be true.

II. Follow similar arguments as the proof of part I. �

Proposition 4 indicates that a solution to Problem 3 specifies
a solution to Problem 1, and vice versa. As shown later in the
paper, it turns out that when using a joint training approach,
Problem 3 is easier to solve than Problem 1. Hence, in the
special case of full side-information we will focus on finding a
solution to Problem 3, and then derive a corresponding solution
to Problem 1 according to (15).

Consider now a fixed sequence of prediction error encoder
mappings f̃T−1

0 . Notice that for any such fixed mappings, the
transmitted indexes iT−1

0 and the received indexes jT−1
0 do not

depend on the controls uT−1
0 . We demonstrate this fact by first

inspecting the prediction error ỹt|t−1 which equals to

CAtx0 +
t−1

∑
s=0

CAt−1−svs + et −E

{
CAtx0 +

t−1

∑
s=0

CAt−1−svs|jt−1
0

}
,

(16)
since the controls are completely specified by the received
symbols jt−1

0 . By (16), ỹt|t−1 does not depend on ut−1
0 if the

received symbols jt−1
0 do not depend on ut−1

0 . This is the case

since i0 = f̃0(ỹ0|−1) = f̃0(x0 + Ce0), i1 = f̃1(ỹ1−
te− , j0), i2 =

f̃2(ỹ2−
te− , j0, j1), and etc., and jt depends only on it and potential

channel errors. Then, consider the state estimation error
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x̃t =Atx0 +
t−1

∑
s=0

At−1−svs −E

{
Atx0 +

t−1

∑
s=0

At−1−svs|jt−1
0

}
.

(17)
Note that x0,vs, js for s = 0, . . . , t − 1 do not depend on past
controls, the estimation error x̃t consequently does not depend
on past controls either. Because of this fact, we will be able
to solve (10), as given in Proposition 5. The proof follows
Proposition 2 in Bao et al. (2007a).

Proposition 5. Consider a prediction error encoder system,
with a fixed prediction error encoder f̃T−1

0 . Given the plant (1)
and the memoryless channel (4), the controller component ut =
gt(jt0) that minimizes the expected value of (8) is given by

ut = �t x̂t ,

�t = −(Pt +B′(Vt+1 + IT−t−1)B)†B′(Vt+1 + IT−t−1)A,

IT−t−1 = A′(Vt + IT−t−2)A−πT−t−1,

πT−t−1 = A′(Vt + IT−t−2)B(Pt−1 +B′(Vt + IT−t−2)B)†

B′(Vt + IT−t−2)A,

(18)

initialized at I1 = A′VT A−A′VT B(PT−1 +B′VT B)†B′VT A.

Since the optimal control (18) can be decomposed into a sep-
arate decoder and controller, the separation property holds,
e.g., Aoki (1967). Moreover, (18) is a so-called certainty equiv-
alence (CE) controller. Note that, given any fixed encoder
fT−1
0 , the CE controller in (18) is not necessarily optimal for

the original system in Fig. 1. Still, in the jointly optimal pair
{f∗T−1

0 ,g∗T−1
0 } that solves Problem 1, the controller g∗T−1

0 is a
CE controller, as stated in Proposition 6.

Proposition 6. There exits { f ∗t (yt
te , j

t−1
0 ),g∗t }T−1

t=0 solving Prob-
lem 1 in which the controller g∗T−1

0 is the CE controller given
by (18) for fT−1

0 = f∗T−1
0 .

Proof. For the given system, one can find an optimal solu-
tion { f̃ ∗t (ỹt−

t−e
, jt−1

0 ),g∗t }T−1
t=0 to Problem 3. By Proposition 5,

g∗T−1
0 is a CE controller. Then, generate the optimal pair
{ f ∗t (yt

te , j
t−1
0 ),g∗t }T−1

t=0 according to Proposition 4. Observe that

f̃ ∗t (ỹt−
t−e

, jt−1
0 ) and f ∗t (yt

te , j
t−1
0 ) produce exactly the same it .

Therefore, x̂t and consequently the CE controller are identical
for both systems in Problem 1 and Problem 3. �

Proposition 6 shows that there exist solutions such that the
optimal controller corresponding to the optimal encoder f∗T−1

0
is a CE controller. In the general case, the optimal controller
corresponding to any encoder fT−1

0 does not necessarily satisfy
the separation principle. For the prediction error encoder, the
optimality of the CE controller is attributed to the fact that
the dependence of past controls is removed before encoding.
There are other classes of encoders for which the separation
principle also applies, e.g., the open-loop encoder in Bao et al.
(2007a). Similar architectures have also been investigated in,
e.g., Tatikonda and Mitter (2004); Nair et al (2007), for some
special cases of the general system in Fig. 1, and assuming
noiseless finite-rate transmission. Our result is more general,
and is directly applicable to iterative encoder–controller design.
The corresponding separation result in Nair et al (2007) cannot
be used for iterative design, since the controller is explicitly
utilized to specify the encoder in that result.

4.3 PARTIAL SIDE-INFORMATION

In the case of the original system in Fig. 1, where the en-
coder (2) may not have access to full side-information, it is
not possible to convert the original system in Problem 1 to
a prediction error encoder system. Therefore, given any fixed
encoder, the CE controller in (18) is not necessarily the optimal
control strategy. Since we are not able to solve (10) in the
general case, we resort to using the CE controller as a sub-
optimal alternative to the solution to (10). That is, in the case
of partial side-information at the encoder, we propose a design
based on constraining the controller to be a CE controller.
Our numerical experiments in fact demonstrate that subtracting
ŷt|t−1 does often not influence the result of the encoding (since
if the system “works” then ŷt|t−1 is “small”). This explains why
fairly good results are obtained when using the CE controller
also in the case of partial side-information.

5. OPTIMAL ENCODER

In this section, we briefly address the problem of optimizing
the encoder component ft , for a fixed controller gT−1

0 and fixed
encoder components ft−1

0 , fT−1
t+1 . The following results are a

straightforward consequence of the principle of optimality.

Proposition 7. Consider a fixed controller gT−1
0 and fixed en-

coder components ft−1
0 , fT−1

t+1 . Given the linear plant (1) and the
memoryless channel (4), the encoder component ft(yt

te ,k
t−1
0 )

that minimizes the expected value of (8) is given by

it = argmin
i∈LI

E

{
T

∑
s=t+1

(x′sVsxs +u′s−1Ps−1us−1)
∣∣∣yt

te ,k
t−1
0 , it = i

}
.

(19)

The analogous rule of the prediction error encoder mapping is
similar to (19). However, since the state estimation error x̂t does
not depend on past controls, the following result is useful in
practice.
Corollary 8. Consider a prediction error encoder system. There
exists a solution to Problem 3 that satisfies the following condi-
tions: The controller mapping is given by ut = �t x̂t , as in (18);
and the prediction error encoder mapping f̃t is given by

it = argmin
i∈LI

E

{
T−1

∑
s=t

x̃′sπT−sx̃s

∣∣∣ỹt−
t−e

, jt−1
0 , it = i

}
, (20)

where πT−s can be computed according to (18).

Proof. By Proposition 5 we know that, given a fixed prediction
error encoder (in this case the optimal prediction encoder), the
CE controller (18) is optimal. Also, by (18), the choice of it
influences only the term E

{
∑T−1

s=t x̃′sπT−sx̃s|jt−1
0

}
in the cost-to-

go γt+1, when the CE controller is employed. �

An interpretation of Corollary 8 is that the optimization of the
prediction error encoder can be separated from the optimization
of the controller. A discussion on the separate design of the
encoder–controller will be given later in Section 6.

6. ENCODER–CONTROLLER DESIGN

This section we consider overall design of the encoder–
controller. First in Section 6.1, we describe the joint design
based on an iterative training method. Thereafter, the complex-
ity reduced separate design is discussed in Section 6.2.
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6.1 JOINT DESIGN

As stated previously, the overall encoder–controller optimiza-
tion problem is typically not tractable, and we therefore opti-
mize the encoder–controller pair iteratively, with the goal of
finding locally optimal solutions. Inspired by traditional quan-
tizer design for noisy channels (e.g., Farvardin (1990)), the
idea is to fix the encoder and update the controller, then fix
the controller and update the encoder etc. Criteria for updat-
ing the encoder and controller are developed in Section 4 and
Section 5. More details about the encoder–controller operation
and practical issues related to the implementation of training
algorithm are referred to the full version of the paper Bao
et al. (2007b). Unfortunately, the iterative optimization algo-
rithm will not guarantee convergence to a global optimum, but
by influencing the initial conditions of the design it is possible
to search for good locally optimal designs. As discussed in Sec-
tion 4.3, we constrain the controller to be the CE controller (18)
for the case with partial side-information. Note that, for the
prediction error encoder system, the joint training converges
(to a local optimum), since the CE controller is optimal for any
f̃T−1
0 . However, in the general case (with partial encoder side-

information) the design does not necessarily converge, since
updating the CE controller based on a new fT−1

0 is not guar-
anteed to result in better performance. Still, in our numerical
experiments this has not been a problem, and empirically the
design algorithm also appears to converge to a solution in the
general case.

6.2 SEPARATE DESIGN

Based on the results in Section 4 and Section 5, we know that
a separate design of the prediction error encoder and controller
can still achieve optimal performance. In particular, we opti-
mize the prediction error encoder by (20). Thereafter, convert
the optimized prediction error encoder and its corresponding
CE controller to an encoder–controller pair of the original
system, by (15). When the encoder is near-optimal, ŷt|t−1 is
usually “small”. Therefore, in the general case with partial side-
information, we can apply the same strategy and expect an
insignificant performance degradation.

However, it turns out that optimizing the encoder, according
to (19) or (20), is still computationally intensive and memory
demanding, since the update requires both the estimation of
the current state and the prediction of the future evolution. The
probability distributions of initial state, process noise, measure-
ment noise and transmission errors are all involved in the esti-
mation and the prediction procedure. In practice, the complex-
ity often becomes a limiting factor that requires simple encoder
design. In the extreme case, a grid search can be used such that
the number of computations is governed by grid resolution. The
search efficiency can be improved by carefully selecting search
groups and search criteria. Consider the problem of optimizing
the prediction error encoder. A simple but reasonable search
group are uniform encoders around the origin, by fact that the
ỹt−
t−e

’s are zero-mean random variables. Since in the case of
open-loop encoders, Bao et al. (2007a), uniform encoders are
usually not as good, the prediction-error encoder can be said
to be more practical. According to Section 4, we know that

an optimal prediction error encoder f̃
T−1
0 minimizes the overall

cost E
{
∑T−1

s=0 x̃′sπT−sx̃s
}
, irrespective of the controller. In the

general case with partial side-information, the overall system

1 1.5 2 2.5 3 3.5 4
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

 

 

U-K 1
U-K 2

U-CE
Trained

U-K 1
U-K 2

U-CE
Trained

Rate

J̄ T

Fig. 3. Performance comparison among various set-ups, while dashed lines
for Set-up 1 and dash–dot lines are for Set-up 2. The channel transition
probability ε is 0.1.
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Fig. 4. A performance comparison among jointly and separately designed
controller-encoders. The scheme U-CE employs a uniform encoder and
a CE controller, where Δ is the step-size of the uniform encoder. The
scheme U-K employs a uniform encoder and a Kalman filter.

performance can also be compared according to that cost, for
various encoders, but fixed controller. When the encoder is
close to the optimal solution, the loss in performance becomes
insignificant.

7. NUMERICAL EXAMPLES

Here we present numerical experiments to demonstrate the
performance obtained by using various encoder–controller de-
sign methods. We study a special case of the general system
in Fig. 1, namely, a scalar system in which the current mea-
surement is encoded and transmitted over a Binary Symmetric
Channel (BSC). The system equations and the LQ cost are,

xt+1 = axt +ut + vt , yt = xt + et , JT = x2
T +

T−1

∑
t=0

x2
t +ρu2

t .

The initial state x0, process noise vt and measurement noise
et are all zero-mean Gaussian distributed. The encoder only
has access to the latest state measurement, i.e., Mt = 0. Four
types of coding–control schemes are compared. The first type,
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Set-up a T ρ Pr(x0) Pr(vt) Pr(et) Mt

1 0.7 3 0.5 N (0,5) N (0,1) N (0,1) 0
2 0.7 3 0.5 N (0,5) N (0,1) N (0,4) 0

Table 1. The set-ups of the experiments.

U-K 1, employs a time-invariant uniform quantizer with a step-
length Δ. At the controller, the decoded symbols are fed into
a Kalman filter to estimate xt . The Kalman filter is designed
assuming the channel is absent and the system is not exposed
to the quantization and transmission errors. Finally, the con-
trol is a linear function of the Kalman filter output that the
linear coefficient is �t in (18). The second type, U-K 2 also
utilizes a time-invariant uniform quantizer and a Kalman filter.
The Kalman filter here is designed assuming the error due to
measurement noise, quantization and transmission is white and
Gaussian distributed. Still, the control is a linear function of
�t and the Kalman filter output. By this method, the distortion
due to quantization and channel error is treated as a part of
measurement noise. Note that, the “extended” measurement
noise (including quantization error and channel error) is in fact
neither Gaussian nor uncorrelated with the state and the process
noise, making the Kalman filter a sub-optimal estimator. The
third type of encoder–controller is referred to as U-CE, which
adopts a time-invariant uniform encoder and a CE controller.
The last pair is an encoder–controller trained according to Sec-
tion 6.1 where the encoder has full side-information.

The system performance is determined by a number of param-
eters. The relations among them are complicated. In Fig. 3 we
demonstrate the particular impacts imposed by channel rate and
measurement noise. The Performance measure J̄T is obtained
by normalizing E{JT} with the expected cost obtained when
no control action is taken. The system parameters are given
in Table 1. For all uniform encoders, we let the boundaries
be kept equally spaced between −2 and 2. Accordingly, the
maximum quantization error in the saturated region decreases
with the increasing transmission rate. It can be seen in the
figure that the trained encoder–controller pair outperforms the
other three coding–control schemes. Given same encoder, the
system employing a CE controller always performs better than
the systems employing the Kalman filters. The gain obtained by
the trained encoder–controller appears to be mostly attributed to
the CE controller. An interesting observation is that U-K 2 is not
necessarily always superior to U-K 1. That means, the way U-
K 2 handles the quantization distortion and transmission errors
may do more harm than good.

In Fig. 4, we show system performance versus the channel
transition probability ε . The system parameters are as given in
Set-up 1 in Table 1. A comparison of all 4 types of coding–
control schemes is depicted. Especially, the U-CE scheme is
displayed for several step lengths. From the figure we see that
the deterioration in system performance can be insignificant,
even when using a simple time-invariant uniform encoder.
Note that the time-invariant uniform encoder can provide a
performance bound for the encoder with no side-information.
However, all uniform encoders in Fig. 4 have near-optimal Δ.
When Δ is chosen improperly, can have severe consequences.

8. CONCLUSION

This paper investigates optimization of the encoder and con-
troller in closed-loop control of a linear plant with low-rate
feedback over a memoryless noisy channel. We have shown

that the CE controller is optimal for the class of encoders
referred to as “measurement prediction error encoders.” The
CE controller can also be optimal for special encoders with
full side-information. We used these results to motivate de-
sign criteria for the general case of only partial encoder side-
information. We performed numerical investigations to com-
pare the joint training design and the separate design of the
encoder–controller.

REFERENCES

M. Aoki. Optimization of Stochastic Systems - Topics in
Discrete-Time Systems. Academic Press, 1967.

J. Baillieul. Feedback coding for information-based control:
operating near the data-rate limit. Proc. of the 41st IEEE
Conference on Decision and Control, pages 3229 - 3236,
2002.

L. Bao, M. Skoglund and K.H. Johansson. On Optimal System
Design for Feedback Control Noisy Channels. Proc. of
2007 IEEE International Symposium on Information Theory,
pages 2486–2490, 2007.

L. Bao, M. Skoglund and K.H. Johansson. Joint Encoder–
Controller Design for Feedback Control over Noisy Chan-
nels. IEEE transactions on Automatic Control, submitted.

V.S. Borkar, S.K. Mitter and S. Tatikonda. Optimal Sequenctial
Vector Quantization of Markov Sources. SIAM J. Control
Optim., volume 40, number 1, pages 135–148, 2001.

R.W. Brockett, D. Liberzon. Quantized feedback stabilization
of linear systems. IEEE transactions on Automatic Control,
volume 45, number 7, pages 1279–1289, 2000.

N. Elia, S.K. Mitter. Stabilization of Linear Systems with Lim-
ited Information. IEEE transactions on Automatic Control,
volume 46, number 9, pages 1384–1400, 2001.

F. Fagnani, S. Zampieri. Stability Analysis and Synthesis for
Scalar Linear Systems with a Quantized Feedback. IEEE
transactions on Automatic Control, volume 48, number 9,
pages 1569–1584, 2003.

N. Farvardin. A Study of Vector Quantization for Noisy Chan-
nels. IEEE Transactions on Information Theory, volume 36,
number 4, pages 799–809, 1990.

A. Mahajan, D. Teneketzis. Fixed Delay Optimal Joint Source–
Channel Coding for Finite–Memory Systems. Proc. of
2006 IEEE International Symposium on Information Theory,
pages 2319–2323, 2006.

A.S. Matveev, A.V. Savkin. An analogue of Shannon informa-
tion theory for detection and stabilization via noisy discrete
communication channels. SIAM J. Control Optm., volume
46, number 4, pages 1323–1367, 2007.

A.S. Matveev, A.V. Savkin. The problem of LQG optimal con-
trol via a limited capacity communication channel. Systems
and Control Letters, volume 53, pages 51–64, 2004.

G.N. Nair, F. Fagnani, S. Zampieri and R.J. Evans. Feedback
Control under Data Rate Constraints: an Overview. Proc. of
the IEEE, volume 95, number 1, pages 108–137, 2007.

A. Sahai, S. Mitter. The Necessity and Sufficiency of Anytime
Capacity for Stabilization of a Linear System Over a Noisy
Communication Link Part I: Scalar Systems. IEEE transac-
tions on Information Theory, 2006.

S. Tatikonda, S. Mitter. Control over Noisy channels. IEEE
transactions on Automatic Control, volume 49, number 7,
pages 1196-1201, 2004.

S. Tatikonda, A. Sahai, S. Mitter. Stochastic linear control over
a communication channel. IEEE transactions on Automatic
Control, volume 49, number 9, pages 1549-1561, 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10276


