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Abstract: This note considers the problem of stabilization by output feedback for a class of nonlinear 
Differential-Algebraic-Equation systems. The output feedback controller is constructed which ensures the 
closed-loop systems asymptotically stable. Not based on separation-principle that is commonly adopted in 
the literature, the output feedback controller design is coupled with that of the non-initialized linear high 
gain state observer. The numerical simulation results illustrate the effectiveness of the proposed scheme. 

 

1. INTRODUCTION 

Many physical problems yield mathematical descriptions that 
are a mixture of ordinary differential equations and algebraic 
equations (DAE) (Kumar, 1999). In order to provide a 
measure of the difference between DAE systems and 
ordinary-differential-equation (ODE) systems, the notion of 
differential index is commonly used, which corresponds to 
the minimum number of differentiations of the algebraic 
equations required to obtain an equivalent ODE systems 
(Petzold, 1982). Control of linear DAE systems has been 
studied extensively, either assuming arbitrary initial 
conditions with the objective of removing the impulsive 
behaviour through feedback, or yielding the smooth solution 
within the more conventional framework with consistent 
initial conditions (Kumar, 1996). 

Among nonlinear DAE systems, the systems of index one 
represent an important class of physical systems such as 
power systems, electric circuits and so on. The Lyapunov 
method of nonlinear ODE systems is extended for nonlinear 
DAE systems of index one and the sufficient conditions of 
stability are presented (Hill, 1991). For affine nonlinear DAE 
systems of index one, the problem of exact linearization is 
considered (Wang, 2001). The problem of regularization of 
high index nonlinear DAE systems is considered through 
output feedback precompensator (Marie-Nathalie, 2005). 

One of the important problems in the field of nonlinear 
control is stabilization by output feedback. A high gain 
observer, which is in fact a “Luenberger-like” nonlinear 
observer, is proposed for nonlinear DAE systems of index 
one (Yaagoubi, 2005 and Assoudi, 2005). In order to obtain 
the state estimation, two crucial restrictions, i.e., the 
Lipschitz condition and lower-triangular structure of the 
equivalent systems, are needed. While in many cases, the 
system under consideration cannot satisfy above two 
restrictions. Motivated by (Qian, 2003), in this paper we will 
present a new output feedback controller design for a class of 
nonlinear DAE systems which have been considered by 
Yaagoubi and Assoudi. Not based on separation principle, 

our state observer is not a copy of original systems but 
coupled with the controller design. By choosing the gain 
parameters of the observer and the virtual controllers step-by-
step, a linear output dynamic compensator is obtained, 
making the closed-loop systems asymptotically stable. 

2. PROBLEM DESCRIPTION 

In this paper, we consider following single-input single-
output (SISO) nonlinear DAE systems  
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( , ) ( , )
0 ( , )

( , )

x f x z g x z u
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y h x z
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where 1( , , )T n
nx x x R= ∈ , 1( , , )T m

mz z z R= ∈ ,

u R∈  and y R∈  are the vector of differential variables, 
vector of algebraic variables, input and output respectively. 
The mappings 1 2, ,f f g and h  are sufficiently smooth. 

Denote Ω  the set of zeros of 

2f : ( ){ }2, : ( , ) 0n mx z R R f x zΩ = ∈ × = . Without loss 

of generality, we assume that (1) has an isolated equilibrium 
in Ω  which we regard to be the origin. 

Throughout this paper, the following assumptions are made 
for (1). 

Assumption 1: The nonlinear DAE systems (1) are of index 

one, i.e., the Jacobian matrix of 2 ( , )f x z  with respect to z  

has constant full rank on Ω : 

   2( )frank m
z

∂ =
∂

                    (2) 

For convenience, we give following notation 
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and define nonlinear transformation 
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where 1( , , )T n
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Assumption 2: Ψ is a diffeomorphism from a tubular 

neighborhood { }2( , ) ( , )x z f x zε εΩ = ∈Ω <  of Ω .  

Assumption 3: There is some constant 0σ > such that 

1 1 2 2( , ) ( , )x z x zΨ − Ψ ( )1 2 1 2,x x z zσ≥ − − .  

Assumption 4: Ψ transforms the restriction of systems (1) to 
Ω  into the following systems: 

1 2 1

1 1

1

( , , )

( , , )

( , , )
0

n n n

n n

u

u

u u

y

ξ ξ φ ξ χ

ξ ξ φ ξ χ
ξ φ ξ χ
χ

ξ

− −

= +

= +

= +
=
=

                    (5) 

restricted to the space 0χ = . 

Assumption 5: For 1, ,i n= , there exists a constant 
0c ≥  such that  

 1( , , ) ( )i iu cφ ξ χ ξ ξ≤ + +                 (6) 

The objective of this paper is to design an output dynamic 
compensator such that the closed-loop systems (1) are 
asymptotically stable at the zero equilibrium. It must be 
pointed out that systems (1) with Assumptions 1~5 cover a 
class of systems whose stabilization by output feedback does 
not seem to be solvable by existing design method. A 
nonlinear observer design scheme is proposed using the 
extension of high gain observer tech and separation-principle 
of nonlinear ODE systems (Yaagoubi, 2005 and Assoudi, 
2005). In addition to Assumptions 1~4, their results also 

needs that the equivalent systems (5) satisfy following two 
crucial restrictions: 1): so-called lower triangular structure, 
i.e., 1( , , ) ( , , ), 1, , 1i i iu i nφ ξ χ φ ξ ξ= = −  and 

1( , , ) ( , , )n n nu uφ ξ χ φ ξ ξ= ; 2) the nonlinear terms 

, 1, ,i i nφ =  satisfying Lipschitz condition, i.e., 

( )( , , ) ( , , )i iu u cφ ξ χ φ ξ χ ξ ξ χ χ− ≤ − + −  for 

some constant 0c > . However many practical systems 
neither bear lower triangular structure nor satisfy the 
geometric conditions that can transform the controlled 
systems into lower triangular structure through some 
nonlinear coordinate transformation. On the other hand, the 
Lipschitz condition is sometimes been destroyed due to the 
disturbance and the noisy of measurements.   

3. MAIN RESULTS 

In this section, we prove that Assumptions 1~5 suffice to 
guarantee the existence of a stabilizing output feedback 
controller for systems (1). 

Theorem 3.1: Under Assumptions 1~5, there exist a non 
initialized linear observer and a linear output feedback 
controller making the nonlinear DAE systems (1) 
asymptotically stable.  
Proof: The proof consists of two parts. First of all we design 
a non-initialized high gain linear observer. Here “non 
initialized” means that the initial state of the observer 
satisfies 

0
ˆ ˆ( (0), (0))x z ε∈Ω which will be defined later, 

instead of constrainting to 2 ˆ ˆ( (0), (0)) 0f x z = . We then 
construct an output feedback controller based on a feedback 
domination design, making the closed-loop systems 
asymptotically stable. 

3.1  Non-Initialized Linear High Gain State Observer  

Our non-initialized observer takes the following form: 

 

1 2 1 1 1

1
1 1 1 1

1 1

ˆ ˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ

n
n n n

n
n n

k

k

u k

ξ ξ θ ξ ξ

ξ ξ θ ξ ξ

ξ θ ξ ξ

χ χ

−
− −

= + −

= + −

= + −

= −Λ

       (7) 

where 1θ >  is the gain parameter to be determined later, 
0, 1, ,ik i n> =  are coefficients of the Hurwitz 

polynominal 1
1 1( ) n n

n nP s s k s k s k−
−= + + + +  and Λ  

is a m m×  symmetric positive definite matrix. 

We say (7) is a non-initialized linear state observer with the 

controller to be designed. This claim will be proved at the 
end of the proof. Set   
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where 
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. A simple calculation gives 
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where ( )
1

1
1
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k
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. From the 

choosing of 0, 1, ,ik i n> = , clearly A  is a Hurwitz 
matrix. Therefore, there is a symmetric positive definite 
matrix P  such that TA P PA I+ = − . 

Define Lyapunov function 0 ˆ ˆ( , ) ( ) ( )V V Wε χ ε χ= + , 

where ( ) ( 1) TV n Pε ε ε= +  and  ˆ ˆ ˆ( ) TW χ χ χ= . Then  

          minˆ ˆ ˆ ˆ( ) 2 2 ( ) ( )TW Wχ χ χ λ χ= − Λ ≤ − Λ             (10) 

where min ( )λ Λ  denotes the smallest eigenvalue of Λ . On 
the other hand, from the definition of proportion error (8) we 
have 1ˆ i

i i iξ ξ θ ε−= + , with this in mind and Assumption 5, 

there exists a real constant 1 0c > ,which is independent of 

θ , such that the time derivative of 0 ˆ( , )V ε χ  is 

2
0 min
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3.2  Construction of an Output Feedback Controller 

The procedure is similar to that of (Qian, 2003), there is no 
need to repeat it. We only give the inductive step and the last 
step at which step the output feedback controller will be 
given. 

Inductive Step k : Suppose until to the kth  step, we have 

defined error variables 1 1 1 1 1
ˆ ˆ, j j je eξ ξ α+ + += = − for 

1, ,j k=  where 1j j jb eα θ+ = −  is virtual control with 

2
1 1

1 1
4 2

b n k= + +  and 2 , , 0kb b >  being constant 

independent of θ .and found a Lyapunov function 

1ˆ( , , , , )k kV e eε χ  such that  
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where 2
1 1 0 1

1ˆ ˆ( , , ) ( , )
2

V e V eε χ ε χ= + and 

2
1 2( 1)

1 , 2, ,
2j j jjV V e j k
θ− −= + = . Now define 

2 2 2
ˆ

k k ke ξ α+ + += −  with 2kα +  being the virtual control to 
de designed. Consider the following Lyapunov function 

 2
1 12

1
2k k kkV V e
θ+ += +  (13) 

It is not difficult to deduce that  

(
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1 1 2 1 12 2
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where , 0, 0, , 1j id i j> = +  are all constant that are 

independent of θ . From (12) and  (14), we have 
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From the well-known Young’s Inequality and 1θ > , it is 
easy to check that the following inequalities hold: 
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Then the virtual control 2kα +  can be chosen as 

2 1 1k k kb eα θ+ + += −                               (18) 

where 
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 is a constant that is independent of θ . Submit (18) into (17) 
we have 
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Similar to the inductive step, at the n th step we give the 
controller design. 
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Consider following Lyapunov function 

 2
1 2( 1)

1
2n n nnV V e
θ− −= +                    (20) 

and choose the controller as 
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4 4
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and 0, 1, , 1ib i n> = −  are constants that are 

independent of θ . Then we have  
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It is clear that if we choose the gain constant  

2 2
1 1 1 1 1max{1, , , , }

2 n
nn c c b c bθ −> +       (23) 

then the right-hand side of (22) becomes negative definite. 
Therefore, the closed-loop system is asymptotically stable.  

Now we will prove that with controller (21), system (7) 
forms an exponential observer for (1). More precisely, let 

{ }
0 2 2 0( , ) ( , )Tf x z f x zε εΩ = Λ <  contained in the set εΩ  

defined in Assumption 3, then we say for θ∀  chosen as (23), 
there exist 1 20, 0β β> >  such that  

 2
1 ˆˆ ˆ( , ) ( , ) (0), (0)tx z x z e ββ ξ χ−− ≤         (24) 

where ˆ(0) (0) (0)ξ ξ ξ= −  and ˆ ˆ( , )x z is the estimate of 
( , )x z . This claim can be proved as following. 

From (10) we have obtained minˆ ˆ( ) 2 ( ) ( )W Wχ λ χ≤ − Λ , 
thus we can obtain 

2 2ˆ ˆ( ) (0)tt e γχ χ−≤                          (25) 

where min2 ( )γ λ= Λ .From (22) it is easy to show that there 

exist constants 1 20, 0τ τ> >  such that    

 2
2 2

1
ˆ ˆ( ) ( ) (0) (0)tt t e τξ ξ τ ξ ξ−− ≤ −  (26) 

Define state estimate of (1) as 1 ˆ ˆˆ ˆ( , ) ( , )x z ξ χ−= Ψ , we have  

 
2

1 1

1

ˆ ˆˆ ˆ( , ) ( , ) ( , ) ( , )

1 ˆ ˆ ˆ( , ) ( , ) (0), (0)t

x z x z

e β

ξ χ ξ χ

ξ χ ξ χ β ξ χ
σ

− −

−

− ≤ Ψ − Ψ

≤ − ≤
 (27) 

where 1 20, 0β β> >  are constants that are determined by 

1 2, , ,τ τ σ γ  and θ . This ends the proof. 

4. AN ILLUSTRATIVE EXAMPLE 

In this section, we use an example to illustrate applications of 
Theorem 3.1. We examine the following seemingly simple 
but nontrivial example 

 

1 2 1

2 2 2
2

2 2

1

sin
sin

0 ( , )

x x x z
x u x x

f x z z x
y x

= +
= +

= = +
=

 (28) 

By simple calculation, the transformation (4) that satisfies 
Assumption 4 can be chosen as  

 2
1 2 1 2 2( , , ) ( , , )x x z xξ ξ χ = +  (29) 

Then (28) can be equivalently transformed into  

 

2
1 2 1 2

2 2 2

1

sin( )

sin
0
u

y

ξ ξ ξ χ ξ
ξ ξ ξ
χ

ξ

= + −

= +
=
=

 (30) 

According to (5), here 2
1 1 2 1 2( , , ) sin( )φ ξ ξ χ ξ χ ξ= −  and 

2 1 2 2 2( , , ) sinφ ξ ξ χ ξ ξ= . Due to the presence of 1φ , 

system (30) is not in a lower triangular form. Moreover, 2φ  

is a non Lipschtiz function and there is no constant 0c ≥  

satisfying 2 2 2 2 2 2( ) ( ) cφ ξ φ ξ ξ ξ− ≤ − . Therefore, the 

existing observer schemes (Yaagoubi, 2005 and Assoudi, 
2005), can not be applied to (28). 

On the other hand, it is easy to verify that Assumption 5 
obviously holds:  

 1 1 2 1 2 1 2 2( , , ) , ( , , )φ ξ ξ χ ξ φ ξ ξ χ ξ≤ ≤  (31) 

By Theorem 3.1, the non-initialized linear high gain state 
observer is 
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1 2 1

2
2 1

ˆ ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ

y

u y

ξ ξ θ ξ

ξ θ ξ

χ χ

= + −

= + −

= −

 (32) 

and the output feedback controller  

 2 2 1 1
ˆ ˆ( )u b bθ ξ θ ξ= − +  (33) 

with a suitable choice of the parameters 1,bθ  and 2b (e.g., 

1 211/ 4, 15b b= =  and 10θ = ). The simulation is shown 
in Fig.1. 

 

 

 
Fig.1. Transient responses of  (28) , (32) and (33) with 

1 2 1 2ˆ ˆ ˆ( (0), (0), (0), (0), (0), (0)) (0.1,0,0,2,10, 96)x x z x x z = −  

Apparently controller (33) asymptotically stabilizes (28). 

5.  CONCLUSIONS 

A new output feedback controller design scheme is proposed 
for a class of nonlinear SISO DAE systems making the 
closed-loop system asymptotically stable. The proposed state 
observer is a linear non-initialized one. The observer and 
controller design are heavily coupled with each other. This 
output feedback synthesis can be used to solve the output 
feedback control problem for a class of DAE systems that 
cannot be handled by existing methods. 
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