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Abstract: In this work we develop an input-output recurrent neurofuzzy network in discrete-
time for identification and control of nonlinear systems. The structure is linear in the consequent
parameters and nonlinear in the antecedent ones. The training of the antecedent parameters is
achieved by linearizing them around a suboptimal value, assuming that the only known data
are input-output signals obtained directly from measurements of the system, as well as some
information about its structure (local stability and time delays). The training algorithm is based
on a Kalman filter, stable under certain assumptions. It is also presented a theorem to check the
stability of the resulting network in the Lyapunov sense, and a predictive control design. The
performance of the network is shown by the identification and control of a nonlinear benchmark
system.
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1. INTRODUCTION

Neural networks and fuzzy systems have shown, as noted
by Cybenko [1989], to be very useful tools in identification
due to their approximation capabilities when dealing with
piece-wise continuous functions. For this reason, they have
been used modeling and designing control systems, such as
in Narendra and Parthasarathy [1990], where their ability
to learn and adapt have been exploited.

Nevertheless, neurofuzzy networks (regarded as an inter-
pretation of fuzzy systems as multilayer neural networks)
have been used not only as static input-output functions,
but also as dynamic models by adding feedback connec-
tions in some or all layers within the network. This ar-
chitecture is known as recurrent or dynamic network, and
are assumed to be useful when modeling and identifying
dynamic systems. One of the very first approaches was
given by Hopfield [1982].

The structural definition of neural networks depends on
the problem to be solved. Narendra and Parthasarathy
[1990] proposed networks with feedback within the internal
layers, Weibel et al. [1989] used time-delay networks and
Williams and Zipser [1989] used fully recurrent networks,
where all layers are considered to be inputs. Networks
such as globally static-locally recurrent structures have
been proposed by Weibel et al. [1989], Wan [1990], Back
and Tsoi [1990], using neurons with linear filters in the
synapsis.
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work of Marcos A. González Olvera is supported by DGEP-UNAM.

However, Mastorocostas and Theocharis [2002] have noted
that these structures do not guarantee the stability of
the training algorithms. Also, their low convergence speed
and the eventual parameter explosion (known as the
curse of dimensionality) are challenges to be faced when
training. In order to overcome the previous challenges,
some authors have proposed simpler structures by focusing
on the specific task to be analyzed. For example, on control
and identification tasks, Mouzouris and Mendel [1997] and
Jang [1992] proposed externally recurrent networks; and
Gorrini and Bersini [1994] studied structures with with
internal feedback via fuzzy systems.

Other authors have proposed nonlinear structures for
identification with a state-space representation, taking
into account that state variables are often used in the
control area. In this sense, Juang [2002] proposed to
consider internal states to model the dynamics.

However, not many structures take into account the sta-
bility of the resulting architecture as well as the algorithm
convergence. Regarding training, general algorithms such
as Backpropagation-Trough-Time (first seen in Rumel-
hart et al. [1986]) and Real-time recurrent learning (pro-
posed by Williams and Zipser [1989] as a simplification
of the previous algorithm) have been used. As these algo-
rithms are slow and lack stability, linear approximations
such as recursive-least-squares (cited by Johansson [1993])
and Kalman filters (some described by Haykin [2001])
have been proposed and successfully applied. Authors as
Poznyak et al. [2006], Yu and Li [2004], Mastorocostas and
Theocharis [2002] guarantee stable training algorithms,
relying the specific structure of the network.
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In this paper these challenges are considered: the presented
structure is a recurrent neurofuzzy network with an input-
output representation and state-space interpretation, as
a great part of the control theory is based in this rep-
resentation. Having this in mind, Gonzalez Olvera and
Tang [2007] focused on a Controllable-Form Recurrent
NeuroFuzzy Network (CReNN). This scheme is stated to
be simple in its analysis, with easiness in the interpretation
of the resulting parameters. In this paper, a modification
of this scheme to an Input-Output CReNN (IOCReNN) is
considered, in order to make the training and its applica-
tion for predictive control more transparent, in which only
the signals to be measured and controlled are considered
in the structure.

This paper is organized in the following sections: in Section
2 the proposed modified IOCReNN structure is presented
and its stability in the sense of Lyapunov properties and
learning algorithm are discussed. Also, a theorem for a pre-
dictive control is stated. Examples of the performance of
the neural identifier are shown in Section 3 by identifying
and controlling a nonlinear system. Finally, conclusions
and future work are drawn in Section 4.

2. INPUT-OUTPUT RECURRENT NEUROFUZZY
NETWORK

Let the following system to be identified with input uk and
output yk, modeled by the difference equation be

yk+1 = fd(yk, . . . , yk−n+1, uk, . . . , uk−m+1). (1)

The following assumptions are made for this system
Assumption 1. For (1):

• The system is locally observable.
• yk and uk, for k = 0 . . . N are available.
• There is no direct measurement of the actual physical

states.
• The function fd is continuous.
• The order n and m of time-delays of the output and

input, respectively, are estimated or known a priori.

The objective is to find a mapping f̂(·) such that
supk ||ŷk(·) − yk|| be as small as possible. So, it is stated
that the following neurofuzzy network with nR rules

Ri: IF ŷk is Ai THEN

ŷk+1 = [ ci1 . . . cin ]

 ŷk
...

ŷk−n+1

 (2)

+ [ hi1 . . . him ]

 uk
...

uk−m+1


= cTi

 ŷk
...

ŷk−n+1

+ hTi

 uk
...

uk−m+1

 (3)

can identify the system, where ŷ is the estimate of the
output signal, Ai(x) = exp(−σ2

i (x− ςi)2) are the member-
ship functions of the antecedent part of the fuzzy rules,

and the defuzzification is made by a weighted average. By
rewriting the previous definition for the fuzzy rules, the
system can be described by the following equations

ŷk+1 =
(
ϕ1
kc
T
1 + . . .+ ϕnkCT

nR

)
zk +(

ϕ1
kh

T
1 + . . .+ ϕnkhTnR

)
ξk

= (ϕTk ⊗ zk)vect(C) +

(ϕTk ⊗ ξk)vect(H) (4)
where ⊗ is the Kronecker matrix product, vect(·) is the
row vectorization into a single column of the argument
matrix, and the signals are given by

zk = [ŷk ŷk−1 . . . ŷk−n+1]T (5)

ξk =A0ξk−1 +B0uk (6)

Rik = e−σ
2
i (ŷk−ςi)2 (7)

ϕik =
Rik∑
j R

j
k

(8)

C = [ c1 . . . cn ]T (9)

H = [ h1 . . .hm ]T (10)

A0 =
[

01×m
I(m−1)×(n−1) 0(m−1)×1

]
B0 =

[
1

0(m−1)×(m−1)

]
The parameters to be identified are

C =

 cT1
...

cTn

, H =

 hT1
...

hTn

, σ =

 σ1

...
σn

, ς =

 ς1...
ςn

,

with the rule functions defined as

Rik = e−σ
2
i (yk−ςi)2 rule activation

ϕik =
µRi

k∑
j µRj

k

normalized activation

Given that the approximation to the real system with
output signal yk+1 is given by

yk+1 = f1(C, σ, ς, zk) + f2(H, σ, ς, ξk) + ζ̄k

(11)

= f(C,H, σ, ς, zk, ξk) + ζ̄k (12)

The approximation error ζ̄k will be minimum (ζk =
minθ ζ̄k) if the optimal values for CT , HT , σ y ς are found,
i.e.

yk+1 = f1(C∗, σ∗, ς∗, zk) + f2(H∗, σ∗, ς∗, ξk) + ζk

(13)

= f(C∗,H∗, σ∗, ς∗, zk, ξk) + ζk (14)

2.1 Stability analysis

The network stability analysis in the Lyapunov sense can
be further made if the network is rewritten as a state-space
representation. It can be proven that its form is (taking
uk ≡ 0).
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zk+1 =
∑
i

ϕik

[
cTi

I(n−1)×(n−1) 0(n−1)×1

]
zk (15)

In this way, the stability can be analyzed by using the
Theorem for Standard Aditive Models (SAM) proposed
by Kosko [1992], that enounces:
Theorem 1. Let a fuzzy dynamic system be defined with
a linear system in state-space representation in each fuzzy
rule, with Di as the system matrix for the i-th subsystem.
The system is stable in the sense of Lyapunov if ∃ P =
PT > 0 such that the matrix inequalities

DiPDi − P < 0 (16)
hold ∀ i = 1, . . . , nR, where nR is the number of rules in
the fuzzy system.

2.2 Linearization of the antecedent parameters

The accessibility to the antecedent parameters is not an
easy task as there are nonlinear relations to the output
and the error signal ek = yk − ŷk. If the network is near
a local optimum for the antecedent parameters, then the
algorithm of linearization proposed by Yu and Li [2004]
can be used. For this purpose, an initialization algorithm
will be discussed in Section 2.3.

Taking the general continuous function h(x), the Taylor
expansion theorem states that it can be expressed as
h(x) = h(x0) − ∂h

∂x

∣∣
x=x0

+ R(x, x0), where R(x, x0) are
the higher-order terms in the expansion. In this sense, we
propose to expand the optimal IOCReNN (that is, with
the parameters θ = θ∗), around a suboptimal value θ. So,
the function f = f(θ∗) defining the optimal network will
be expressed, around its parameters θ, as

f = f(θ∗) = f(θ) + (θ∗ − θ)T ∂f

∂θ∗

∣∣∣∣
θ∗=θ

+R(θ, θ∗) (17)

where θ =
[

vect(C)T vect(H)T σT ςT
]

is the vector
that contains all parameters to be identified, and R(θ, θ∗)
represents the higher-order terms in the expansion. Given
that direct measurements of yk, . . . , yk−n+1 are available,
it can be considered for training that
zk = [yk . . . yk−n+1]T .

By developing (14) and given that f is linear in the
consequent parameters C, H, the expansion can be written
as

f(C∗,H∗, σ∗, ς∗, zk, ξk) = f(C,H, σ, ς, zk, ξk)

+f(C∗ −C,H∗ −H, σ, ς, zk, ξk)

+(σ∗ − σ)T
∂f

∂σ∗

∣∣∣∣
σ,ς,c

+(ς∗ − ς)T ∂f

∂ς∗

∣∣∣∣
σ,ς,c

+R (18)

Given that yk+1 = f(C∗,H∗, σ∗, ς∗, zk, ξk)+ζk and ŷk+1 =
f(C,H, σ, ς, zk, ξk), subtracting both equations,

ỹk+1
∆= yk+1 − ŷk+1 = σ̃Tgk + ς̃hk

+ϕT (C∗ −C) zk + ϕT (H∗ −H) ξk + ϑk

(19)

where ϑk = R− ζk, gk = ∂f
∂σ∗

∣∣∣
σ,ς

, hk = ∂f
∂ς∗

∣∣∣
σ,ς

.

Rewriting the equations, the following linearized model
respect to the parameters is obtained

ỹk+1 = θ̃TGk + ϑk = θ̃Tk Gk + ϑk (20)

where

θ̃
∆= θ∗ − θ (21)

θ=

 vect(C)
vect(H)

σ
ς

 (22)

Gk =

 ϕ⊗ zk
ϕ⊗ ξk

gk
hk

 (23)

The equation (2.2) express the calculus of the partial
derivatives of the function with respect to the parameters
σ. In the same way, the partial derivatives ∂f1

∂σ∗

∣∣∣
σ∗=σ

=
∂ϕT

∂σ Cz(k) of the function with respect to ς can be ob-
tained, but due to space limitations are not shown.

2.3 Parameter Initialization Algorithm

The objective in the parameter initialization algorithm is
to put the parameters near a good local minimum, in order
to make ||θ∗−θ||, and consequently R, as small as possible.

The proposed algorithm is based the work made by Gon-
zalez Olvera and Tang [2007], which can be summarized
in the following steps

(1) Train a static fuzzy system by using ANFIS (developed

by Jang [1993]), whose output is given by the known

outputs yk, and its inputs are n and m time-delays of

the output and input uk respectively.

(2) As the trained static fuzzy system has n + m input

fuzzy sets and nR fuzzy rules, initialize the IOCReNN

with nR rules and n states.

(3) Initialize the Ai fuzzy sets with those corresponding

to yk−1in the static fuzzy system.

(4) As the obtained fuzzy system involves linear functions

in each rule, obtain its consequent parameters and

initialize C y H correspondingly.

Remark 1. The ANFIS algorithm is suggested to be used
used as it involves both a fuzzy space partition and training
of consequent parameters by an hybrid algorithml, but
other algorithms that make similar tasks can be used.

2.4 Kalman-filter based training

Once the IOCReNN has been initialized, we make the
following assumption
Assumption 2. If the nonlinear neurofuzzy network is ini-
tialized near a local minimum, the difference θ∗− θ and R
are also small.
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∂ϕT

∂σ
= 2



σ1(yk − ς1)2(∑
j
µl

) µ1

...
σn(yk − ςn)2(∑

j
µl

) µn


⊗
[
µ1 . . . µn

]
− 2diag

([
µ1(∑
l
µl

) (σ1 (yk − ς1)2
)
. . .

µn(∑
l
µl

) (σn (yk − ςn)2
) ])

(24)

With this in mind, the optimized linearized model (20) can
be shown as

θ̃k+1 = θ̃k (25)

ỹk = Gkθ̃
∗
k + ζk (26)

There is no direct knowledge about θ̃, and there exist
some perturbations such as ζk and Rk whose effect must
be taken into account. For these reasons, a Kalman filter-
based algorithm was used to train the network and then
find the estimates θ̂. The filter is defined by the equations

θ̂k = θ̂k−1 +Kk(yk −Gkθ̂k−1) (27)

Kk =
Pk−1GT

k

R2 + GkPk−1GT
k

(28)

Pk = Pk−1 −
Pk−1GT

kGkPk−1

R2 + GkPk−1GT
k

+R1 (29)

where Kk is the Kalman gain matrix, Pk is the conditional
covariance matrix, R2 ≤ 1 is the forgetting factor, and
R1 = RT1 is a matrix that handles the covariance of the
process noise (regarded as ζ and R). It is well known
that if R1 = 0, the traditional least-squares algorithm is
recovered.

The applications of the Kalman filter to neural networks
have proven to be very helpful, as they intend to provide
with an approximation to the minimum variance estimate
of the parameters in the linear case. In the nonlinear case,
even though the algorithm may be caught into a local
minima and then result in a non-optimal estimation, its
convergence and performance (as studied and compared to
other algorithms by Hagner et al. [2000]) have proven to
be very helpful. Nevertheless, it must be noticed that even
though the stability of the Kalman filter has been studied
under certain conditions (Guo [1990]), it is still a difficult
task to be accomplished, as noted by de Jesús Rubio and
Yu [2007].

2.5 Predictive control

The trained IOCReNN can be used to control a previously
identified system by using a predictive control architec-
ture. Let the IOCReNN be rewritten as

ŷk+1 = (ϕTk ⊗ zk)vect(C) + ϕTk (hc1uk + H̄ξ̄k), (30)
where hc1 is the first column of the matrix H, H̄ =
[hc2 . . .hcnR

] = H̄ is the matrix as H with the first column
removed, and ξ̄k = [uk−1 · · ·uk−m+1]T . If after the training
the network complies with ϕThc1 6= 0 (it is supposed
that the system has not singular points identified by the
neural network), a model reference predictive control can
be applied, so the next theorem is stated

Theorem 2. Predictive control design. Having that the
IOCReNN defined by (30) has no singular points for its
control (i.e. ϕThc1 6= 0 ∀ k), the following predictive
control

uk =
1

ϕhc1

(
−
(
ϕTk ⊗ zk

)
vect(C)− ϕT H̄ξ̄k + yd(k+1)

)
.

(31)
makes the network achieve any desired output in finite
time. If the control is applied to the real system, the
tracking error ek+1 = yd(k+1) − yk+1 is bounded when the
perturbations R and ζ are bounded.
Proof 1. When identifying the nonlinear system yk+1 =
f(·), the network’s approximation is given by Eq. (4).
When applying the proposed control, the terms are can-
celled and the resulting control makes the output in time
k + 1 equal to

yk+1 = yd(k+1) + ϑk (32)
Under the assumption that both Rk and ζk are bounded,
the control error will be bounded by |ek+1| = |ϑk| ≤ |Rk|+
|ζk|.

As the identified parameters can not be assumed to be
the ideal ones (the algorithm only searches near a local
optimum), an extra PID compensation term is added
to this control in order to deal with the uncertainties
of the resulting network. In this sense, the proposed
compensation control is

ūk = uk +
1

ϕhc1

−Kpek −Ki

k∑
j=1

ej

 . (33)

3. EXAMPLES

To analyze the identification capacity of the network, a
linear and a nonlinear systems were identified. In both
cases, the identification algorithm shown in Section 2.3
and a pseudo random input signal |u| ≤ 1.02 were used,
with 4,000 data for the first system and 8,000 data for the
second one. The control scheme was used in the second
system.

3.1 Linear system identification

The system to be identified is given by the transfer
function in discrete time

H(z) =
(z − 0.5)(z + 0.5)

(z + 0.9)(z − 0.8± 0.2i)
(34)

In this case, it was decided to train a net by using the
same information as the known system, with nR = 4. The
obtained results are shown in Figure 1, as well as the value
of the roots of the characteristic polynomial for each linear
system per rule.
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Fig. 1. Linear system identification

3.2 Nonlinear system identification

To test the identification performance of the IOCReNN, a
nonlinear system proposed by Narendra and Parthasarathy
[1990] was identified, which is given by the nonlinear dif-
ference equation

yk = fN (yk−1, yk−2, yk−3, uk, uk−1) (35)
where

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − 1) + x4

1 + x2
3 + x2

2

(36)

In the identification structure and algorithm, n = 3, m = 2
and 4 rules were considered, resulting in 28 parameters to
be trained. The results are shown in Fig. 2, as well as the
evolution of the nonlinear parameters σ, ς and roots of
each characteristic polynomial per rule. A RMS error of
0.03692 was achieved, comparable with previous results
reported by Juang and Lin [1999], with RMS error of
0.0248 (using 36 parameters), and RMS of 0.0084 using
a Genetic-Algorithm-based training and 33 parameters.

3.3 Nonlinear system control

By using the trained IOCReNN from the preceding sec-
tion, the same system was controlled. After checking the
nonexistence of singular points, a linear reference model
was used. The results are shown in Fig. 3. As it can
be seen, there exists a steady-state error; and the RMS
error between the desired and obtained signal is 0.03945.
By using the compensation PID control shown in (33),
using the empirical values Kp = 0.2 and Ki = 0.12, the
RMS error was reduced to 0.01744. The results for the
compensation control are shown in Fig. 4.

4. CONCLUSIONS

This work has presented a recurrent neural network-based
structure for identification and control of nonlinear sys-
tems, with a state-space representation and analysis but

Fig. 2. Nonlinear system identification

Fig. 3. Nonlinear system control

with input-output interpretation. The same results re-
garding Lyapunov stability for state-space dynamic fuzzy
systems can be used in this structure.

On the one hand, it was presented a training algorithm
that is able to get an approximation to a real plant
(under certain assumptions) using only input-output data
and with online training capabilities. When a proper
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Fig. 4. Nonlinear system control with PID compensation

initialization algorithm is used, a convergent learning can
be achieved. In the linear identification case, the achieved
identification for each subsystem was slightly different
from the real one. In the nonlinear case, there is an existent
identification error that is supposed to have origin in
the lack of nonlinearities included in the structure. We
hypothesize that adding membership functions in each rule
will help to reduce it, but having care in not falling into the
curse of dimensionality. On the other hand, a predictive
control was proposed that exploits the resulting trained
network, with bounded tracking error, that was tested in
a nonlinear system. A simple linear compensation via PID
was successfully used in reducing the tracking error. It
must be noted that still an stability analysis is needed for
this implementation, which is part of the future work of
this project.
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