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Abstract: In this work, compex dynamical networks of chaotic solid-state Nd:YAG lasers
(used as nodes) are arranged in coupled star arrays and identical synchronization is achieved.
We consider two cases of interest: i) synchronization without master Nd:YAG laser (where
the collective behavior is a new chaotic state) and ii) with master Nd:YAG laser (where the
collective behavior is imposed by the dynamics of the master node to multiple slave nodes).
Synchronization in complex networks is achieved by appealing to complex systems theory.
Synchronization of chaotic Nd:YAG lasers in the complex network is shown in the amplitude of
the electronic field of each laser.

1. INTRODUCTION

Chaos synchronization has received a special attention
during the last years, see e.g. (Special Issue [2000],
Wu and Chua [1993], Cruz-Hernández and Nijmeijer
[2000], Sira Ramírez and Cruz-Hernández [2001], Cruz-
Hernández [2004], López-Mancilla and Cruz-Hernández
[2006], Aguilar-Bustos and Cruz-Hernández [2006], Pecora
and Carroll [1990], Feldmann et al. [1996], Nijmeijer
and Mareels [1997], López-Mancilla and Cruz-Hernández
[2005], and Posadas-Castillo et al. [2006]). This property
that originally was searched and used for two coupled
chaotic oscillators in different applications (Pikovsky et
al. [2003] and Boccaleti et al. [2002]), at the present
time, synchronization is required in complex dynamical
networks (with many coupled oscillators) see e.g. (Special
Issue [2007], Bar-Yam [1997], Pogromsky and Nijmeijer
[2001], and Posadas-Castillo et al. [2007b]), this topic has
received a great interest from the scientific community.
Particularly interesting is the case where the connected
oscillators (nodes) have chaotic or hyperchaotic dynamics.
Synchronization in complex dynamical networks is sup-
posed to have direct applications in different fields, see e.g.
(Strogatz [1993], Blasius [1999], Gamarra et al. [2001],
Posadas-Castillo et al. [2008], and Yamapi et al. [2007]).
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A specific array of nodes, where a single node (called com-
mon or central) is interconnected with multiple nodes is
recognized as an essential configurations in different fields
of the science and technology, many practical systems -
in different areas of the science- have been observed and
characterized by this type of structures, for example in:
computer sciences, economy, engineering, biology, social
sciences, etc. In particular, some examples are seen in
communication systems (communication among networks
with multiple users) (Chow et al. [2001]), in a network
of computers (server connected to a set of terminal com-
puters), in manufacture cells (arm robots working like
team), multi-robot systems, etc., where the information
from a central node is used by a group of terminal nodes,
and the simultaneous communication from a single node
to multiple nodes is required. This particular coupling
configuration among nodes constitutes a kind of complex
dynamical networks, the so-called star coupled networks.
Therefore, there exists a strong motivation in trying new
coupling topologies that allow to achieve synchronization
for many coupled chaotic nodes.

There exist two principal groups in complex dynamical
networks (according to the form in that the nodes are cou-
pled or connected): i) regular complex networks (which fol-
low a pattern defined in the form of being connected), for
example: globally coupled networks, nearest-neighbor cou-
pled networks, and star coupled networks (Wang [2002]),
and ii) irregular complex networks (without a pattern
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defined in the form of being connected) (Wang [2002b]),
examples are: random networks, small-world, scale-free
networks, etc.

In this work, solid-state Nd:YAG (Neodymium doped:
Yttrium Aluminium Garnet) lasers (Terry [2002]) will be
used like chaotic nodes, to construct the arrangements in
star coupled networks to be synchronized. Synchronization
means that the irregular time evolution of one laser -either
in the optical power-, can be exactly reproduced by other
lasers that conform the complex dynamical networks.
In particular, five chaotic Nd:YAG lasers are arranged
in coupled star arrays and identical synchronization is
achieved in two cases: with and without master chaotic
Nd:YAG laser. Synchronization in the dynamical networks
is achieved by appealing to results from complex systems
theory. Synchronization in the dynamical networks of
chaotic Nd:YAG lasers is shown in the amplitude of the
electronic field of each laser.

The rest of this work is organized as follows: In Section
2, we describe a mathematical model for a single Nd:YAG
laser, to be used as fundamental node to construct dy-
namical networks. In Section 3, we give a brief review on
complex dynamical systems and their synchronization. In
Section 4, we show synchronization in dynamical networks
of five chaotic Nd:YAG lasers, by using the star coupled
configuration, we show two cases (with and without master
Nd:YAG laser). Finally, some conclusions are given in
Section 5.

2. DYNAMICS OF A ND:YAG LASER

In this section, we present the chaos generator (Nd:YAG
laser) used as fundamental node in the dynamical networks
to be synchronized. As in (Posadas-Castillo et al. [2008]),
we take a modification of the equations suggested in
(Terry [2002]) for a single solid-state Nd:YAG laser with
a sinusoidally modulated loss, described by the following
state equations

Ẋ = (F − (α0 + α1 cos (ωt)))X, (1)

Ḟ = γ
¡
A0 − F − FX2

¢
,

where X(t) and F (t) constitute the states, physically rep-
resent the amplitude of the electronic field of the laser and
its gain, respectively. The parameters α0 and A0 denote
the rates of intra cavity loss and pump strength, respec-
tively. While, α1 represents the strength of modulation of
the intra cavity loss at a frequency ω, and γ is a ratio of
the time scale of light in the laser cavity, and the upper
level spontaneous emission lifetime of the lasing media.

The Nd:YAG laser is modulated with a depth α1 relative to
its mean losses α0. In absence of modulation, the Nd:YAG
laser is stable and exhibits damped oscillations to their
fixed-point values. The laser under consideration is of class
B, where only the electronic field and gain variables need
be considered. The laser is subjected to identical periodic
modulations of the loss and may become chaotic in certain
parameter values.
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Fig. 1. Projection of chaotic attractor of Nd:YAG laser on
the (X,F )-plane.

We performed our simulations using γ = 10−2 to avoid
stiffness problems that arise with smaller values of γ. It
is known that for suitable values of parameters α0 and
α1, the Nd:YAG laser (1) exhibits chaotic oscillations.
In Figure 1 is shown the projection of chaotic attractor
on the (X,F )-plane; where we have taken the following
set of parameter values: α0 = 0.9, α1 = 0.2, A0 = 1.2,
w = 0.045t, and γ = 0.01.

3. REVIEW ON SYNCHRONIZATION OF COMPLEX
DYNAMICAL NETWORKS

3.1 Complex dynamical networks

A set interconnected of nodes can be defined as a complex
dynamical network, each node is considered like basic
element with behavior depending of the nature of the
network. As in (Wang [2002] and Wang [2002b]), we
consider a complex dynamical network composes of N
identical nodes, linearly and diffusively coupled through
the first state of each node. Each node constitutes a n-
dimensional dynamical system, described as follows

ẋi = f(xi) + ui, i = 1, 2, . . . ,N, (2)

where xi = (xi1, xi2, ..., xin)
T ∈ Rn is the state vector

of the node i, ui = ui1 ∈ R is the input signal of the node
i, and is defined by

ui1 = c
NX
j=1

aijΓxj , i = 1, 2, . . . , N, (3)

the constant c > 0 represents the coupling strength, and
Γ ∈ Rn×n is a constant 0-1 matrix linking coupled states.
Assume that Γ = diag (r1, r2, . . . , rn) is a diagonal matrix
with ri = 1 for a particular i and rj = 0 for j 6= i. This
means that two coupled nodes are linked through their
i − th state. Whereas, A = (aij) ∈ Rn×n is the coupling
matrix, which represents the coupling configuration in (2)-
(3). If there is a connection between node i and node j,
then aij = 1; otherwise, aij = 0 for i 6= j. The diagonal
elements of A are defined as

aii = −
NX

j=1, j 6=i
aij = −

NX
j=1, j 6=i

aji, i = 1, 2, . . . , N.

(4)
Suppose that the dynamical network (2)-(3) is connected
in the sense that there are no isolated clusters. Then,
A is a symmetric irreducible matrix. In this case, zero
is an eigenvalue of A with multiplicity 1 and all the
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other eigenvalues are strictly negatives (Wang [2002]
and Wang [2002b]). Synchronization state in complex
dynamical networks (2)-(3), can be characterized by the
nonzero eigenvalues ofA. The complex dynamical network
(2)-(3) is said to achieve (asymptotically) synchronization,
if (Wang [2002b]):

x1(t) = x2(t) = ... = xN (t), as t→∞. (5)
The diffusive coupling condition (4) guarantees that the
synchronization state is a solution, s(t) ∈ Rn, of an isolated
node, that is

ṡ(t) = f (s(t)) , (6)
where s(t) can be an equilibrium point, a periodic orbit, or
a chaotic attractor. Thus, stability of the synchronization
state,

x1(t) = x2(t) = ... = xN (t) = s(t), (7)
of complex dynamical network (2)-(3) is determined by the
dynamics of an isolated node, i.e. the nonlinear function f
(and its solution s(t)), the coupling strength c, the inner
linking matrix Γ, and the coupling matrix A.

3.2 Synchronization conditions

Theorem 1 (Wang [2002] and Wang [2002b]) Consider
the dynamical network (2)-(3). Let

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN (8)
be the eigenvalues of its coupling matrix A. Suppose that
there exists a n × n diagonal matrix D > 0 and two
constants d̄ < 0 and τ > 0, such that

[Df(s(t)) + dΓ]
T
D+D [Df(s(t)) + dΓ] ≤ −τIn (9)

for all d ≤ d̄, where In ∈ Rn×n is an unit matrix. If,
moreover,

cλ2 ≤ d̄, (10)
then, the synchronization state (7) of dynamical network
(2)-(3) is exponentially stable.

Since λ2 < 0 and d̄ < 0, inequality (10) is equivalent to

c ≥
¯̄̄̄
d̄

λ2

¯̄̄̄
. (11)

Synchronizability of dynamical network (2)-(3) with re-
spect to a specific coupling configuration can be charac-
terized by the second-largest eigenvalue (λ2) of A.

3.3 Star coupled networks

The coupling configurations commonly studied in synchro-
nization of complex dynamical networks are the so-called:
globally coupled networks, nearest-neighbor coupled net-
works, and star coupled networks. In this work, we concen-
trate on the synchronization in star coupled networks with
identical nodes (chaotic Nd:YAG lasers). In the sequel,
we will show the particular arrangement of the coupling
matrix for this class of complex dynamical networks.

Let G = (V,E) be a graph, consisting of N = |V | nodes,
with V = V (G) = {v1, v2, . . . , vN} the node set and
M = |E| edges between nodes, where E = E (G) =
{e1, e2, . . . , eM} denotes the link set. We consider complex
dynamical networks where all nodes are connected to a
same node (i.e. the networks have a common or central

node). Such regular coupling networks are reported in the
current literature as star coupled networks (Wang [2002]
and Wang [2002b]). In addition, we assume that all the
nodes are connected and are finite, without self-loops,
and without multiple edges between two nodes. Under the
mentioned assumptions, there are two principal associated
matrices of interest with a graph G (Merris [1994] and
Diestel [2000]): i) The familiar (0,1) Adjacency matrix
A (G): N ×N matrix whose entries aij are given by

aij =

½
1 if (i, j) ∈ E (G) ,
0 otherwise,

where (i, j) ∈ E (G) means that node i connects with
node j, i.e. are adjacent. For a single graph without self-
loops, the adjacency matrix must have 0’s on the diagonal.
And ii) the diagonal matrix, Degree matrix D (G): N ×N
matrix whose entries dij are given by

dij =

½
di if i = j,
0 otherwise,

where di is the degree of the node i, and given that in this
topology, each node i is connected with N − 1 nodes, then
we have d1 = d2 = · · · = dN = N − 1.

The Laplacian matrix of a graph L (G) with N nodes is
a N × N matrix L (G) = D (G) − A (G), with entries lij
expressed as

lij =

(−1 if (i, j) ∈ E (G) ,
di if i = j,
0 otherwise.

Let us now compute the Laplacian matrix L (G) = D(G)−
A(G) for the mentioned networks (star coupled networks),
which corresponds to the coupling matrix Asc, that is

Asc=L (G)=

⎡⎢⎢⎢⎢⎣
N − 1 0 0 · · · 0
0 N − 1 0 · · · 0
...

. . .
. . .
. . .

...
0 0 0 · · · 0
0 0 0 · · ·N − 1

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣
0 1 1 · · · 1
1 0 0 · · · 0
...
. . .
. . .
. . .
...

1 0 0 · · · 0
1 0 0 · · · 0

⎤⎥⎥⎥⎥⎦ ,
thus, the coupling matrix for star coupled networks is given
by

Asc =

⎡⎢⎢⎢⎢⎣
N − 1 −1 −1· · ·−1
−1 0 0 · · · 0
...

. . .
. . .

. . .
...

−1 0 0 · · · 0
−1 0 0 · · · 0

⎤⎥⎥⎥⎥⎦ . (12)

Note that the Laplacian matrix have rows with sum equal
to zero. The eigenvalues of Asc are (0, −1, −1, · · · ,
−N). Therefore, the second largest eigenvalue of Asc is
λ2sc = −1, which is unrelated with the size of the network.

For the star coupled networks, there exists a critical
coupling strength

¡
c ≥ d̄

¢
, so that the complex dynamical

networks (2)-(3) can synchronize.

The star coupled configuration is shown for N nodes in
Figure 2, with the common or central node 1.
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Fig. 2. Star coupled configuration with N nodes.

4. DYNAMICAL NETWORKS OF CHAOTIC ND:YAG
LASERS

We show in this section, synchronization in dynamical
networks, constitute with five coupled chaotic Nd:YAG
lasers by using star configuration.

Based on the mathematical model of Nd:YAG laser (1) as
fundamental node, we construct the complex dynamical
networks with N chaotic Nd:YAG, described by∙

Ẋi1

Ḟi2

¸
=

∙
(Fi2−(α0+α1 cos (ωt)))Xi1+ui1

γ
¡
A0 − Fi2 − Fi2X

2
i1

¢ ¸
, (13)

ui1 = c
NX
j=1

aijXj1, i = 1, 2, ..., N.

In particular, we consider N = 5, and Γ = diag (1, 0),
i.e. we have five chaotic Nd:YAG lasers constituting the
dynamical networks to be synchronized in star topologies.

On the other hand, to satisfy the condition (9), we need
a positive constant d such that zero is an exponentially
stable equilibrium point of the n−dimensional system

Df(s(t)) + dΓ, (14)
which is equivalent to have a single node with self-
feedback, where the positive constant d is such that the
self-feedback term −dz1 could stabilize the following single
node

ż1 = f1(z)− dz1,
ż2 = f2(z),

...
żn = fn(z).

(15)

With the particular value of d = 0.3 we can stabilize
to zero the state (X11) of the single chaotic solid-state
Nd:YAG laser (15), this is illustrated in Fig. 3. With these
values the Theorem 1 guarantees synchronization in the
dynamical networks with five chaotic Nd:YAG lasers.

The specific arrangement for the dynamical networks with
five chaotic Nd:YAG lasers; is defined as follows, for the
chaotic node 1,∙

Ẋ11

Ḟ12

¸
=

∙
(F12−(α0+α1 cos (ωt)))X11+u11

γ
¡
A0 − F12 − F12X

2
11

¢ ¸
, (16)

u11=c

µ
a11X11 + a12X21+

a13X31 + a14X41 + a15X51

¶
, (17)

while the chaotic node 2 is designed as

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (µ sec.)

X
11

Fig. 3. For d = 0.3, the state X11 of a single chaotic
Nd:YAG laser can be stabilized to zero.∙
Ẋ21

Ḟ22

¸
=

∙
(F22−(α0+α1 cos (ωt)))X21+u21

γ
¡
A0 − F22 − F22X

2
21

¢ ¸
, (18)

u21 = c

µ
a21X11 + a22X21+

a23X31 + a24X41 + a25X51

¶
, (19)

the chaotic node 3 is described as∙
Ẋ31

Ḟ32

¸
=

∙
(F32−(α0+α1 cos (ωt)))X31+u31

γ
¡
A0 − F32 − F32X

2
31

¢ ¸
, (20)

u31 = c

µ
a31X11 + a32X21+

a33X31 + a34X41 + a35X51

¶
, (21)

the chaotic node 4 is defined as∙
Ẋ41

Ḟ42

¸
=

∙
(F42−(α0+α1 cos (ωt)))X41+u41

γ
¡
A0 − F42 − F42X

2
41

¢ ¸
, (22)

u41 = c

µ
a41X11 + a42X21+

a43X31 + a44X41 + a45X51

¶
, (23)

and the chaotic node 5 is∙
Ẋ51

Ḟ52

¸
=

∙
(F52−(α0+α1 cos (ωt)))X51+u51

γ
¡
A0 − F52 − F52X

2
51

¢ ¸
, (24)

u51 = c

µ
a51X11 + a52X21+

a53X31 + a54X41 + a55X51

¶
. (25)

4.1 Some star connection topologies with chaotic Nd:YAG
lasers

In the sequel, we present some star connection topologies
with five chaotic Nd: YAG lasers (chaotic nodes) to be
synchronized.

Case 1 (Network without master node): Five uncoupled
chaotic nodes (1) to be synchronized in a dynamical net-
work in star configuration without master node.

A diagram of this topology for synchronization of this
array of lasers is shown in Figure 4, where the coupling
signal Xi1(t) is purely via overlap of the electric field
(Uchida et al. [1999]).

The coupling matrix (12) is given by

Asc =

⎡⎢⎢⎢⎣
−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤⎥⎥⎥⎦ ,
with eigenvalues: λ1 = 0, λ2 = λ3 = λ4 = −1, and
λ5 = −5, with a coupling value c = 1. For this case,
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Fig. 4. Star coupled configuration without master node.

we have used to construct the arrangement, the coupling
signals Xi1, i = 1, 2, ..., 5; designing in this way, the input
signals ui1 = g (Xi1; c), i = 1, 2, ..., 5, given explicitly by:

u11 =−4X11 +X21 +X31 +X41 +X51, (26)

u21 =X11 −X21, (27)

u31 =X11 −X31, (28)

u41 =X11 −X41, (29)

u51 =X11 −X51. (30)

To construct the star coupled network without master
node shown in Figure 4, we use the Eqs. (16), (18), (20),
(22), and (24) with the input signals (26)-(30).

We take the initial conditions:

X11(0) = 0.1, F12(0) = 0.1;

X21(0) = 0.6, F22(0) = 0.6;

X31(0) = 0.7, F32(0) = 0.7;

X41(0) = 0.4, F42(0) = 0.4;

X51(0) = 0.55, F52(0) = 0.55.

Figure 5 shows synchronization in the first state (X11 vs
X21, X11 vs X31, X11 vs X41, X11 vs X51, X21 vs X31,
X21 vs X41, X21 vs X51, X31 vs X41, X31 vs X51, and X41

vs X51) of five Nd:YAG lasers (synchronization is achieved
in 5 sec. approximately) and the chaotic attractor of the
collective behavior (a new chaotic state) in the network.
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Fig. 5. Synchronization in the first state
(Xi1, i = 1, 2, ..., 5) of five chaotic Nd:YAG lasers in
star configuration without master node, and the new
chaotic attractor of the collective behavior in the
network, projected onto the (X11, F12)-plane.

Case 2 (Network with master node): Five uncoupled
chaotic nodes (1) to be synchronized in a dynamical net-
work in star configuration with master node 1.

A diagram of this topology for synchronization of this
array of nodes is shown in Figure 6 with common or central
node 1 like master node. The coupling signal Xi1(t) is
purely via overlap of the electric field.

Fig. 6. Star coupled configuration with chaotic Nd:YAG
laser 1 like master.

The coupling matrix (12) is given by

Asc =

⎡⎢⎢⎢⎣
0 0 0 0 0
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤⎥⎥⎥⎦ ,
with eigenvalues λ1 = 0, and λ2 = λ3 = λ4 = λ5 = −1,
and coupling value c = 1. To construct the corresponding
arrangement, we have used the coupling signalX11 only for
the design of the input signals ui1 = g (Xi1; c), i = 2, ..., 5.
We use the same Eqs. (16), (18), (20), (22), and (24), with
the input signals (27)-(30) and for u11 ≡ 0 in (26). We
have taken the same initial conditions as the previous case.
Figure 7 shows synchronization in the first state of five
Nd:YAG lasers: X11 vs X21, X11 vs X31, X11 vs X41, X11

vs X51, X21 vs X31, X21 vs X41, X21 vs X51, X31 vs X41,
X31 vs X51, and X41 vs X51. In this case synchronization
is achieved in 5 sec. approximately, and the collective
behavior in the dynamical network, is imposed by the
chaotic Nd:YAG laser 1 (see, Figure 1).
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Fig. 7. Synchronization in the first state of five chaotic
Nd:YAG lasers with master node 1.

5. CONCLUSIONS

In this paper, we have presented multiple synchronization
of coupled chaotic Nd:YAG lasers, in particular by using
star coupled networks. We have achieve synchronization
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of five chaotic Nd:YAG lasers (used as fundamental node)
in star complex networks for two coupling scenarios: with
and without chaotic master Nd:YAG laser. This result is
particularly interesting given its possible application in
communication networks, where is required that a single
sender transmits simultaneously information to many re-
ceivers.

In addition, the approach can be implemented on experi-
mental setup, and shows great potential for actual optical
communication systems in which the encoding is required
to be secure.
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