

Real Time Balancing of Complex Disassembly Lines

L. Duta*. F. G. Filip,**
I. Caciula***

*Computer Science Department, Valahia State University, Targoviste, 130065
ROMANIA (Tel: +40-723613305; e-mail: duta@valahia.ro).

**The Romanian Academy and The National Institute forR&D in Informatics (ICI), Bucharest, ROMANIA (e-mail:
ffilip@acad.ro ,filipf@ici.ro)

*** Control Engineering Student, Valahia State University, ROMANIA
(e-mail: viorel2004_ro@yahoo.com)

Abstract: The objective of the Disassembly Line Balancing Problem (DLBP) is to use the resources of the
disassembly line as efficiently as possible while meeting the demand. This issue is hard to attempt due to
the inherent uncertainties that occur during the process. Starting from real industrial examples, this article
presents a simple-to-apply method to accomplish the balancing of complex disassembly lines in real time.
The basic idea of this method is to use mixed integer quadratic programming and branch and cut algorithm
on the disassembly precedence graph. Results of simulations for disassembling two industrial products are
presented

1. INTRODUCTION

Disassembly processes decompose products into parts or
subassemblies in view of their reuse. They may be viewed as
complex processes because are subject to various and
unexpected perturbations and uncertainties caused by the
used end-of-life state of the product.

The most difficult problem in a disassembly system is that a
disassembly operation can fail any time because of the
product or component degradation. In this case we have to
choose between applying an alternative destructive
disassembly operation (dismantling), and abandoning the
disassembly procedure.

Once a perturbation occurs, a fast computation has to be
made so as to assure the optimal assignment of the tasks to
workstations. The decision must be taken in real time since in
a used product the components states are not known from the
beginning of the process and they could influence the flow of
the process and imbalance the line. That is why the problem
of Disassembly Line Balancing in Real time (DLBP-R) is a
very complex and challenging one.

Balancing a disassembly line in real time means to equalize
the station loads during the disassembly process by taking
into account the tasks that have not been accomplished yet
and the appropriate disassembly strategy (destructive or not)
associated to these tasks so as complete the disassembly
processing during the rest of the working time.

To accomplish the DLBP-R, the Mixed Integer Quadratic
Programming (MIQP) method is proposed to be utilised and
the results on two industrial applications are described. The
remaining part of this paper is organised as it follows.

First the mathematical model of the DLBP is proposed. Next
the main concepts and XPRESS-MP software product are
reviewed. Two case studies taken from literature and the
corresponding experimental results are presented in sections
4 and 5, respectively.

2. MATHEMATICAL MODEL FORMULATION

2.1. Preliminaries

What follows will be based on the following assumptions:

• the Disassembly Line is single-product and all
the operations to be performed and their
precedence relations may be represented by a
single precedence graph, where nodes represent
generic operations.

• two values of the operative time are associated to
each operation: a disassembly time and a
dismantling time. Operative times take the zero
value in the case of a component missing in the
used product.

• the architecture of the line is flow-shop
• a workstation can accomplish both destructive

and non-destructive operations
• the number of workstations is fixed
• the flow on the line is continuous since the

supply of the product is considered infinite

The following notations are used in this paper:

n number of workstations
m number of tasks
I index of a workstation

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 913 10.3182/20080706-5-KR-1001.2809

j or k index of a task

cyt cycle time

jt operational disassembly time of the
task j

'
jt operational dismantling time of the task

j
f , F objective function

iW workstation i

im number of tasks accomplished on
workstation i

2.2. Objective function

Considering the balancing function presented in (Duta et al,
2005) which gives the difference between the operational
times and the cycle time the next formula gives one objective
function to be minimised:

Minimizing the value of this function leads to a well-
balanced disassembly line (Rekiek and Delchambre, 2006).
In a static approach of the disassembly process the cycle time
is defined as the operational time of the slowest workstation
on the line (Nof, 1997; Gungor and Gupta, 1999).

()
max

i
i

cy jW j tasks on W
t t

∈

= ∑ (2)

A problem occurs in the case of the real time disassembly:
the operation can be fulfilled or not or there are destructive
operations to accomplish. The aim is to find the form of the
objective function in real time. A form of this function was
proposed in (Duta et al, 2007). In the mathematical model of
the DBLP-R the form of the objective function is given by
the equation (3). The aim is to obtain the minimal value of
the cycle time:

()
2

1 1
. . . 1 . '

n m

cy ij j j j j j
i j

F t t tϕ ψ θ θ
= =

⎡ ⎤
⎡ ⎤= − + −⎢ ⎥⎣ ⎦

⎣ ⎦
∑ ∑

(3)

Where:

ijϕ is the assignment coefficient that defines assignment of
tasks to stations for different products. It may take the
following values:

1ijϕ = , when the operation Oj can be assigned to
workstation Wi

0ijϕ = , otherwise

jψ is the state coefficient that defines which operation has
already been performed and which one is still to be done. It
may take the following values:

1jψ = , if operation Oj has not still been performed

0jψ = , otherwise.

jθ is the decision coefficient that defines the modality of
performance for the operations. It may take the following
values:

1jθ = when the operation Oj is to be performed without
damaging the product

0jθ = when the operation Oj has to be performed in a
destructive way on product

2.3. Constraints

Before the beginning of the disassembly process when no

operation have been done yet, jψ =1 1..j m∀ ∈ .
If the cycle time is considered a positive sum and its formula
from equation (2) is taken into account, it means that this
variable is an upper bound on the workload assigned to each
workstation. Therefore, for every 1..i n= the following
constraint is valid:

Every task is performed on a single workstation. A task
cannot be divided between workstations. Equation (5)
represents the non divisibility constraint.

1
1 1 . .

n

i j
i

j mϕ
=

= ∀ =∑ (5)

If task k is to done before task j then it cannot be assigned to
a station downstream from task j (Nof, 1997), the precedence
constraint is obtained.

2

1

i

i

mn

cy j
i j W

f t t
= ∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ (1)

()
1

1 '
m

ij j j j j j cy
j

t t tϕ ψ θ θ
=

⎡ ⎤+ − ≤⎣ ⎦∑

(4)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

914

1 1
0

n n

i k i j
i i

i iϕ ϕ
= =

⋅ − ⋅ ≤∑ ∑ (6)

All coefficients from the previous paragraph may take binary
variables. A possible combination of the three binary
coefficients is given in the Table 1.

 Table 1.

No
ijϕ

jψ

jθ

Meaning

1 1 0 0 Operation j made in a
destructive way on the
workstation i

2 1 0 1 Operation j made in a non-
destructive way on the
workstation i

3 1 1 0 Operation j has to be made in a
destructive way on the
workstation i

4 1 1 1 Operation j has to be made in a
non-destructive way on the
workstation i

Next constraint expresses the fact that a task can be done in
two ways: destructive or not.

{0 ,1}jθ ∈
(7)

Equation (3) together with equations (4), (5), (6), and (7)
form a linear mathematical model. In this model all variables
(excepting the cycle time and the operational times) are
binaries.

3. MIXED INTEGER QUADRATIC PROGRAMMING

3.1. The algorithm

The optimisation problem consists in calculating the minimal
cycle time from the function F (equation (3)) taking into
account the four linear constraints above. The input size of
the problem is the length of a binary representation of the
problem data.

In fact, we have to deal with a real time decision problem
(Filip, 2005, 2007).

The three binary coefficients defined in the previous section
can be considered of two types: fixed and variable. The
assignment coefficient is known and given at the beginning
of the process. The state coefficient and the decision
coefficient are both known only during the disassembly
process. They take real time values.

Therefore, the optimisation problem is reduced to a decision
problem for which the validity of the solution can be checked
in time that is polynomial in the size of the input.

For computing, a branch-and-cut algorithm is run. The
branch and cut algorithm combines the branch and bound and
the cutting plane methods. Branch-and-bound algorithm
builds a search tree and maintains a list of sub-problems of
the linear problem relaxation that still need to be considered.
The idea is to develop better upper bounds on the integer
program until an optimal solution is determined. A cutting
plane is a linear constraint that reduces the space of solution
search during the optimisation procedure. (Brucker and
Knust, 2006).

Applying this method, in each node of the search tree,
separation routines may be called to improve the quality of
the linear relaxation in that node. The cutting planes serve to
keep the size of the search tree small, while branching may
prove useful when cuts are difficult to find or are not
effective in improving the current solution (Gueret et al,
2002). The steps of the branch-and-cut algorithm are the
following:

Step 1
Initialize the list of the initial linear programming relaxation

Step 2
Take an instance from the previous list.
If the list is empty, the best known feasible solution is
optimal. In the event that no feasible solution has been found,
the problem is infeasible

Step 3
Complete pre-processing

Step 4
Use heuristics to try to find an integral solution. If a feasible
solution with value less than the upper bound is found, then
update the value of the upper bound

Step 5
Solve the linear problem

Step 6
If the problem is infeasible than fathom the node and return
to Step 2
If the solution value is greater than or equal to the upper
bound, fathom the node and return to Step 2
If the solution is integral, update the upper bound (the value
of the cycle time), fathom the node and return to Step 2

Step 7
Attempt a better solution in respect of the input criteria. If
successful, return to Step 3

Step 8
Generate cutting planes. If successful, add cutting planes to
the linear problem and return to Step 5

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

915

Step 9
Branch. Append the resulting sub-problems to the list of the
linear programming relaxation and return to Step 2.

3.2. Implementation

The previous algorithm is used in a particular case, as the
objective function is not a linear one. The proposed solving
method is to apply integer programming on a quadratic
function with linear constraints.

Quadratic Programming is the name given to the problem of
finding the minimum (or maximum) of a quadratic function
of the decision variables subject to linear equality/inequality
constraints.

Mixed Integer Quadratic Programming is a quadratic
programming method in which the decision variables take
discrete values. In other words, is an integer programming
method applied on a quadratic objective function (Pangborn,
2002)

To run simulations, the XPRESS-MP software was utilised.
This is a linear and integer programming optimiser which has
been programmed to handle a broad range of optimisation
problems. His quadratic module allows the optimisation of a
quadratic function. The main advantage of this software is
that the user works in the Console Mode and he can modify
the code of the program to suit the data of the problem.

The XPRESS optimiser uses Branch and Bound technique to
solve mixed integer programming problems. The relaxed
problem is a linear programming problem and can be solved
by exploring the tree of solutions using the cut-off value
method. When a better value of the solution is found in a
solution node, this can act as a cut-off for outstanding nodes
(Dash, 2007). Simulations performed with XPRESS
optimizer give the number of iterations and cuts made in the
solution space.

4. TWO CASE STUDIES

The mathematical model obtained in the section 2 is used to
simulate the disassembly line balancing for two types of
products: a unit of voice recognition (Kizilkaya and Gupta,
2006), and a cell phone (Gupta et al, 2004). The computing
times and the results are compared.

For the first product, operational disassembly times are given
in the Table 2 and the precedence graph in the figure 1. The
disassembly line has five workstations.

The second product is a Samsung SCH-3500 cell phone
which data is presented in (Gupta et al, 2004). Operational
disassembly times are given in the Table 3 and the
precedence graph in the figure 2. In this case the disassembly
line is served by nine workstations.

The complete assembly of the voice recognition unit consists
of 18 components including the pouch and the belt
subassembly (Kizilkaya and Gupta, 2006).

Table 2 - Parts of the voice recognition unit

Part
No

Part
jt (s) '

jt (s)

1 Pouch 15 13
2 Belt 15 14
3 Antenna 17 18
4 Lower Audio Cable 20 18
5 Battery 14 12
6 Lower Body Casing 5 6
7 Upper Body Casing 5 7
8 Battery Holder 17 16
9 Battery Release 21 19

10 Flex Rubber 18 16
11 Body Casing Screws 20 21
12 Battery Screws 14 13
13 Battery Springs 12 10
14 Power Button 17 16
15 Power Button Screws 14 15
16 Power Button Plate 13 14
17 PC Board Assembly 17 16
18 Cisco RF Card 15 17

Fig.1. Precedence graph of the voice recognition unit

To perform simulation, operational dismantling times '

jt are
also needed. The program decides in real time which
operation is made on which workstation and in what manner
so as to obtain the balance of the line.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

916

The precedence graphs were obtained from text files which
contain the precedence relations between tasks and drawn
with the help of Mathematica Software.

Fig.2. Precedence graph of the cell phone

In the case of the cell phone there are 25 subassemblies. The
disassembly is supposed to be complete. The operational
times are experimentally determined.

Table 3 - Parts of the cell phone

Part
No

Part
jt (s) '

jt (s)

1 Antenna 3 2
2 Battery 2 1
3 Antenna Guide path 3 4
4 Bolt A 10 11
5 Bolt B 10 12
6 Bolt 1 15 14
7 Bolt 2 15 16
8 Bolt 3 15 12
9 Bolt 4 15 16

10 Clip 2 3
11 Rubber Seal 2 4
12 Speaker 2 2
13 White Cable 2 2
14 Red/Blue Cable 2 1
15 Orange Cable 2 3
16 Metal Top 2 3
17 Front Cover 2 1
18 Back Cover 3 2
19 Circuit Board 18 15
20 Plastic Screen 5 7
21 Keyboard 1 3
22 LCD 5 2
23 Sub-keyboard 15 14
24 Internal IC Board 2 1
25 Microphone 2 1

5. EXPERIMENTAL RESULTS

The program was run on an AMD Athlon 64 computer, at 2
GHz and 512 RAM.

Two cases are considered when performing the simulation:
the static case which is before the beginning of the
disassembly process and the dynamic case - during the
development of the disassembly tasks. The program also
gives the type of disassembly operation: destructive (d) or not
(nd).

For the first product with 18 subassemblies the results are
presented as it follows. Assignment of the tasks before
starting the disassembly process is:

Workstation 1: 2d 3nd 4d (duration: 49)
Workstation 2: 1d 5d 11nd 6nd (duration: 50)
Workstation 3: 7nd 8d 15nd 14d (duration: 51)
Workstation 4: 12d 13d 16nd 18nd (duration: 51)
Workstation 5: 9d 10d 17d (duration: 51)
Minimum cycle time: 51

Assuming that the tasks 1, 2, 3, 4, 5, 11, 12 are already done,
the rebalancing of the line at the moment that is made, looks
like it follows:

Workstation 1: (duration: 0)
Workstation 2: 6nd 7nd 13d 15nd (duration: 34)
Workstation 3: 14d 16nd (duration: 29)
Workstation 4: 9d 18nd (duration: 34)
Workstation 5: 10d 17d (duration: 32)
Minimum cycle time: 34

The computing time was 0.1s in both cases. The branch and
cut algorithm generated 27 iterations with 1436 cuts in the
plan of solutions.

For the second product with 25 components the results are
the following (static and dynamic case respectively):

Workstation 1: 1d 2d 5nd (duration: 13)
Workstation 2: 6d (duration: 14)
Workstation 3: 3nd 8d (duration: 15)
Workstation 4: 7nd (duration: 15)
Workstation 5: 9nd 14d (duration: 16)
Workstation 6: 13d 15nd 16nd 17d 18d 20nd 21nd 22d
(duration: 16)
Workstation 7: 19d (duration: 15)
Workstation 8: 4nd 10nd 11nd 12d (duration: 16)
Workstation 9: 23d 24d 25d (duration: 16)
Minimum cycle time: 16

Other results are obtained by a simulation made when the
tasks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are already
accomplished:

Workstation 1: (duration: 0)
Workstation 2: (duration: 0)
Workstation 3: (duration: 0)
Workstation 4: (duration: 0)
Workstation 5: (duration: 0)
Workstation 6: 15nd 16nd 13d 14d 18d (duration: 8)
Workstation 7: 19d (duration: 15)
Workstation 8: 17d 20nd 21nd 22d 25d (duration: 10)
Workstation 9: 23d 24d (duration: 15)
Minimum cycle time: 15

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

917

For the second example the computing time was of 4.3s after
54 iterations and 12684 cuts.

6. CONCLUSIONS

A new model to accomplish the real time balancing of a
disassembly line is presented in this article. The method is
based on the branch-and-cut algorithm and Mixed Integer
Quadratic Programming. The results of simulations on two
end-of-life manufactured products show that the
computational time is very good for products with less then
50 subassemblies. Moreover, the method takes into
consideration the disassembly manner: destructive or not.

The obtained values of the cycle time and the balancing of
the line using Mixed Integer Quadratic Programming are
better than in the case of applying the Greedy algorithm, the
heuristic research or the evolutionary algorithms. (Kizilkaya
and Gupta, 2006), (Gupta et al, 2004), (McGovern and
Gupta, 2007).

Further work will be concentrated on the revenues
maximization of the end-of-life components in accordance
with the components demand on a balanced disassembly line.

REFERENCES

Brucker P., Knust S. (2006) Complex Scheduling, Springer-

Verlag Berlin
Dash (2007), and Associates Inc, Xpress Optimizer

Reference Manual, Dash Optimization Ltd., Canada
Duta, L., Filip, G. F., Henrioud J. M. (2005) Applying equal

piles approach to disassembly line balancing problem,
Proceedings of the 16th IFAC World Congress, Prague,
July 2005, on CD

Duta L., Henrioud J.M., Caciula I, (2007) A Real Time
Solution to Control Disassembly Processes, Proceedings
of the 4th IFAC Conference on Management and Control
of Production and Logistics, MCPL ’07 , Sibiu,
September 2007

Filip, F.G. (2005). Decizie asistata de calculator (Computer
Aided Decision), Editura Tehnica, Bucuresti,

Filip F. G. (2007). Sisteme support pentru decizii (Decision
Support Systems), Editura Tehnica, Bucuresti,

Gueret C, Prins C., Sevaux M. (2000) Programmation
Linéaire, Ed. Eyrolles, Paris.

Gungor A, Gupta S (1999) A Systematic Solution Approach
to the Disassembly Line Balancing Problem,
Proceedings of the 25th International Conference on
Computers and Industrial Engineering, pp. 70-73, 1999

Gupta S. M., Erbis E., McGovern S.M. (2004) Disassembly
Sequencing Problem: A case study of a cell phone,
Proceedings of SPIE Vol. 5583, pp 43-52

Kizilkaya E.A., Gupta S. M, (2006) Dynamic Kanban System
for Disassembly Line Applied to an Industrial Voice
Recognition Client Unit, Proceedings of SPIE, Vol 6385,
pp 638503-1, 638503-8

McGovern S.M., Gupta S.M., (2007) A balancing method
and a genetic algorithm for disassembly line balancing,
European Journal of Operational Research, Vol. 179,
issue 3, pp 692-708, June 2007

Pangborn G. (2002) A Branch-and-Cut-and-Price
implementation for airline crew scheduling, Thesis,
Cornell University

Nof S. (1997) Industrial Assembly, Chapman&Hall, 1997.
Rekiek B, Delchmbre (2006) Assembly Line Design,

Springer-Verlag London, 2006
XPRESS-MP Release Version 2007, license available at

http://www.dashoptimization.com/

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

918

