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Abstract: A decoupling neural sliding mode controller is given for trajectory tracking control of multi-link 
robots with external disturbances and uncertain system parameter errors. Different from general combining 
the sliding mode control (SMC) and neural network control (NNC), this approach decouples a robot 
with  links into  subsystems and the state response of each subsystem can be governed by a 
corresponding sliding mode manifold. The whole system is controlled by a whole sliding mode 
manifold selected to be a global fast terminal sliding mode manifold, which guarantees that the 
controlled system can reach the sliding mode manifold and equilibrium point in finite time. A radius 
basis function (RBF) neural network is applied to learn the limit of system parameter errors and 
external disturbances for every subsystem, and enforce sliding mode motion by minimizing the cost 
function that is with respect to the distance from the sliding mode manifold. The switching gain of 
sliding mode control can be automatically adjusted according to system parameter errors and 
external disturbances by RBF neural network’s learning. The controller’s chattering is reduced 
without sacrificing robustness, even eliminated after RBF neural network’s learning for a short time. 
Moreover, the stability of the controlled system is proven and the convergence of tracking error is 
also proven by Lyapnov function. Simulation results verify the performance of the control scheme.

n n

 

1. INTRODUCTION 

Sliding mode control (SMC) is an effective approach to 
trajectory tracking control for multi-link robots with external 
disturbances and uncertain system parameter errors, since it 
has strong robustness in Lin C. K., [2006], Feng Y. [2002], 
and Yu S. H. [2000]. A global fast terminal sliding mode 
controller (GFTSMC) based on general mode control is 
proposed by Yu S. H [2000], which presented a new 
terminal sliding mode manifold that could guaranteed the 
controlled system reach the sliding mode manifold and 
equilibrium point from any initial state in finite time, but it 
still had followed disadvantages because of using the same 
principle as general sliding mode control: (1) The controller 
still has chattering. Though quasi sliding mode control can 
reduce chattering, it also sacrifices the robustness. (2) The 
boundary of external disturbances and system parameter 
errors must be evaluated in advance, while it is usually very 
difficult to be implemented in actuated control system.  

Merging sliding mode control with neural networks (NN) 
appeared to be a good idea and many researchers have 
published various control scheme base on this idea. A few 
main ideas seem to be prevailing. The first one attempts to 
apply NN as an observer in the estimation of equivalent 
control by H. Morioka [1995] and in some cases 
disturbances by K. Jezernik [1997].  Also, a sliding mode 
controller with a modified switching function that produces 
a low-chattering control is used in parallel with an artificial 
NN for online identification of the modeling error by D. 
Munoz [2000], which imposes the controller performance. A 
novel approach that combines SMC and NN is presented by 

H. Hu [2006], the weights of which are determined by a 
fuzzy supervisory controller. 

In this paper, combining NN control and GFTSMC, a 
decoupling neural sliding mode controller (DNSMC) by 
global fast terminal sliding mode manifold for multi-link 
robots is proposed, which decouples a robot with  links 
into  subsystems and the state response of each 
subsystem can be governed by a corresponding sliding mode 
manifold. The whole system is controlled by a whole sliding 
mode manifold. A radius basis function (RBF) neural 
network is applied to learn the limit of system parameter 
errors and external disturbances for every subsystem, and 
enforce sliding mode motion by minimizing the cost 
function that is with respect to the distance from the sliding 
mode manifold. The switching gain of sliding mode control 
can be automatically adjusted according to system parameter 
errors and external disturbances by RBF neural network’s 
learning. The controller’s chattering is reduced without 
sacrificing robustness, even eliminate after RBF neural 
network’s learning for short time.  

n
n

2. PROBLEM DESCRIPTION 

2.1 Dynamics of Multi-link Robot 

The dynamics of a rigid robot with  rotating links can be 
described by a second order nonlinear differential equation 
in Feng Y [2002]: 

n

0 0 0( ) ( , ) ( ) ( )M q q C q q q G q tτ ρ+ + = +&& & &                     (2.1) 

where 
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( ) ( ) ( ) ( , ) ( )t d t M q C q q q G qρ = − Δ − Δ − Δ& &                  (2.2) 

where  are angular position vectors, angular 
speed vectors and angular acceleration vectors of rotating 
joints respectively, but only angular position vectors  are 
measurable. 

,  ,   nq q q R∈& &&

0 ( )

q

M q

( )

, ,  is nominal parameters of 
the robot. 

0 ( , )C q q&
n n

0 ( )G q

M q R∈

( )

×

( ,C q

 is symmetric positive definite inertia 
matrix of the robot.  is a vector containing 
Coriolis and centrifugal forces.  is gravitational 
torque. 

) nq R∈&

( ) nG q R∈

M qΔ C qΔ, ,  are system parameter errors. 
 is external disturbance torque.  is sum of 

system parameter error torque and disturbance torque. 

( , )q& G qΔ ( )

( )d t ( )tρ nR∈

nRτ ∈  is a vector of applied joint torques that are actually 
the control inputs.  

We make the following assumption about ( )tρ :  

0 1 2( )t b b q b qρ < + + &                             (2.3) 

where  are positive constants respectively.  0 1 2,  ,  b b b

There are following property for a multi-link robot described 
by (2.1) in general[2]:  

Property 1: ( )M q  is a positive symmetric definite matrix, 
and its inverse matrix 1( )M q−  is valid.  

Property 2: ( ) 2 ( , )M q C q q−& &  is a skew-symmetric matrix, i.e. 
it meets following equation for any vectors nx R∈ : 

[ ( ) 2 ( , )] 0Tx M q C q q x−& & =                             (2.4) 

2.2 GFTSMC for Multi-link Robot 

The sliding mode manifold of global fast terminal sliding 
mode control can be written by following equation for a 
robot with  links[3] : n

/q ps e e eα β= + +&                                  (2.5) 

where 
/ / / /

1 2[ , , , ]q p q p q p q p T
ne e e e= L                           (2.6) 

1 2diag[ , , ]nα α α α= L , 1 2diag[ , , ]nβ β β β= L

2q p q< <

 are constants of the 
sliding mode manifold.  are positive odd numbers. 

r  is tracking error of the controlled system, e q q= − re q q= −& & &  
is differential of tracking error.  

Lemma in Yu S. H [2000]: For the rigid   links 
robot which can be described by (2.1), if the GFTSMC 
manifold is chosen as (2.5), and the GFTSMC is designed as 
follows, then the controlled system tracking error will 
converge to zero in finite time. 

n

0 1 2u u uτ = + +                                    (2.7)  

where 

0 0 0 0( ) ( , ) ( )ru M q q C q q q G q= + +&& & &                  (2.8) 

/ 1
1 0 0 0( ) ( , ) ( ) diag( )q pqu M q e C q q s M q e

p
α β −= − − − ⋅& &

1
2 0 0( ) ( ) su M q K M q

s
−= −                          (2.10) 

0 1 2K b b q b qη= + + + &                            (2.11) 

0η >  is a positive definite constant.  

This control approach requires that the boundary of the 
external disturbances and system parameter errors must be 
estimated in advance. In order to guarantee the stability with 
an unknown uncertainty boundary and meet the sliding 
mode control condition: 

 0Ts s <&                                       (2.12) 

K  must adequately compensate the external disturbances 
and system parameter errors. So K   is usually selected to 
be a conservative large constant, while this enhances the 
chattering and degrades the performances of SMC. 

To alleviate or eliminate chattering, merging the good 
features of GFTSMC and neural networks, a decoupling 
neural sliding mode controller by global fast terminal sliding 
mode manifold is designed in this paper.  

3. DECOUPING NEURAL SLIDING MODE CONROL 

A Lyapunov function candidate can be selected as  

1 1
2 2

T TV s s s s= + & &                                    (3.1) 

In order to control the multi-link robot to be stable, the 
controller output must satisfy: 

0T TV s s s s= + <& & & &&                                    (3.2) 

For a robot with  links, (3.2) can be written as n

1 1

( )
n n

i i i i i
i i

V s s s s V
= =

0= + = <∑ ∑& & & && &

n

                             (3.3) 

If , then the controlled system is stable. 
Considering the interaction among links as external 
disturbances, the coupling robots with  links can be 
decoupled into  subsystem. The state response of each 
subsystem can be governed by a corresponding SMC 
condition: 

0,    1, 2, , iV i< =& L

n

0iV

n

<& . And the whole system is controlled by a 
whole SMC condition. 

The structure of a decoupling neural sliding mode controller 
is shown Fig. 1. There is a neural network for each link of 
the robot.  The neural network can enforce sliding mode 
motion by minimizing its cost function that is with respect to 
the distance from the sliding mode manifold, and can 
adaptively adjust its output to compensate external 
disturbances and system parameter errors by its learning. 
The structure of a RBF neural network includes only two 
inputs and one output. So the neural network has simple 
structure and fast computation speed. The controller does 
not need offline training, and has strong robustness to 
external disturbances and system parameter errors. All 
neural networks in Fig.1 are radius basis function (RBF) 
neural networks, and have the same structure.  

e&           (2.9) 
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Fig. 1 The DNSMC structure 

3.1 RBF Neural Networks 

Suppose that RBF neural network input of joint  is i
i ix s= ; output is . Then  ( )ih x

( ) ( | ) ( )T
i i i i i ih x h x xω ω φ= =                            (3.4) 

where   are weights of RBF neural 
network. 

1 2[ , , ]T
i i i imω ω ω ω= L

1 2( ) [ ( ), ( )i i i , ( )]T
imx x xφ φ φ= xφL , ( )ij xφ  is Gausses 

function, i.e.: 
2

2( ) exp( )ij
ij

ij

x c
xφ

σ
−

= −                              (3.5) 

where  is number of hide layer neural cell.  is center 
of RBF. 

m ijc

ijσ  is width of RBF. 

RBF neural networks can approximates any real continuous 
function on a compact set to arbitrary accuracy. So the 
controller can reach the control cost function to arbitrary 
accuracy by neural network’s learning the external 
disturbances and system parameter errors. 

3.2 DNSMC 

Theorem 1: For the rigid   links robot which can be 
described by (2.1), if the DNSMC manifold is selected as 
(2.5), and the DNSMC control is designed as follows, then 
the controlled system tracking error will converge to zero in 
finite time. 

n

0 1 2u u uτ = + +                                    (3.6) 

where 

0 0 0 0( ) ( , ) ( )ru M q q C q q q G q= + +&& & &                        (3.7) 

/ 1
1 0 0 0( ) ( ) ( , )q pqu M q e M q e e C q q

p
α β −= − − −& & s&                (3.8) 

2 21 1 22 2 2

1 1 2 2

[ ( ), ( ), , ( )]

[ ( ), ( ), , ( )]

T
n n

T
n n

u u s u s u s

h s h s h s

=

= −

L

L
                       (3.9) 

( )i ih s  is RBF neural network output of the th joint. i

The cost function of the th joint neural network is as 
follow: 

i

2 21 1 0
2 2i i iE s s= + →&                              (3.10) 

According to gradient descent algorithm, the weights 
differential of RBF neural network is computed as follows: 

2

2 2

i i i i
ij i

ij i ij i ij

E E u ss
u u

ω λ λ λ 2iu
ω ω ω
∂ ∂ ∂ ∂ ∂

= − = − = −
∂ ∂ ∂ ∂ ∂

&
& &               (3.11) 

2

2 2

i i i i
ij i

ij i ij i ij

E E u sc
c u c u

λ λ λ 2ius
c

∂ ∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂
&

& &                (3.12) 

2

2 2

i i i i
ij i

ij i ij i ij

E E u ss
u u

σ λ λ λ 2iu
σ σ σ
∂ ∂ ∂ ∂ ∂

= − = − = −
∂ ∂ ∂ ∂ ∂

&
& &               (3.13) 

where, λ  is learning rate. Due to 

2

( )i
ii

i

s b
u

∂
=

∂
&                                      (3.14) 

2 22 exp( / ) ( )i
i ij ij ij i

ij

u s c σ φ
ω
∂

= − − =
∂

s                     (3.15)  

2 2 22 2 exp( / )( ) /i
ij i ij ij i ij ij

ij

u s c s c
c

ω σ σ∂
= − − −

∂
 

22 ( )( ) /ij ij i i ij ijs s cω φ= − σ                            (3.16)  

2 22 32 2 exp( / ) /i
ij i ij ij i ij ij

ij

u s c s cω σ σ
σ
∂

= − − −
∂

 

2 32 ( ) /ij ij i i ij ijs s cω φ= − σ                            (3.17)  

The learning algorithm of neural network weights is as 
follows: 

( ) ( 1) [ ( 1) ( 2)]ij ij ij ij ijk k k kω ω ω γ ω ω= − + + − − −&             (3.18) 

( ) ( 1) [ ( 1) ( 2)]ij ij ij ij ijc k k c c k c kω γ= − + + − − −&              (3.19) 

( ) ( 1) [ ( 1) ( 2)]ij ij ij ij ijk k k kσ σ σ γ σ σ= − + + − − −&             (3.20) 

where, γ  is inertia coefficient.   

Remark: in (3.14),  is the element of iib 1
0 ( )M q− . Since  

/ 1

/ 1

1
0 0 0

/ 1

diag( )

( ) diag( )

( )( ( , ) ( ) ( ))

diag( )

q p

q p
r

r

q p

qs e e e e
p

qq q e e e
p

M q C q q G q t q
qe e e
p

α β

α β

τ ρ

α β

−

−

−

−

= + + ⋅

= − + + ⋅

= − − + −

+ + ⋅

& && & &

&& && & &

& &

& &

&

       

Substituting (3.6) into above, then 
1

0 2( )( ( ))s M q u tρ−= +&  

Suppose that  is the element of matrix ijb 1
0 ( )M q− , then 

2 2
1,

( )
n

i ii i ij j i
j j i

s b u b u tρ
= ≠

= + +∑&                   

2 2

( ) ( )i i
Ii

i i

s s b
u u

∂ ∂
= =

∂ ∂
& &                  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4340



3.3 Stability and Convergence Analysis 

Define a Lyapunov function candidate 

2 2

1 1 1

1 1(
2 2

n n n

i i i i
i i i

V V E s s
= = =

= = = + ≥∑ ∑ ∑ & ) 0                       (3.21) 

The derivative of the Lyapunov function can be written as 

1 1 1

(
n n m

ij ij iji i i
i

i i j ij ij ij

cV V VV V g z z
t t c t
ω σ

ω σ= = =

∂ ∂ ∂∂ ∂ ∂
= = + + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑∑& & &) ( )           (3.22) 

where, ( )g z z&  represents the derivative of V  with respect 
to the variables other than the controller parameters, and it 
can be easily proven that  if  and .  ( ) 0g z z →& 0s → 0s →&

Putting (3.11), (3.12), (3.13) into (3.22), then 

2 2 2

1 1

[( ) ( ) ( ) ] ( )
n m

i i i

i j i i i

V V VV
c

λ
ω σ= =

∂ ∂ ∂
=− + + +

∂ ∂ ∂∑∑& &g z z                (3.23) 

Therefore, the controlled system is stable if the learning gain 
is large enough to make the derivative of the Lyapnov 
function negative definite. Fortunately, the stability of the 
system can be easily achieved by increasing the amplifier 
gain of . However, increasing the amplifier gain of  too 
much is harmful to controlled system accuracy. 

e e

In order to analyze the convergence of tracking error, define 
a Lyapnov function 

2

1

1 1 0
2 2

n
T

e
i

V e e e
=

= = >∑ i

i i&

/

) 0i

⎤
⎥
⎦

                               (3.24) 

then  

1

n
T

e
i

V e e e e
=

= =∑& &                                   (3.25) 

Putting (2.5) into (3.25), then 
/( )T T q p T T T q p

eV e e e s e e e s e e e eα β α β= = − − = − −& &                (3.26) 

Considering , then 0s→

/ 2 ( )/

1

(
n

T T q p p q p
e i

i

V e e e e e eα β +

=

≈− − =− + <∑&                   (3.27) 

Therefore, . The tracking error is convergent, and the 
controlled system has not steady error. 

0e→

The time of tracking error being zero can get by solving 
following equation: 

/q pe e eα β=− −&                                   (3.28) 

Ii is obvious that the solution of (3.28) is definite. So the 
controlled system can converge in finite time. 

4. SIMULATIONS AND DISCUSSIONS 

In order to verify above algorithm, a two-joint robot 
simulated in reference [2] is selected to be applied, whose 
dynamics equation is as follow: 

11 2 12 2 1 1 1 2

21 2 22 2 2 1 2

( )    ( ) ( , )
( )    ( , )

a q a q q q q g
a q a q q q g

λ
λ

⎡ ⎤ ⎡ ⎤ ⎡
+⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣

&&

&&
 

12 2 1 12 2 1 1 1

12 2 2 2 2

( )     2 ( )
       0               ( )

q q q q q
q q q

β β τ
β τ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

& & &

& &
 

where 
2 2

11 2 1 2 1 2 2 2 1 2 2 1( ) ( ) 2 cos( )a q m m r m r m r r q J= + + + +
2

12 2 2 2 2 1 2 2( ) cos( )a q m r m r r q= +

    
 

2
22 2 2 2a m r J= +  

12 2 2 1 2 2( ) sin( )q m r r qβ =  

1 1 2 1 2 1 2 2 2 1 2( , ) (( ) cos( ) cos( ))q q m m r q m r q qλ = + + +

2 1 2 2 2 1 2( , ) cos( )q q m r q qλ = +

    
 

The nominal parameters of the controlled system are 
selected as follow: 

1 1r m= , ,2 0.8r m= 1 2 5J J kg m= = ⋅ , , . 1 0.5m k= g 2 1.5m k= g

The parameters of sliding mode manifold are 3p = , 5q = , 
1 2 1α α= = , 1 2 1β β= = . 

Suppose that the initial state of the controlled system is 
1 1q = rad, 1 0q =& rad/s, 2 1.5q = rad, rad/s. A RBF 

neural network  includes 1 input cell, 3 hide cell, 1 output 
cell. The expected trajectories are as follows: 

2 0q =&

4
1 1.25 (7 / 5) (7 / 20)t t

rq e e− −= − +  

4
2 1.25 (1/ 4)t t

rq e− −= + − e

q

 

When system parameter errors and external disturbances are 
selected as ( ) 0.1 0.2 0.3t qρ = + + & , the simulation are shown in 
Fig. 2 by GFTSM. The simulations are shown in Fig.3 by 
DNSMC, whose learning rate 0.6λ = , inertial coefficient  

0.1γ = , initial value of RBF network weights are 
[0.5,0.5,0.5]ω = , the initial center value of RBF are 
[ 0C .5,0,0.5]= − , the initial width value of RBF are [1,1,1]σ = . 

qr1(t), q1(t), u1(t) in Fig. 2 and Fig. 3 represent the expected 
trajectory, actual running trajectory and controller output for 
the joint 1 respectively, and qr2(t), q2(t), u2(t) represent the 
expected trajectory, actual running trajectory and controller 
output for the joint 2 respectively.  

When the DNSMC controller is fixed, but the system 
parameter errors and external disturbances are increased as 

( ) 1 2 3t q qρ = + + & , the simulation are shown in Fig. 4. 

When the system parameter errors and external disturbances 
are unknown, Fig. 3 shows that simulation results by 
DNSMC are better than one by GFTSMC shown in Fig. 2, 
and chattering is eliminated. When system parameter errors 
and external disturbances are increased, Fig. 4 shows that 
the trajectory tracking errors have the same result as Fig. 3, 
only the controller output are stronger than that in Fig.3. So 
the DNSMC controller has strong robustness and is suitable 
to trajectory tracking control of multi-link robot with 
uncertain system parameter errors and external disturbances. 
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Fig. 2 Simulation by GFTSMC 

 
Fig. 3 Simulation by DNSMC 

 
Fig. 4 Simulation by DNSMC in stronger disturbances 

5. CONCLUSION 

This paper presents a new method for trajectory tracking 
control of multi-link robots with uncertain system parameter 
errors and external disturbances. This method uses a global 
fast terminal sliding mode control manifold, which 
guarantees that the controlled system can reach the manifold 
and equivalent point in finite time. A RBF neural network is 
utilized to learn the boundary of system parameter errors and 
external disturbances for every joint. The switching gain of 

sliding mode control can be automatically adjusted by RBF 
neural networks learning according to model error and 
external disturbance. Chattering is also eliminated. 
Simulation verifies the validity of the algorithm, but this 
method need a short time to learn system parameter errors 
and external disturbances before it runs well. How to shorten 
this learning time needs to study in the future. 
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