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Abstract: In this paper, an industrial MPC performance monitoring technology is introduced
with a focus on the industrial implementation. A plant-oriented framework for APC performance
monitoring is proposed on the basis of industrial computer control systems background. A
software package integrating this technology, which is called Performance Analysis Toolbox and
Solutions (PATS), is introduced. The major components of PATS are discussed including process
data collection, data preprocessing, process model identification, similarity clustering, control
valve stiction detection, multivariate controller performance assessment, and APC economic
performance assessment using linear matrix inequality optimization. An industrial case study of
a hydrogen unit is illustrated. A limited trial version of the software package can be downloaded
from the web http://www.ualberta.ca/∼bhuang/research/research.htm

1. INTRODUCTION

A controller performance monitoring technology, which
is called Performance Analysis Toolbox and Solutions
(PATS), has been developed with collaborations between
academia and process industries. Many algorithms have
been integrated into the software package. It includes a
number of independent components and each of them has
its own initiative from industries. All components of this
software package can be classified into three categories in
terms of overall functionality, namely, interface compo-
nents, assistant components and application components
as shown in Fig. (a) 1. The interface components were
designed for retrieving raw process data from different
sources, such as data historian with historical data (1
component), OPC (OLE for Process Control, where OLE
is referred to as Object Linking and Embedding tech-
nique) server with real-time data (2 components), and
virtual plants with simulated data (1 component). The
assistant components are used to deal with these raw data
and provide the application components with consistent
and cleaned data. Some routine work of these assistant
components includes data preparation, data preprocessing,
etc. The main task of process data analysis is carried out
by application components with different design objectives
driven by process industries. They cover the most state-of-
the-art technologies which have been transferred directly
from recent research work in the fields of controller per-
formance monitoring (3 components), process model iden-
tification (2 components), fault detection and isolation (1
component), and controller design (1 component). PATS
bridges the gap between academia and industries, and

⋆ The work is supported by Syncrude Canada Ltd. and the Natural
Sciences and Engineering Research Council of Canada (NSERC).
†Corresponding author Biao Huang. E-mail: biao.huang@ualberta.ca

makes it possible to apply the research outcome directly
and rapidly into process industries.

One of the main purposes of PATS is to perform controller
performance monitoring in process industries, especially
for the widely used model predictive control (MPC) ap-
plications. MPC has been proven as one of the most
effective advanced process control (APC) strategies to
deal with multivariable process systems with input/output
constraints [Qin and Badgwell, 2003]. Even though the
rewards of MPC applications can be great, some of them
may not be used to their full capacity in practice. Less
effort has been made on the performance monitoring of
existing industrial MPC applications, especially on the
economic performance. Therefore, a systematic and stan-
dardized approach is demanded by the process industries
to facilitate the task of MPC maintenance.

In this paper, an implementation background is introduced
in Section 2. A plant-oriented framework for APC per-
formance monitoring is proposed in Section 3. A solu-
tions package, called PATS, is introduced in Section 4.
An industrial case study of a hydrogen unit is illustrated
using PATS in Section 5 followed by concluding remarks
in Section 6.

2. IMPLEMENTATION BACKGROUND FOR APC
PERFORMANCE MONITORING

Our industrial practice and experience for APC perfor-
mance monitoring will be introduced in this section. The
software package PATS has been tested and implemented
in a process industry, particularly for APC performance
monitoring. To this date there are many MPC applications
implemented in different plants of the industry. Unfortu-
nately, it is rather hard for process control engineers to
routinely monitor the performance of the run-time MPC

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14912 10.3182/20080706-5-KR-1001.2735



DCS ODBC Server Virtual Plant

OPC Client (2) ODBC Client (1)
Simulated Data 

Collector (1)

Assistant Components

Model Identification (2) Valve Stiction Detection (1)

Controller Performance Assessment & Tuning Guidelines (3)

FDI (1) Control Design (1)

Real-time Data Historical Data Simulated Data

Similarity 
Clustering (1)

(a)

Corporate LAN

PMN

DCS

ODBC Client

OPC Client

LAN Desktop

A Dedicated 
Development 

Computer

HMI OPC Server Data Collection Application Station

RDBMS Server Data Historian

(b)

DCS

Data
Historian

Data
collector

ODBC

client

PATS

assistant

MVPA

LMIPA

Data

Tag

Variability

Potential

Data 
model

Data

model/gain

Real-time data

Historical data

(c)

Fig. 1. (a) An overview of the software package PATS. (b) A computer control systems structure in industries. (c) A
plant-oriented framework for APC performance monitoring.

applications. By the implementation of PATS, a practi-
cal plant-oriented solution has been carried out for APC
performance monitoring, which is based directly on the ex-
isting distributed control systems (DCS). It tells not only
the output variance performance but also the economic
performance and MPC tuning guidelines, by taking full
advantage of existing available process data information.

The overall computer control system structure is illus-
trated in Fig. (b) 1. There are three network layers, in-
cluding DCS network at the bottom, process management
network (PMN) in the middle and corporate local area net-
work (LAN) on the top. The distributed controllers run-
ning regulatory control loops are all connected to the DCS
network via network interfaces. The system components
are human-machine interface (HMI), application station,
OPC server and data collection between DCS and PMN
and relational database management system (RDBMS)
server and data historian between PMN and LAN. The
APC applications are implemented and running on the
application station. The real-time data can be collected
from the OPC server via OPC client. The data collection
samples the real-time data from DCS with the background
supported by the RDBMS server and at the same time
transfers the collected data to the data historian in a
batch mode. The data historian keeps the historical data
information which can be accessed from any corporate
LAN desktop computers.

PATS includes two interface components, one is an OPC
client, which is also named real-time data collector, and
the other one is ODBC client, where ODBC stands for
open database connectivity protocol. PATS can be loaded
on any LAN desktop computer with an ODBC client as
the data interface and data historian as the data source. In
this way the historical data can be retrieved for analysis.
For the real-time data, the OPC client is installed on
a dedicated development computer, which has a direct
connection with PMN such that the OPC client can have
access to the OPC server. Therefore, PATS can also be
implemented for real-time data analysis. It should be
mentioned that this framework is built on the basis of
existing control systems infrastructure, but it is readily
transplanted to and integrated with other control systems.

3. A PLANT-ORIENTED FRAMEWORK FOR APC
PERFORMANCE MONITORING

As shown in Fig. (c) 1, a plant-oriented framework is
proposed with the implementation background in Fig.
(b) 1, especially for APC performance monitoring. It

is composed of two main application components, two
interface components and some assistant components of
the PATS package.

The historical process data can be retrieved from the data
historian by an ODBC client and the real-time process
data from the DCS by real-time data collector via OPC
technique. Both of the historical data and real-time data
are then transferred and supplied by the assistant compo-
nents to the application components. The assistant compo-
nents serve as a process information bridge or hub between
the interface components and the application components.
On the one hand, they provide convenient utilities to
enter process tag names for the interface components and
process model information for the application components
if it is required. On the other hand, the collected process
data are preprocessed, such as detecting and removing
outliers, and then standardized in a format such that the
data set is consistent with the application components.

4. PERFORMANCE ANALYSIS TOOLBOX AND
SOLUTIONS

4.1 Process data collector

There are three components for process data collection.
The first one is Real-time Data Collector, which collects
real-time data from an OPC server. Real-time Data Col-
lector is provided with an additional component, namely,
Tag Generator. In APC applications, there are a num-
ber of controlled variables (CV), manipulated variables
(MV) and disturbance variables (DV), and each is asso-
ciated a number of parameters such as low/high limit, soft
low/high limit, on/off status, process value, etc. Manually
entering all these tags is a tedious and time consuming
job. This tool helps in generating the tag list for all the
CVs, MVs and DVs. Once the tag list has been created
using Tag Generator, it can be loaded into Real-time Data
Collector, and the data collection can be started. The
second one is History Data Collector, which saves plant
history data from ODBC server. It is also provided with
Tag Generator. The third one is Simulink Data Collector.
This is a tool which can be used, if the plant model is
known, to build an APC application, to run the simulation
for data generation, in the required format, for carrying
out the further analysis of the data. The data created in
the components can be saved in several file formats. Fig.
(a) 2 shows Real-time Data Collector, as an example.
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Fig. 2. (a) Process data collection tool: Real-Time Data Collector. (b) Model identification tool: ICON. (c) Similarity
clustering tool. (d) Control valve stiction detection tool.

4.2 Data pre-processing

The data created either in Real-time Data Collector,
History Data Collector, or Simulink Data Collector, is
in a raw data format. It needs to be converted into a
specific format, in order to enable it to be analyzed by the
application components. Also the raw data may contain
some outliers that need to be removed from the data set.
This tool facilitates the deletion of data points for the time
stamp where there is at least one outlier.

4.3 Model identification

The process model identification tools can be used for iden-
tifying the process model transfer function using process
input/output data. Fig. (b) 2 shows the GUI for model
identification. This component makes use of a continuous
time step response method, a subspace method and a
prediction error method to identify the process with appro-
priate process data. For the continuous time step response
method, the imported process data should be step response
data. For the subspace method and prediction error meth-
ods, the input to the process should be input perturbations
with sufficient excitation. This tool can generate 1st-order
or 2nd-order continuous time transfer function models. The
simulated plots will be shown in the same figure with the
actual time plots for comparison. In performing controller
performance assessment, it is required to have a process
model in the required format. This tool is provided with
an additional component, namely, Model Generator, which
helps in generating a model file in the required format.
Fig. (b) 2 shows the GUI of the process model identifica-
tion tool, called ICON (identification of continuous-time
models).

4.4 Similarity clustering

The fundamental principle of cluster analysis is the group-
ing of multivariate data, in which numerous correlations
between data tags exist. Cluster algorithms are a generic
tool for pattern recognition, the search for structure in
data, with a wide range of applications. As an appli-
cation in the process industry, the similarity clustering
tool is used to group process variables according to their
correlations by taking into account time delay effects. It
can be used to analyze causal relations for some process
phenomena, for example, to detect the source of fault or
breakdown. The similarity clustering algorithm consists of

two essential parts: the calculation of similarity coefficients
and the clustering of variables. The first part is to calcu-
late the similarity coefficient between two variables. The
second part of the algorithm is to use the Agglomerative
Hierarchical method with Complete Linkage to cluster
the variables, based on the similarity matrix obtained in
the first part. The clustering starts from the individual
variables. the most similar variables are first grouped,
and these initial groups are merged according to their
similarities. Groups are fused according to the similarity
between their farthest members (the two variables with
smallest similarity coefficient) so that all variables in a
cluster are within some minimum similarity of each other.
The results of the clustering procedure is displayed on the
GUI in the form of a two dimensional diagram known as
a dendrogram. The level of each group or subgroup repre-
sents the value of similarity coefficient, a value that every
two variables in that group are ensured to be larger than
it. Fig. (c) 2 shows the GUI of the similarity clustering
tool. The distinguishing feature of this tool in PATS is its
ability to search for an optimal time delay before grouping.

4.5 Valve stiction detection

A basic control system with a valve is depicted in Fig. (d)
2, where SP, OP, MV, are PV represent set point, control
signal, manipulated and controlled variables, respectively.
In general, SP, OP and PV are recorded in the DCS
systems, and so are readily available, but the real value
of a manipulated variable MV such as flow rate is not
available in most control loops. The valve stiction can be
represented as the necessary force applied to the valve stem
to make it move. The valve will not move if the amount
of force corresponding to the controller output is too
small to overcome the static friction. The controller may
cause OP to increase in the same direction until the valve
overcomes the stiction. Then, the valve moves suddenly
with more than the desired amount causing the process
to overshoot. Then OP changes in the opposite direction
to get the process back on track until the valve overcomes
the stiction, which makes the process overshoot again in
the opposite direction, thus causing process oscillation.
This tool estimates the extent of stiction in control loops.
It performs the filtering of the control valve PV and
OP values and then plots PV vs. OP data to observe
hysterisis. The presence of hysterisis indicates stiction.
This tool adopts several algorithms to quantify the degree
of stiction.
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Fig. 3. (a) Multivariate performance assessment tool: MVPA. (b) Univariate performance assessment tool: UVPA. (c)
APC economic performance assessment tool: LMIPA.

4.6 Multivariate controller performance assessment

There are thousands of control loops in process indus-
tries, which range from PID control loops to advanced
multivariable control loops. Although those control loops
are initially well tuned, their performance can gradually
degrade due to change of process dynamics, wear of in-
struments and time varying disturbances. A major task
is to effectively monitor the performance of control loops
and to determine when and whether control loops need to
be re-tuned, instruments need to be replaced or processes
need to be re-engineered. How to evaluate multivariable
control loops is becoming one of the most important tasks
in process control applications.

MVPA is referred to as multivariate controller perfor-
mance assessment component with minimum variance con-
trol (MVC) as the benchmark. It employs an FCOR al-
gorithm to calculate the individual and overall variance
performance indices [Huang and Shah, 1999]. The variance
performance indices quantify how good the existing control
loop is compared with the MVC benchmark, and gives
rise to the improvement potential in the sense of output
variance. Fig. (a) 3 shows the GUI of MVPA.

The procedure of MVPA is divided into two major steps.
The first step is to calculate the unitary interactor ma-
trix from the open-loop process model. The second step
is to calculate performance indices by doing time series
analysis from the closed-loop routine operating data. For
the detailed algorithms, refer to [Huang and Shah, 1999].
The input of this component includes a process model
and closed-loop routine operating data. MVPA shows a
general performance index as well as performance indices
of the different control variables. Using the general per-
formance index or performance indices of the different
control variables, process control engineers can estimate
the potential to improve the performance of current multi-
variable control loops. If the performance is lower than the
expected, the monitor can provide timely warning for the
process control engineers such that corresponding actions
are taken to improve the performance, such as re-tuning
control parameters or revising model parameters. MVPA
is a tool that can be utilized to measure the performance
of the multivariable control loops from a variability point
of view.

For performance assessment of univariate control loops,
PATS also provides a separate tool called UVPA as shown
in Fig. (b) 3, which stands for univariate controller perfor-
mance assessment. It identifies a time series model from
routine operating process data and estimates a variability
performance index for single loops. For the detailed algo-
rithms, see [Huang and Shah, 1999].

4.7 APC economic performance assessment

LMIPA stands for a linear matrix inequality approach
for performance assessment with an objective for provid-
ing APC economic performance assessment and tuning
guidelines. It takes a process steady-state gain, process in-
put/output data, and relevant control parameters such as
input/output constraint limits and then calculates benefit
potentials and economic performance indices for different
scenarios which can be considered in practice. Also it
suggests MPC constraint and variability tuning guide-
lines for economic benefit improvement. The variability
improvement potential from the MVPA component can be
provided to the LMIPA component for a theoretical benefit
potential estimation with minimum variance control as
the benchmark. This bridges the MVPA component and
the LMIPA component within this plant-oriented solution.
The GUI is shown in Fig. (c) 3. The algorithms for MPC
economic performance assessment and tuning guidelines
have been introduced in [Xu et al., 2007]. Also, this APC
performance analysis tool includes a sensitivity analysis,
which provides a selective constraint/variability tuning
guidelines for benefit improvement in practice [Lee et al.,
2007]. In the following, the main concepts for LMIPA will
be summarized.

For a p × m process G, which is controlled by a model
predictive controller, with m input variables and p output
variables and a steady-state process gain matrix K, we
define the current mean operating point for ith output and
jth input variable as (ȳ0i, ū0j), which is referred to as the
base case operating point in this paper. Also, define the low
and high limit of yi as Lyi and Hyi, respectively, and the
low and high limit of uj as Luj and Huj , respectively. For
an operating point (ȳi, ūj) of the process G, the economic
objective function for the process is given by a quadratic
function of the form:
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J =

p
∑

i=1

[

bi × ȳi + a2

i (ȳi − µi)
2
]

+
m

∑

j=1

[

bj × ūj + a2

j (ūj − νj)
2
]

(1)

where bi and ai are the linear and quadratic coefficients
for the controlled variable yi, bj and aj are the linear and
quadratic coefficients for the manipulated variable uj, and
µi and νj are the target values for ith CV and jth MV,
respectively. Note Eqn. (1) is a cost function. The optimal
operation is to minimize it.

For the base case operation, the economic objective func-
tion value is readily calculated by replacing (ȳi, ūj) with
the current operating point (ȳ0i, ū0j) in (1). This objective
value is denoted as J0, which is a value to be used in the
calculation of benefit potentials as a reference.

We perform assessment of yield for various cases described
in detail below:

(1) Assessment of ideal benefit potential
(2) Assessment of existing benefit potential
(3) Assessment of improved yield by variability reduction
(4) Assessment of improved yield by constraint relaxation
(5) Constraint/variability tuning for a desired yield

Assessment of ideal benefit potential What would be the
maximum benefit achieved if process variability could be
reduced to zero? This problem is answered by the ideal
benefit potential. For assessing the ideal yield, steady state
operations are considered with no variability in both yi

and uj . Under this scenario the optimization problem for
the system is defined as:

Minimize{ȳi,ūj} J (2)

subject to:

∆yi =

n
∑

j=1

Kij × ∆uj (3)

ȳi = ȳ0i + ∆yi (4)

ūj = ū0j + ∆uj (5)

Lyi ≤ ȳi ≤ Hyi, ∀i = 1, 2, . . . , p (6)

Luj ≤ ūj ≤ Huj , ∀j = 1, 2, . . . , m (7)

Note that the present disturbance is not considered in
the ideal benefit potential calculation. The solution of the
problem gives rise to an ideal optimal operating condition
and the corresponding objective function is denoted as JI .
The ideal benefit potential ∆JI is given by ∆JI = J0−JI .

Assessment of existing benefit potential What benefit
can be achieved by simply adjusting the operating points
without changing any constraint or reducing the variabil-
ity? This problem is answered by the existing benefit poten-
tial. The assessment of the optimal yield of the controller
without tuning means to assess the yield that should be ob-
tained from the controller for the given constraints and the
existing variability in base case operations. This scenario
considers moving the actual operating point of yi to its
optimal operating conditions, as close as possible, subject
to the constraints. Under this scenario the optimization

problem for the process is to solve (2) subject to (3)-(5)
and

Lyi + 2 × σ0i ≤ ȳi ≤ Hyi − 2 × σ0i (8)

Luj + 2 × R0j ≤ ūj ≤ Huj − 2 × R0j (9)

where σ0i and R0j are the base case standard deviation
and the quarter of the range for yi and uj, respectively.
If the constraints (8)-(9) are infeasible, then replace (8)
(resp. (9)) by

ȳi = ȳ0i or ∆ȳi = 0 (10)

(resp. ūi = ū0i or ∆ūj = 0) (11)

The inequalities defined above allow 5% constraint limit
violation, i.e., 95% of the operation is within two standard
deviations [Latour et al., 1986, Martin et al., 1991]. Note
that the present disturbances are taken into account in
the existing benefit potential calculation and the corre-
sponding objective function is denoted as JE . The existing
benefit potential ∆JE is given by ∆JE = J0 − JE .

Assessment of improved yield by reducing variability
This case involves tuning of the control system such that
the variability of one or more output variables can be re-
duced. Reducing the variability provides an opportunity to
push the operating points closer to the optimum and thus
improve the yield. Practically, the reduction in variance of
one variable (say quality variable) is often transferred to
the variability of some other variables, such as constrained
variables. Since constraint variables do not directly affect
the profit, their variability is not of concern, as long as
they are maintained within the set limits. Thus, variability
of a quality variable can be reduced by transferring it to
that of the constraint variables. For assessing the improved
yield by variability reduction the optimization problem is
to solve (2) subject to (3)-(5) and (12)-(13)

Lyi + 2 × σ0i × (1 − Syi)

≤ ȳi ≤ Hyi − 2 × σ0i × (1 − Syi) (12)

Luj + 2 × R0j × (1 − Suj)

≤ ūj ≤ Huj − 2 × R0j × (1 − Suj) (13)

where Syi and Suj are the percentage reduction in the base
case variability of yi and uj . Syi and Suj are obtained from
MVPA. The inequalities defined for the problem allow 5%
constraint limit violation.

Assessment of improved yield by relaxing constraints Re-
laxing the limits for the constraint variables can help
move the quality variables closer to the optimum oper-
ating points, thus improving the yield. The optimization
problem for this case is to solve (2) subject to (3)-(5) and
(14)-(15)

Lyi + 2 × σi0 − yholi × ryi

≤ ȳi ≤ Hyi − 2 × σi0 + yholi × ryi (14)

Luj + 2 × Rj0 − uholj × ruj

≤ ūj ≤ Huj − 2 × Rj0 + uholj × ruj (15)

where ryi and ruj are the user specified percentage re-
laxation in the limits for yi and uj. Again, the inequalities
defined for the problem allow 5% constraint limit violation.

Constraint/variablity tuning for a desired yield Given
a desired benefit, which CVs/MVs should be tuned? How
much do they need to be tuned to achieve the given desired
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benefit? In particular, to which CV or MV is the economic
benefit potential most sensitive? That is, which process
variable does contribute the most in terms of the economic
profit improvement? The problem of finding sensitive or
profitable process variables to the economic profit is of
prime importance in process control engineering and plant
optimization. For a selective constraint/variability tuning
guideline, see a sensitivity analysis in Lee et al. [2007].

5. INDUSTRIAL CASE STUDY OF HYDROGEN
UNIT USING PATS

PATS has been implemented in a process industry. To
illustrate its features and industrial relevance, an indus-
trial case study of a hydrogen unit is conducted for APC
performance monitoring using the main components of
PATS.

5.1 Process model and data collection

The hydrogen unit produces high purity hydrogen product
by thermal cracking of natural gas and steam and supplies
pure hydrogen to the naphtha hydrotreaters, the gas oil
hydrotreaters, and the light gas oil hydrotreater in a
bitumen process industry. The model has 27 CVs, 5 MVs,
and 13 DVs. The input variable is actually either SP or
OP, which is available for data collection. For notational
simplicity, we denote input variables as MVs in APC
performance assessment.

The process data collected for the APC performance
analysis includes process input/output variables, con-
straint related parameters such as low/high limits and
soft low/high limits, and optimization parameters such
as linear/quadratic coefficients, etc. The data collection
lasted for around 2 days with 1 min. sampling. Process
data analysis will be conducted for the APC performance
assessment and economic benefit improvement.

5.2 APC application subject to constraints

A multivariable model predictive controller has been im-
plemented on the hydrogen unit. It has been designed
to minimize operational costs and H2 production waste
and maximize export steam. This is mainly achieved by
running at a lower steam to carbon ratio and lower excess
O2. The control objective of the MPC application and
the linear/quadratic coefficients in the economic objective
function are shown in Table 1, where CV4 is reformer
flue gas O2 content, CV8 is export steam flow rate, MV2
is steam to carbon ratio, and MV3 is combined outlet
temperature. Steam to carbon ratio and reformer furnace
combustion excess O2 are minimized to optimize reformer
combustion efficiency. Export steam flow is maximized
subject to constraints. With the control objectives, the
multivariable controller optimizes the hydrogen produc-
tion by adjusting the manipulated variables. The base case
operation data of the hydrogen unit are shown in Fig.
4, where only quality variables (CV4 was in ‘off’ status
and MV2 was in ‘initialization’ status) are shown due to
the large range of variables. The input and output data
were collected with 1 min. sampling time for 16 hours,
i.e., 3rd 12:00 PM to 4th 4:00 AM. It is noted that all
of the controlled variables and manipulated variables are

Table 1. Control objective and optimization
parameters used in the economic objective

function. (All data have been normalized.)

CV/MV Control objective Economic objective
a b

CV4 Minimize 0 0.5
CV8 Maximize 0 −0.1
MV2 Minimize 0 1
MV3 Minimize 0 0.1

Others Constrain 0 0
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Fig. 4. Time series plot of quality variables CV8, MV3
and a constrained variable MV5 at the base case
operation. Here, −·− shows the ideal operating point,
which is discussed in Section 5.4.

operated within their constraints limits as shown in Fig.
4.

5.3 Benefit potential analysis

For performance assessment of the MPC application im-
plemented in the hydrogen unit, the economic objective
function is given by (1). The linear/quadratic coefficients
are given in Table 1. Solving optimization problems spec-
ified in [Xu et al., 2007] for only input/output variables
with ‘on’ status by using QP or SDP solvers, we calculate
the economic performance costs J0 = 688.8811 for the
base case operation, JI = 686.5121 for the ideal operating
condition, and JE = 686.5121 for the adjusted operating
condition. Here, the process variables with ‘off’ status
are not included in the optimization. Note that the ideal
operation means the maximum benefit (or the minimum
cost) that could be achieved if process variability could be
reduced to zero. From the above performance assessment,
it is noted that J0 is very close to JI and JE . It means
that the hydrogen unit is operating close to its constraint
limits. In addition, it is noted that the process variability
of the hydrogen unit is seen to be very low. Hence it can
be said that the MPC application is working well from the
process variability point of view. It is also noted that JE

turns into JI in this case because the variability of MV2 is
almost zero and the ideal operating point of CV8 is located
in the middle of its constraints.

The operating points for the ideal and base case operations
are given in Table 2, where † indicates quality variables. It
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is noted that, as indicated by ∗ in Table 2, for the variables
MV3 and MV5, the ideal operating points are located at
their low limits of the constraints.

5.4 Selective constraint tuning guidelines

As seen in the previous section, the MPC implemented
on the hydrogen unit has good performance. Is there any
further opportunity to improve the benefit? As discussed,
process variability reduction would not bring additional
benefit in this case. However, by finding opportunity
to maximize CV8 and minimize MV3, we can improve
benefit within an allowed limit. This can be done by
relaxing the low or high limit of some process variables.
Let us look at the location of the ideal operating point
of the quality variables to provide a basis for constraint
tuning. The ideal operating point of CV8 is located in the
middle of the constraint, while the ideal operating point
of MV3 is located at its low limit. Hence, it is observed
that the limit change of CV8 itself will not help change
its operating point. However, actually, there is a lot of
room to maximize CV8 toward its high limit. From this
observation, we will conduct three case studies to find a
selective constraint tuning guideline that can be applicable
to the running MPC application on the hydrogen unit. i)
Find the most profitable process variable (PV). ii) Find the
most contributing PV to maximize the operating point of
CV8. iii) Find an alternative tuning guideline if the case
studies 1-2 are not applicable.

To perform sensitivity analysis [Lee et al., 2007] for the
case studies and suggest selective tuning guidelines, we
calculate the benefit potentials. The ideal and existing
benefit potentials are given by ∆JI = 2.369 and ∆JE =
2.369, respectively. We assume that the desired benefit
potential ratio is given by RC = 1.2. Note that, in this
industrial application to the hydrogen unit, the desired
benefit potential set as ∆JD = 2.8428 is not an absolute
target value to be achieved. It will be used to find a
profitable PV or a suitable tuning guideline in constraint
tuning.

Case study 1: Finding the most sensitive PV To find
the most sensitive or profitable PV, the constraint tuning
optimization in [Lee et al., 2007] has been solved. From the
optimization result, we find that the most profitable PV
is MV3. Since MV3 is a quality variable and its control
objective is to ‘minimize’ as shown in Table 1, the LL
relaxation of MV3 according to the sensitivity analysis will
guarantee benefit improvement. However, it is noticed that
the constraint limit of MV3 has been kept without change
due to the quality of the product. We will try to find the
second sensitive PV in the next case study.

Case study 2: Maximizing the operating point of CV8
To find the second profitable PV, the constraint tuning
optimization in [Lee et al., 2007] has been solved. From the
optimization result, we find that the most profitable PV
is MV5, which is not a quality variable. This implies that,
although MV5 is not a quality variable, the LL relaxation
of MV5 provides room to maximize the operating point
CV8. MV5 is the most contributing PV to maximize
CV8. What if the case studies 1-2 are not applicable to
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Fig. 5. Selective constraint tuning guidelines. (a) The case
study 1. (b) The case study 2. ‘LL’ means the low
limit change.

Table 2. The operating points for the ideal, the
base case, and the case studies 1-3 operations.

(All data have been normalized.)

CV/MV Ideal Base CS-1 CS-2

CV2 0.0012 0.0012 0.0012 0.0012
CV3 0.2865 0.2865 0.2865 0.2865
CV5 0.0125 0.0125 0.0125 0.0125
CV6 0.9000 0.9000 0.8996 0.9000

†CV8 0.1036 0.1012 0.1036 0.1041

CV9 0.3598 0.3685 0.3598 0.3580
CV10 0.5109 0.5109 0.5105 0.5109
CV12 0.4251 0.4251 0.4251 0.4251
CV15 0.1197 0.1240 0.1197 0.1188
CV16 0.2583 0.2583 0.2583 0.2583
CV20 0.0499 0.0816 0.0499 0.0435
CV22 0.0183 0.0183 0.0183 0.0183
CV23 0.0981 0.0981 0.0981 0.0981
CV24 0.2819 0.2819 0.2819 0.2819
†MV3 ∗0.7908 0.7908 0.7903 0.7908
MV5 ∗0.1679 0.1702 0.1679 0.1674

the process unit. We will try to find an alternative for
constraint tuning in the next case study.

Case study 3: What is an alternative tuning guideline?
To find an alternative to achieve the desired benefit

potential, the constraint tuning optimization in [Lee et al.,
2007] has been solved. From the optimization result, we
observe that there is no feasible solution for this case
study. This implies that we cannot improve the benefit
without the LL change of MV3 or MV5 at this moment
of the MPC performance assessment. MV3 and MV5 are
the profitable PVs at this time. The constraint tuning
guidelines obtained by the proposed sensitivity analysis
for the case studies 1-2 are shown in Fig. 5. The operating
points calculated for the case studies 1-2 are shown in
Table 2.

5.5 Verification of economic benefit

The data was collected for verification for 2 days, i.e., 4th
1:00 AM to 6th 1:00 AM. The MV5 LL changed to 162
from 167.7 on 4th. Fig. 6 shows the time series plot of
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Fig. 6. Time series plot of quality variables CV8 and
MV3 and a constrained variable MV5 at the MV5
LL change. The second figure is a closer look at CV8.
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Fig. 7. (a) The comparison of cost. (b) The comparison of
benefit. The left plots show JI , J0, and ∆JI estimated
in the performance assessment before the MV5 LL
change. The right plots show J0 and actual benefits
calculated every 4 hours after the moment of the MV5
LL change.

quality variables at the moment of the MV5 LL change.
As observed before in the case study 2, it is actually shown
that the MV5 LL relaxation maximizes the operating point
of CV8, while it does not change the operating point of
MV3. The computation of cost according to the MV5 LL
change is shown in Fig. 7. The right plot shows J0 every 4
hours after the moment when the MV5 LL was changed.
Note that the economic performance costs JI and J0 for
the ideal and base case operation before the MV5 LL
change is JI = 686.5121 and J0 = 688.8811, respectively.
It is shown that J0 is decreasing as CV8 is maximized by
the MV5 LL change. To show the benefit improvement
in terms of dollar value, we show a stewardship for the
hydrogen unit. Fig. 8 shows the H2 production, the total
H2 cost, and the savings in terms of normalized dollar
value. As a consequence, it confirms that the constraint
tuning significantly improves the profit of the process
unit. The proposed sensitivity analysis provides a selective
tuning guideline to find such an opportunity to improve
the benefit in practice.
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Fig. 8. Stewardship. (a) H2 production. (b) Total H2

cost. (c) Savings calculation. (All data have been
normalized.)

6. CONCLUSION

In this paper, we have discussed the industrial implemen-
tation of advanced process control (APC) performance
monitoring technology. A plant-oriented framework for in-
dustrial APC performance monitoring is proposed. A soft-
ware package, called Performance Analysis Toolbox and
Solutions (PATS), has been introduced, which integrates
the APC performance analysis technologies for industry.
The main components in PATS includes process data col-
lection, data preprocessing, process model identification,
similarity clustering, control valve stiction detection, mul-
tivariate controller performance assessment, and APC eco-
nomic performance assessment using linear matrix inequal-
ity optimization. In particular, we have elaborated the last
two major components for APC performance monitoring,
which are referred to as MVPA and LMIPA, respectively.
An industrial case study of a hydrogen unit is illustrated to
show the applicability of the APC performance monitoring
technology and the solutions package.
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