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Abstract: Dynamic models most of time involve differential equations, which are ”time-local”.
Such models can also be considered ”globally”, that is in the sense of ”trajectories” in the state
”space-time”. Up to adapted concepts, such a different interpretation reveals itself more flexible,
namely because it allows to use various operatorial transformations whose time-local equivalent
in general cannot exist and from which can result some remarkable properties. Namely, we
introduce a principle of parametrizing for dynamic equations by means of such transformations.
We then consider an example of bioreactor model for which we highlight how suitable time-
nonlocal transformations can sometimes be used to efficiently solve some nonlinear control

problems.
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1. INTRODUCTION

Most of controlled dynamic models are constituted by
explicit differential equations of the standard abstract
form X = f(u, X), that is:

Vi, X(t) = f(u(t), X (1)) (1)

So, for any ¢, as soon as X (t) is determined, equality (1) is
valid in the state-space in which evolves X (¢) (in general
R™). In that sense and thanks to the local ! nature of the
derivative operator, such an equation is said “time-local”.
In other words, all the dynamic features of model (1) are
in some sense included in the function f : R™ x R* —
R™: this last point is at the origin of various theoretical
works based on finitedimensional algebra or differential
geometry and devoted to control problems relating to
(1). In particular, suitable diffeomorphic transformations
of the state-space have sometimes been used in order to
simplify the problem, for example in such a manner that in
the new coordinates, the dynamic system becomes linear
(see for example Bamieh [2007], Fujimoto [1996], Pavlov
[2004]).

On the other hand, we can remark that any equation of
the previous form can also be considered in the (weaker)
sense of “trajectories”: in that case, v and X are globally
considered as functions (of t) and the differential equation
as a functional one. Then, the time derivative and the
function f become operators 2, acting on fitted functional
spaces. According to this point of view, by denoting 0; the

1 The determination of X(t) only involves values X(7) with 7
arbitrarily close to t.

2 Note that the operator induced by the function f is a different
mathematical object: from a rigorous point of view, it should be
denoted with a different symbol.
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time derivative operator, we preferably write (1) under the
forum:

X = f(u, X). (2)
Note that, according to its functional nature, this last
expression can be equivalently written: Vt, (0:X)(t) =
(f(u, X))(t). Contrary to (1), the static nature of operator
f, that is: (f(u, X))(t) = f(u(t), X(¢)), is not necessary
under the functional formulation (2) and thus must be
explicitly supposed.

The functional interpretation of differential equations can
of course appear more complex from the mathematical
point of view. But up to suitable concepts (which are to be
judiciously precised in concrete situations), it revels itself
more flexible, namely because it suggests the possibility
of using various operatorial transformations whose time-
local equivalent cannot exist and from which can result
some remarkable properties, as shown later on a concrete
example.

We can also notice that more general dynamic models
such as Volterra equations could be similarly considered
by simply replacing the operator 9 in (2) by a convolution
one, denoted® H(9;). We then get the model: H(9;)X =
f(u, X) in which the left-hand side is dynamic but linear
while the right-hand side is static and (in general) nonlin-
ear.

This introductive paper is organized as follows. In the next
section, we briefly present a few basic notions which permit
to correctly define the so-called operatorial parametrizing
of controlled dynamic systems. The statement is formal
and reduced to the essential parts. In the third section, we
describe some basic concrete operators possibly involved

3 In this symbolic notation, H is the Laplace transform of the
impulse response of the operator under consideration.
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when parametrizing dynamic systems. In the fourth sec-
tion, we consider an example of bioreactor model by means
of which we highlight how such time-nonlocal transfor-
mations can be used to solve nonlinear control problems
equivalently to simpler ones (a linear one in the presented
case).

2. OPERATORIAL PARAMETRIZING OF DYNAMIC
SYSTEMS

2.1 Graph parametrizing of an abstract equation

Given two manifolds X and U, we consider the following
abstract equation of unknown X, depending on data u:

®(u,X)=0, XX, uel, (3)
and supposed to be well-posed®. Consequently, there

exists a continuous application F : i/ — X such that the
solution X is expressed by:

X =F(u) e FU) C X,

that is (u,z) € graph(F). In many cases, the application
F cannot be explicited or is of too great complexity to be
used by itself.

Let now consider a manifold ) and a continuous operator
A UxX — Y suchthat A| g apn(r) is an homeomorphism;
we denote:
y = Au, X) (4)

and

(B, C):= (A|graph(F))_1 Y -UXX. (5)
Then, for any solution (u,X) of (3), v and X are both
parametrized by y € Y. If in addition Y and (B, C) can
be explicitly described, the solutions (u,X) are directly
accessible without resolving (3).

Remark 1. We have, from (3):
2(B(y), C(y)) = 0, (6)

or, in a more condensed way H(y) = 0 with H := ®o(B, C).

The equation (3) is then transformed into (6), which im-
plicitly defines the manifold Y = AU, F(U)).
Ezxample 1. Consider the system of equations with un-
known X = (z1,22)7 € R%:

xg —ucos(z1) =0

e™2 —x129 =0 '
With:

y =wucos(x1) := A(u, X),
we have the following parametrized expression of any
couple (u, X) solution of (3):
Y

v= COS(%) =B()

X(i) — C(y).

The parametrizing of graph(F) can present some interest
for problems defined on solutions (u, X) of (3). Consider

4 je. we have existence and uniqueness in X, and continuous

dependence on u of the solution X

for example an optimisation problem under the constraint

(3):
min {J(u, X); ®(u, X) = 0}. (7)

From (5) and by denoting J(y) := J(B(y), C(y)), problem
(7) is equivalent to the problem:

inJ (y). 8

min.J(y) (8)

As the solutions (u, X) of (3) are parametrized by y € ),
the solution u* of (7) is then deduced from the solution y*
of (8) by u* = B(y*). So, if applications (B, C) are con-
cretely tractable, this approach can result in a simplified
resolution of (7). In some cases, the simplification can be
highly significant, as shown in section 4.

Remark 2. Instead of a constrained optimization problem,
we can more generally consider any problem of the form:

find v € U such that J(u,X) =0
with ®(u, X) =0,

which, after graph parametrizing, becomes:
find y € Y such that J(y) = 0.

2.2 Cases of dynamic problems

The abstract notion presented above can be specified for
dynamic equations which, to be coherent with the formal-
ism previously introduced, must necessarily be taken in the
sense of trajectories. Consequently, applications A, B, C
are operators and the problem of their choice is posed in
an operatorial framework.

In the sequel, (3) is a dynamic system of the form:
®(u,X)=HX - F(u,X) =0, 9)

with H a linear dynamic operator, F' a static (nonlinear)

operator (that is: (F(u, X))(t) = F(u(t), X (t))), and U,

X, Y are suitable trajectory manifolds.

Remark 3. Possible conditions insuring uniqueness of the

solution (initial condition, past evolution etc.) are included

in (9) (cf example 2).

Ezample 2. Classical differential systems:
hX = f(u,X), t€]0,T]
X (0) = X,

are particular cases of (9) with:

M= <<§t. >>, F(u, Xo, X) = (f(tj(’f)), (11)

where < ¢, > is the Dirac operator v — v(0). Manifolds
U and X must be adapted to the problem, for example
U C L>=(0,T;U), X c C°0,T]; X), with U, X Banach
spaces.

(10)

Formulation (9) allows to consider a larger class of nonlin-
ear dynamic systems than classical differential (and conse-
quently time-local) one: instead of the derivative operator
0Or, we can consider any causal convolution operator H(9;).
Namely, Volterra equations, PDE’s, hybrid systems etc.
belong to this class of dynamic systems.

Remark 4. Equation (6), which characterizes the manifold
Y, can be useful when ) is not explicitly known. This
equation is of functional type and, in general, not reducible
to a differential or even integral equation.

7487



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

As the resolution of (3) can be difficult (especially for
nonlinear problems), this approach can result in signifi-
cant simplifications, for example when (3) is a nonlinear
dynamic constraint of an optimization problem. Then, we
must define judicious operatorial transformations usable
for parametrizing of dynamic systems.

3. OPERATORS FOR DYNAMIC SYSTEM
PARAMETRIZING

The choice of the parametrizing operator A is crucial;
indeed, a parametrizing will simplify the problem only if
the following points are satisfied:

e the problem of unknown y (e.g. (8) in the case of
optimal control) is concretely tractable;
e u and X are concretely deductible from y via (5).

Thus, the operators (B, C) must belong to a class which
we can numerically deal with, taking into account possible
computational cost contraints for real-time applications.
We briefly describe in this section some useful categories
of such operators.

3.1 Static operators

It is the simplest class of operators. An operator G is said
static if (G(f))(t) = G(t, f(t)) with G a classical function.
In other words, the evaluation of G(f) at time ¢ only
requires the punctual value f(¢).

In the sequel, for simplicity of notations, if G is a function
we will also denote by G the associated static operator,
that is:

G(v) : t — G(v(t)).

3.2 Conuvolution operators, linear dynamic operators

Convolution operators are symbolically denoted H(0})
where H is the associated transfer function. They are
particularly interesting in the context of parametrizing
of dynamic systems. From the numerical point of view,
such linear operators can be associated to matrices and,
up to suitable representations, their action on functions
can be evaluated with arbitrary precision and reasonable
cost (compatible with real-time applications when suitable
input-output state realizations are elaborated Montseny
[2004]).

Furthermore, in the causal case, the well-known Titch-
march theorem insures that there is no zero divider in
algebras of convolution operators, and so, in suitable dis-
tributional frameworks Schwartz [1966], the inversion of
H () is in general a well posed problem, in such a way that
all the standard calculus rules are available on convolution
operators. We refer to Montseny [2004] for a complete
statement of such questions about convolution (ore more
generally integral) operators.

In the sequel, we will consider causal convolution operators
H(8;) acting on fitted functional spaces in such a way
that H(9;) admits a unique causal inverse H(d;)~'. As
an example, the inverse of 9; (in the algebra of operators
on the space of continuous functions with support in R™)
is the integrator:

Oyt w07 tu, (97 u)(t) :/0 u(s) ds. (12)

Many other linear dynamic operators and their inverse
can then easily be defined from convolution operators
and other linear ones by means of various mathematical
combinations. For example, the inverse of the dynamic
linear operator H used in (11) is given by:

H! ( Y ) =0, "u+ ug. (13)

Uo
8.8 Time-scale transformation operators

There are many examples of physical dynamic systems
that admit an intrinsic time, under which equations are
simplified Visintin [1994], Fangtand [2003]. Classically, a
time-scale transformation (TST) of the trajectory is an
operator of the form:
r+— o ()0

where (t) is the new time, defined by ¢ an invertible
increasing function. As the times t and ¢(t) are different,
the causality of a time-scale operator cannot satisfy the
standard definitions. However, useful TST are in general
defined by means of an operatorial transformation of a
function v that pilot the clock ¢, that is ¢ = ¢(v) with ¢
an operator.
Definition 1. The TST operator

S (v,x) — xop(v)
is said causal if the operator ¢ is causal.
In this case, the clock ¢(v) is computed in a causal

way from the function v; such a TST operator can be
implemented in real-time.

Remark 5. Time-scale transformations can depend on the
variables u and/or X of the problem.

Remark 6. The inverse of operator z — 2z := z o ¢ is

Zrz=7z20p7 L

3.4 Other operators

Of course, any finite combinaison of the above-mentioned
operators can be used. More generally, we only impose that
involved operators are concretely usable. Namely, from the
numerical point of view, they must be approximable with
an arbitrary accuracy and reasonable computational costs.

4. APPLICATION OF OPERATORIAL
PARAMETRIZING TO FED-BATCH BIOREACTOR
CONTROL PROBLEMS

Fermentation is a critical process of production of sub-
stances from organic molecules. The high cost associated
to many fermentation processes makes optimization of
bioreactor performance very desirable. Unfortunately, the
bioreactor dynamic models are highly nonlinear, which
makes optimal control a difficult problem studied in many
works Rani [1999], Peroni [2005], Zhihua [2002],Moya
[2002] and with many industrial applications (maximisa-
tion of bioethanol production etc.).

We show in the sequel how operatorial parametrizing
significantly simplifies control problems relating to fed-
batch bioreactor equations.
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4.1 The model under consideration

We consider the following model of fed-batch bioreactors
Wang [2001]:

Or =p(X)x—zu
Ops = —aru(X)z+ (s; — s)u
Op = asp(X)x —pu
X(0) = Xo,
where z, s, p are the respective concentrations of biomass,
substrate and product, X = (z,s,p)”, p is the growth rate,

s; the substrate concentration in feed, u (the control) is the
dilution of feed and X the initial conditions.

(14)

4.2 Operatorial parametrizing of (14)

Time-scale transformation ~ We consider the time-scale
transformation z — Z := zo ¢~ !, with ¢ : t — 7 such that
¢ =u>0and p(0) =0, that is®:

¢ = 0; 'u. (15)
The associated TST has the following expression:

S:(u,z)—Z=zo0 (aflu)_l,
where Z denotes the trajectory z in time 7 = ¢(t).
For convenience, we denote:
Sy = S(u,-).

Remark 7. In the same way, we denote

U= Sy(u) =wuo (8{1u)_1 .

Then, we know that:
S:l:Zz=%o0 (aflu).
Moreover, as dr = u dt, we have:
—1\/ _ l
(90 ) - U
and then: )
-1 -1
90 = 87' 5)
from which we deduce different expressions of operators
zr—zand zZ— 2 :

Stz Z=2007"2
u

1\ 1
S;:EHz:EO(@_l:) .
u u

By denoting T := S;l, we then have two expressions of

the time-scaling transformation (and its inverse) depend-
ing respectively on u and 4, as summarized in the following
scheme:

As Oip = u, we can remark that the proposed time-scale
transformation is governed by the feed dilution of the
bioreactor, which is rather natural. Moreover, it is causal
and then can be used in real time applications.

_ t
5 We denote 0, ! the operator u +— fO uds

We will denote by S the operator z +— z, indifferently
referring to its expression depending on u (that is S,,) or u
(that is T%). For simplicity of notations, we consider that
S can be applied either to scalar or vectorial trajectories
by using the convention:

S(Zla 7Zn) = (S(Zl)a EE3) S(Zn))

Parametrizing operators
operator:

A : C°(R};R) x C° (R ; R?) — C°°(R/}; R) x R3
(U,X) =Yy = (A o S)(U,X)

Consider now the following

Wherg
A C®(R) x C°(RF;R?) —» C°(RF;R) x R?

~ T
(@ %) (“(?xv (6,3),(5,5), <6,fa>>

Note that the terms (d,Z) relate to initial conditions of
(14).

By applying the operator S on (14), simple computations

based on y = A(y, X) and the property % = %%, lead
to the following linear system:

875 = - + Y1

0:5=—5+s; —a1y1 (16)

a‘rﬁ: 7§+ azy1,
where y;, ¢ = 1:4 denotes the ith component of y.
Furthermore, we deduce from (16) the expression of the
associated operators (B, C):

(17)

with:
@+ 1) (1) +ype
0y +1) " (si —aryn) +yze O
@ +1) a2 yn) +yae V)

Y1
We can remark that those operators are finite combinaison
of static/linear dynamic/TST operators. Up to the above
operatorial transformations, the system (16) is equivalent
to (14).

Cly) =

Then, classical control methods of linear systems can be
investigated on (16) (optimal control, linear feedback sta-
bilization, predictive control and so on), and straightfor-
ward solutions relating to (14) are directly deduced from
the ones of (16) by means of (17).

Figures 1,2,3 highlight how such solutions can be imple-
mented on the physical process.

X nJ
Bioreactor S X
N.L.S

N
>

Linear System

Fig. 1. The linear system (16)
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»| Bioreactor
N.L.S

nJ
B 4—?4llinearfeedback<i S |«

Feedback K

Fig. 2. Stabilizing feedback control

k3 kS
Y » B u uyl Bioreactor | X
N.L.S
K -
Feedback operator
™ C predicted state X*

Fig. 3. Predictive control
5. CONCLUSION

The present paper must be seen as a brief introduction
to a methodology based on operatorial transformations
and devoted to nonlinear dynamic problems. Through a
concrete example, it has been shown that in spite of some
apparent complexity, efficient solutions can be found when
an explicit operatorial parametrizing can be exhibited.
The obtained linear formulation allows to envisage the
practical implementation of optimal controls on fed-batch
bioractors.
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