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Abstract: This paper presents a mathematical charge plan model of steelmaking-continuous casting (SCC) 
scheduling in the computer integrated manufacturing systems environment. Based on the analysis of the 
difficulty to solve the scheduling problem, a pseudo travel salesman problem model is presented to 
describe the scheduling model. By using this method, we can solve the optimum charge problem even 
without known the charge number, while other methods must know the charge number previously. To 
solve the problem, an improved discrete particle swarm optimization (DPSO) is presented. A new crossover 
probability is introduced into the DPSO algorithm, which is differed to that of the GA.. Simulations have been 
carried and the results show that the pseudo travel salesman problem is very fit for describe the model. The 
computation with practical data shows that the model and the solving method are very effective. 

 

1. INTRODUCTION 

IRON and steel industrial is an essential and sizable sector for 
industrialized economies. China, the largest steelmaking 
country in the world, produces about 489 million tons in 
2007, which is about 36.4% of the world’s total output. It is 
well known that the steel industrial is high energy 
consumptive. It is very important to reduce the energy cost, 
especially at present when we face to the skyrocket of the 
energy price. To reduce the cost, modern iron and steel 
corporations are moving towards continuous, high-speed and 
automated production process with large devices. The focus 
is placed on high quality, low cost, just-in-time (JIT) delivery 
and small lot with different varieties. To improve 
productivity of large devices, shorten waiting-time between 
operations, reduce material and energy consumption, and cut 
down production costs, production scheduling is a key 
component. Its task is to determine the starting times and the 
ending times of jobs on the machines so that a chosen 
measure of performance is optimized. 

Steelmaking-continuous casting (SCC) production scheduling 
problems are to determine in what sequence, at what time and 
on which device molten steel should be arranged at various 
production stages from steelmaking to continuous casting. 
Unlike general production scheduling in machinery industry, 
SCC production scheduling problems have to meet special 

requirements of steel production process. In the SCC process, 
the products being processed are handled at high temperature 
and converted from liquid (molten steel) into solid (drawn 
billets). There are extremely strict requirements on material 
continuity and low time (including processing time on 
various devices and transportation and waiting time between 
operations). 

The study of this paper is investigating the SCC production 
scheduling problem and aims at developing a computerized 
scheduling system for generating optimal schedules. The 
project uses a huge iron and steel complex as the study 
background.  

2. THE MATHEMATICAL MODEL OF CHARGE PLAN 
WITH UNKNOW CHARGE NUMBER 

In the iron and steel production from iron ore input to steel 
product process, there are three major manufacturing 
processes: iron making, steelmaking, and rolling. 
Steelmaking refines pig iron into steel and casts it into slabs, 
blooms, or billets. The SCC production process is illustrated 
in Fig. 1. The steelmaking process starts with the charge of 
crude steel and scrap iron in one of the EAFs. Liquid iron, 
tapped from BF, will be transported to the steelmaking shop 
where BOFs and/or EAFs are located. BOF and EAF burn 
out the excessive carbon, sulphur, silicon, and other 
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impurities from liquid iron and refine it to steel with desired 
contents. The filling of one furnace is called a charge ((heat) 
and already contains the main alloying elements. The melted 
steel is poured into ladles that are transported by a LF. If the 
proceeding heat has a long processing time in the LF, the 
current heat must wait. The next step is a heat treatment in 
the LF, where the fine alloying takes place. The duration is 
usually about the same as the melting. Then, special 
treatment may be performed in the Ladle-refining equipment 
(VOD or VD) to eliminate impurities from molten steel or 
add alloy ingredients to the molten steel in ladles to make 
high-grade steel. Finally, a continuous caster casts molten 
steel continuously into slabs, blooms, or billets. If the casting 
format needs to be altered, a set-up time must be considered. 

The modern integrated process of steelmaking, continuous 
casting and hot rolling directly connects the steelmaking 
furnace, the continuous caster and the hot rolling mill with 
hot metal flow and makes a synchronized production. For 
steel making process, the main work is to arrange the charge 
plan and cast plan.  The basic unit of steelmaking is the 
charge. To make the charge plan, the following conditions are 
needed:  

（1） Steel grades must be the same, 

（2） Steel thickness of the charges must be equal. 

（3） The slab widths must be near 

（4） The consignment date must be near, 

（5） Total weight in each charge must great than or 
equal to the 90% furnace capacity and less than or 
equal to the 100% furnace capacity. 

To obtain the mathematical model, the following assumptions 
are made: 

（1） The requirement of each slab is less than the 
furnace capacity and cannot be decomposed. 

（2） The furnace capacity is constant. 

Usually, the charge number is known previously. In this 
paper we present a novel method to deal this problem with 
unknown charge number. The mathematical model of the 
optimum charge plan is as follows (Tang, 1996,p.440; Xue, 
2004, p.1979): 
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Where: 

X —slab store matrix, if slab i and j are arranged into the 
same charge, ijx =1 else ijx =0. 

 P—charge number which is unknown previously. 

 N—the slab number to be arranged. 

Wi—width of the ith slab. 

T—furnace capacity. 

pj—annexed cost coefficient of residual slab of the jth charge 
number. 

 gj—the weight of the jth slabs. 

hj—annexed cost coefficient of the jth slab not be chosen. 

Yj —the open order of the jth charge. 

1
ijC —annexed steel grade cost coefficient of slab i combined 

to slab j and:  
 

 
Fig.1 The SCC production process 
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3
ijC —annexed date cost coefficient of slab i combined to 

slab j and:  
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 di—slab date of charge i. 

 

Objective function (1) assures the difference cost to be 
smallest in steel grades, widths and consignment dates 
among each charges. Constraint (2) ensures that every slab 
can only be arranged to one charge. Constraint (3) ensures 
that the total charge number is P. Constraint (4) ensures the 
total weight of every charge cannot surpass the furnace 
capacity. Constraint (5) ensures the open order not be 
negative. 

3. PSEUDO TSP MODEL FOR CHARGE PLAN 

According to the charge plan model, it is natural to solve the 
problem by arranging the slab into an array and the array 
store the charge number (see Fig.2). This is effective if the 
slab amount is small. If the slab number is very big, the 
search algorithm will not be able to solve the problem 
effectively (Xue,2004,p.1279). Moreover, the charge 
number must be known previously. If the charge number is 
unknown previously, it will not take functions.  In this paper, 
the travel salesman problem(TSP) solution method is used to 
solve the charge plan model with unknown charge number. 

 

Fig.2 Array description of charge plan model 

3.1  The general description of TSP 

Given N cities and a salesman, the TSP in discussion may be 
stated as follows.  The salesmen set out from the same fixed 
city and finally come back to the starting city to minimize 
total travelling distance. It is required that each city should 
be visited by exactly one salesman and each salesman 
should visit at least one city.  

 

3.2  The difference between TSP and the charge plan 
problem 

Although the charge plan scheduling problem may be 
reduced to TSP, there is obvious difference between the 
charge plan problem and the general TSP. 

A feasible tour of the salesman for TSP is a closed route. 
This means that for the salesman, if he starts from point i, 
then he must finally returns to point i. Thus, the feasible tour 
of TSP is a closed route. However, a schedule of a turn in 
the actual charge plan scheduling problem is an open path, 
that is, each production slab is arranged exactly once.  

 

3.3  Conversion of the charge plan scheduling problem into 
a normal TSP 

To convert the charge plan scheduling problem into a TSP, 
assume that N slabs are to be arranged into M charges and M 
is unknown previously. These N slabs may be viewed as N 
nodes and a salesman may be regarded as the tour.  Fig.3 
shows the Pseudo TSP with 8 nodes. The first 4 slabs are 
arranged in the same charge and the second 3 are arranged in 
the same charge. The last slab cannot be arranged into any 
charge.  The dashed line represents that the two adjacent 
nodes cannot be arranged in the same charge.  

It must indicate out that the distance with reasonable tour 
route is the sum for all the nodes can be arranged in the 
same charge. And the distance in the same charge can be 
calculate as follows: 
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Fig.3 Pseudo TSP model with 8 nodes 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15827



 
 

     

 

 

How do we decide that the slab can be arranged in the same 
charge? 

Assume that the m slabs have been arranged in the same 
charge. W and C are calculated with (11) and (12). And the 
(m+1) slab is to be arranged in the same charge. If: 

Tww m ≤+ +1                                                                    (13) 

and: 
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Then the (m+1)th slab will arranged in the same charge, 
otherwise, the charge will only arrange m slabs. In (14), the 
Valve is a big number which can not be reached when the 
slabs can be arranged in the same charge.  

After all the slabs have been arranged, we must decide 
which charges are necessary and which charges may be 
cancelled. If the total cost in one charge is great than or 
equal to the cost that all the slabs in this charge are not 
arranged, than this charge is cancelled.  

4. AN IPROVED DISCRETE PARTICLE SWARM 
OPTIMIZATION 

Particle swarm optimization is a population-based 
evolutionary computation technique developed by Kennedy 
and Eberhart in 1995 (Kennedy,1995,p.1942) . It have been 
widely used in PSO can define search direction and search 
scopes only based on the fitness function converted from the 
object function and doesn’t need to know the differential of 
object function and other auxiliary information. PSO is 
initialized with a population of random solutions of the 
objective function.  

 
TABLE 1. 

BASIC PARAMETERS OF THE MODEL 
Penal coefficient Slab  

number 
Steel 

grade 
serial 

Steel grade Width Consignment 
date 

Slab 
weight P/Yuan H/Yuan

1,31 11 DT5427A1 1050 4 25 20 100 
2,32 11 DT5427A1 1050 5 25 20 100 
3,33 11 DT5427A1 1050 6 25 20 100 
4,34 11 DT5427A1 1050 7 25 20 100 
5,35 11 DT5427A1 1050 5 25 20 100 
6,36 12 DT5427A2 1100 6 28 20 100 
7,37 12 DT5427A2 1100 7 28 20 100 
8,38 12 DT5427A2 1100 8 28 20 100 
9,39 12 DT5427A2 1100 4 28 20 100 
10,40 12 DT5427A2 1100 4 8 20 100 
11,41 12 DT5427A2 1100 5 8 20 100 
12,42 11 DT5427A1 1200 6 26 20 100 
13,43 11 DT5427A1 1200 7 26 20 100 
14,44 11 DT5427A1 1200 5 26 20 100 
15,45 14 DT5427A4 1150 6 23 20 100 
16,46 14 DT5427A4 1150 7 23 20 100 
17,47 14 DT5427A4 1150 6 23 20 100 
18,48 14 DT5427A4 1150 5 23 20 100 
19,49 14 DT5427A4 1150 4 23 20 100 
20,50 14 DT5427A4 1150 5 23 20 100 
21,51 23 AR5158E3 1150 5 23 20 100 
22,52 23 AR5158E3 1150 6 23 20 100 
23,53 23 AR5158E1 1000 5 24 20 100 
24,54 21 AR5158E1 1000 4 24 20 100 
25,55 21 AR5158E1 1000 7 24 20 100 
26,56 21 AR5158E1 1000 4 24 20 100 
27,57 21 AR5158E1 1250 5 20 20 100 
28,58 22 AR5158E2 1250 6 20 20 100 
29,59 32 DR5158E2 1250 7 10 20 1000 
30,60 32 DR5158E2 1250 5 10 20 1000 

T=100      E=100      F1=4     F2=5     F3=20     F4=20 
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Travelling Salesman Problem (TSP) is a well-known NP-
hard combinatorial optimization problem. By now, TSP has 
been well studied by many meta-heuristic approaches, such 
as nearest neighborhood search, simulated annealing, tabu 
search, neural networks, ant colony system (Huang,2003), 
and genetic algorithm. Since 1995, particle swarm 
optimization has been proven to succeed in continuous 
problems But for the combinatorial problems, it is still a new 
field.  

For the TSP, the present position is the basic path. It is 
difficult to express its velocity. Here, we solve the problem 
based on the GA’s principle. 

（1） Mutation operation 

A mutation operation is applied to changing the sequence of 
cities in the tour so as to produce the newly generated 
solutions based on a mutation probability. In our improved 
PSO, the mutation operation is as follows: 

Take 2 cities out randomly and exchanges the position of 
cities. 

（2） Crossover operation 

The crossover operation combines features of the two parent 
solutions and passes them to the child solutions by 
exchanging part of their sequences. Since direct exchange of 
corresponding cities in the two tours may result in infeasible 
solutions (some cities are visited more than once while some 
others are not visited), the crossover operators for TSP are 
specially designed to be capable of repairing the child 
chromosomes to guarantee feasibility. Several crossover 
operators have been proposed in the literature (Tao,1998, 
pp.803) , such as: partially matched crossover (PMX), order 
crossover (OX) and cycle crossover. In our researches, the 3 
crossover operators are all studied. For our pseudo TSP, the 
performance of the 3 operators is near. In the following 
studies, the PMX operator is used for the crossover 
operation. Based on the characteristic of PSO, a new 
crossover probability is introduced into the DPSO algorithm, 
which is differed to that of the GA. It is called pbset 
crossover probability (pcp). 

（3） Improved DPSO algorithm 

Based on the previous discussion, the improved PSO 
algorithm can be concluded as follows: 

While (iterative number < largest iterative number) do 

      For j=1: n 

        produce a random number rp in (0,1); 

        if rp< rp  

Crossover the particle with pbest; 

        Else 

Crossover the particle with gbest;nd obtain C’’(j); 

Mutation operation of  the result particle; 

          Compute the fitnesses  of every result particle; ; 

If  the new fitness smaller than that of the older 

accept the new path 

else 

 refused the new path;. 

If f(j)<f( pbest) , f (pbest)= f(j) and pbest =j. 

END For 

Find out the f (gbest) and gbest; 

END While 

Output the f (gbest) and gbest. 

5 APPLICATION EXAMPLES 

Now take the practical data in a steel and iron plant as an 
example. The basic model parameters are listed in Table 1. 
There are 60 slabs to be arranged. Usually they are arranged 
into 13 charges according the total weight. The maximum 
iterative number and population size are set 500 and 200 
respectively. 

According to the charge model and the Pseudo TSP solution 
method, the search process is plotted in Fig.4 and the results 
are listed in Table 2. The best value with fixed charge 
number is 3884 while it is 3063 when using the pseudo TSP 
with unknown charge number. In Fig.4, the dashed line 
represents the search process of the charge plan problem 
with unknown charge number and the solid line represents 
the problem with fixed charge number. From Fig.4, it can be 
seen that this TSP solution method can solve the charge plan 
problem with unknown charge number better. 

Fig. 4  DPSO search process 

6. CONCLUSIONS 

Based on the steelmaking process analysis, a mathematical 
charge plan model of steelmaking-continuous casting (SCC) 
scheduling in the computer integrated manufacturing 
systems environment is presented. Based on the analysis of 
the difficulty to solve the scheduling problem, a pseudo 
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travel salesman problem model is presented to describe the 
scheduling model. By using this method, we can solve the 
optimum charge problem even without known the charge 
number, while other methods must know the charge number 
previously. To solve the problem, an improved discrete 

particle swarm optimization is also presented. Simulations 
have been carried and the results show that the pseudo travel 
salesman problem is very fit for describe the model. The 
computation with practical data shows that the model and 
the solving method are very effective. 

 
TABLE 2 

 COMPUTATION RESULTS WITH FIXED AND UNKNOWN CHARGE NUMBER 
fixed charge number unknown charge number 

Charge 
 number 

Slab 
 numbers 

weight Charge 
 number 

Slab 
 numbers 

weight 

1 9,10,13,17,41 93 1 27,28,52,57 83 
2 29,30,59,60 40 2 4,6,15,49 99 
3 15,46,47,50 92 3 24,25,54,55 96 
4 36,44,45,49 100 4 7,38,40,44 90 
5 8,11,37,39 92 5 20,34,35,48 96 
6 1,2,32,33 100 6 16,19,42,46 95 
7 6,7,31,40 89 7 9,10,13,14 88 
8 22,27,28,52 86 8 2,3,5,47 98 
9 3,4,5,33 100 9 23,26,53,56 96 

10 16,20,38,48 97 10 29,30,59,60 40 
11 24,25,55,56 96 11 11,12,37,39 90 
12 23,26,53,54 96 12 1,32,33,45 98 
13 21,51,57,58 86 13 17,18,31,50 94 
14   14 8,36,41,43 90 
15   15 21,22,51,58 89 

Slabs 
cannot be 
arranged 

12,14,18,19,35
,42,43 

175 Slabs 
cannot be 
arranged 

none 0 
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