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Abstract: This paper describes the integration of an Utkin observer with the unscented 
Kalman filter, investigates the performance of the combined observer, termed the 
unscented Utkin observer, and compares it with an unscented Kalman filter.  Simulation 
tests are performed using a model of a single link robot arm with a revolute elastic joint 
rotating in a vertical plane.  The results indicate that the unscented Utkin observer 
outperforms the unscented Kalman Filter. 
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1. INTRODUCTION 
 
This paper describes the integration of a deterministic 
observer and a stochastic state estimator.  The deterministic 
observer takes the form of a variable structure system where 
the driving component of the observer can switch between 
two values depending on the values of the error between the 
measured output and the estimated output.  This type of state 
estimator often referred to as sliding mode observer.  An 
Utkin observer is selected as a type of sliding mode observer 
in this work.  The advantage of the Utkin observer is that 
convergence condition of the estimated state to the true state 
is an explicit part of the observer design (Edwards and 
Spurgeon, 1998).  Hence, the selection of an appropriate 
value for the observer gain will guarantee the convergence of 
any initial estimated state to the true state in some finite time 
(Edwards and Spurgeon, 1998).  Once the estimated state 
reaches the true state, it will remain on the trajectory of the 
true state or well within a very small region around the true 
state.  While the convergence of the state is guaranteed by the 
Utkin observer, an Utkin observer is designed under the 
assumption that the measurement is not corrupted by noise so 
it may not perform well under noisy measurement conditions. 

The stochastic part of the combined observer is inspired by 
unscented Kalman filter (UKF).  Similar to its predecessor, 
the extended Kalman filter (EKF), the UKF algorithm 
involves the propagation of the mean value of the estimated 
state, the process noise covariance, and the measurement 
noise covariance.  The UKF has two advantages over the 
EKF.  First, no linearization is required which results in a 
reduction in the complexity of the algorithm (Wan and van 
der Merwe, 2000).  Second, the UKF is accurate up to third 
order of the Taylor series expansion (Wan and van der 

Merwe, 2000; Simon, 2006). The UKF is often capable of 
producing accurate estimates of the state given noisy 
measurements.  However, because the UKF is a stochastic 
observer, in contrast to the Utkin observer, the convergence 
condition of the estimated state is not an explicit part of the 
design.  Intuitively a robust observer that is able to achieve 
convergence and noise rejection is possible by combining the 
Utkin observer and the UKF, and this is the main motivating 
idea behind this paper.  

 

2. THE UTKIN OBSERVER 
 

The formulation of the following Utkin observer is largely 
motivated by Spurgeon and Edwards (1998). Consider a 
linear system: 
 ( ) ( ) ( )x t Ax t Bu t= +�  (1) 
 ( ) ( )y t Cx t=  (2) 

where n nA ×∈\ , n mB ×∈\ , p nC ×∈\ , and p m≥ .  The 
matrices B  and C  are assumed to be full rank and the pair 
( , )A C  is assumed to be observable.  Now consider a 

possible transformation cx T x6  where: 
 T

c
c

N
T

C
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (3) 

and the columns of ( )n n p
cN × −∈\  span the null space of C .   

The linear system in the new coordinates is now given by: 
 

11 1

1 1

( ) ( )
( )

( ) ( )c c c
x t x t

T AT T Bu t
y t y t

−= +
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�

 (4) 

With a new output distribution matrix given by: 
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 1 0c pCT I− = ⎡ ⎤⎣ ⎦  (5) 

Now let the system in the new coordinates be partitioned as 
follows: 

 
11 121

21 22
c c

A A
T AT

A A
− =

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (6) 

 
1

2
c

B
T B

B
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (7) 

The system can now be written as: 
 

1 11 1 12 1( ) ( ) ( ) ( )x t A x t A y t B u t= + +�  (8) 
 

21 1 22 2( ) ( ) ( ) ( )y t A x t A y t B u t= + +�  (9) 
where 
 

1

1

( )
( )c

x t n p
T x

y t p
−

=
⎡ ⎤
⎢ ⎥⎣ ⎦

7
7

 (10) 

Notice that the output now has been transformed and 
becomes part of the state equation. Now define an Utkin 
observer as follows: 

 
1 11 1 12 1ˆ ˆ ˆ( ) ( ) ( ) ( )x t A x t A y t B u t Lv= + + +�  (11) 

 
1 21 1 22 2ˆ ˆ ˆ( ) ( ) ( ) ( )y t A x t A y t B u t v= + + −�  (12) 

where 1̂ ˆ( , )x y  are the estimates of 1( , )x y , ( )n p pL − ×∈\  is a 
constant feedback gain matrix, and v  is a discontinuous 
vector defined component-wise by:  
 

1 1ˆsgn( )
i iiv K y y= −  (13) 

where  K +∈\ .  The error dynamics of the system in the 
new coordinate are given by: 

 
11 11 1 12( ) ( ) ( )ye t A e t A e t Lv= + +�  (14) 

 
1 121 1 22( ) ( ) ( )y yt A e t A e t ve = + −�  (15) 

Since the pair ( , )A C  is observable, the pair 11 21( , )A A must 

be observable. Matrix L   can therefore be chosen so 
that ( )11 21A LAλ −+ ∈^ . Now define a further change of 

coordinates that is dependent on L (Edwards and Spurgeon, 
1998). 
 

0
n p

p

I L
T

I
−

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

�  (16) 

The system dynamics on the new coordinates can be written 
as: 

 
1 1 1 12 1 1( ) ( ) ( ) ( )x t A x t A y t B u t= + +� �� �� � �  (17) 

 
1 21 1 22 1 2( ) ( ) ( ) ( )y t A x t A y t B u t= + +� �� �� � �  (18) 

where 

[ ]

11 12

21 22

11 21 12 11 21 22

21 22 21

A A
A

A A

A LA A L A LA LA
A A LA

=

+ − + +
=

−

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

� �
�

� �
 

(19) 

1 2

2

B LB
B

B
+

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

�  (20) 

The observer in the new coordinates now has the form: 
 

1 11 1 12 1 1
ˆ ˆ ˆ( ) ( ) ( ) ( )x t A x t A y t B u t= + +� � � �� � �  (21) 

 
1 21 1 22 1 2

ˆ ˆ ˆ( ) ( ) ( ) ( )y t A x t A y t B u t v= + + −� � � �� � �  (22) 

The error dynamics with respect to the new coordinates are: 
  

11 11 1 12( ) ( ) ( )ye t A e t A e t= +� ��� � �  (23) 
 

1 121 1 22( ) ( ) ( )y ye t A e t A e t v= + −� ��� � �  (24) 
Now modify the observer by adding a negative output error 
feedback term to the Utkin observer (Edwards and Spurgeon, 
1998) to give the following observer: 

11 11 1 12 1 1 1
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )yx t A x t A y t B u t G e t= + + −� � � �� � � �             (25) 

11 21 1 22 1 2 2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )yy t A x t A y t B u t G e t v= + + − −� � � �� � � �  (26) 

this gives an error dynamics of: 

1 11 11 1 12 1( ) ( ) ( ) ( )y ye t A e t A e t G e t= + −� ��� � � �  (27) 

1 1 121 1 22 2( ) ( ) ( ) ( )y y ye t A e t A e t G e t v= + − −� ��� � � �  (28) 

By selecting 1 12G A= �  and 2 22 22
SG A A= −� , where 22

SA  is 
any stable design matrix of the appropriate dimensions, the 
error dynamics are then reduced to: 
 

1 11 1( )( )e A e tt = ��� �  (29) 
 

1 121 1 22( ) ( ) ( )S
y yt A e t A e t ve = + −� � ���  (30) 

The error dynamics are asymptotically stable for 0v ≡  
because the poles of the combined system are given by 

( ) ( )11 22
SA Aλ λ� ∪  and hence they lie in the open left half of 

the complex plane.  An identical observer has also been 
reported in (Edwards and Spurgeon, 1994; Edwards and 
Spurgeon, 1996). Although the Utkin observer assumes a 
linear model it will be shown below how an Utkin design 
procedure can be applied to nonlinear systems.  The use of 
linear sliding mode observer for a nonlinear system has also 
been demonstrated in (Edwards and Spurgeon, 1994). 
 

3. UNSCENTED KALMAN FILTER (UKF) 
 
The UKF estimates the states of nonlinear dynamic systems 
by calculating the statistics of a set of sample points, referred 
to as the sigma points, which undergo a nonlinear 
transformation (Wan and van der Merwe, 2000); Simon, 
2006).  The method of calculating the statistics of a random 
variable that undergoes a nonlinear transformation is referred 
to as the unscented transformation (Wan and van der Merwe, 
2000; Simon, 2006). 
 
The UKF algorithm is defined as follows: 

 
0X x=  (31) 

 ( )( )i x x
i

X x n Pλ= + +  (32) 

1,..., xi n=  
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 ( )( )i x x
i

X x n Pλ= − +  (33) 

1,..., 2x xi n n= +  
 ( )

0
mean

x

W
n
λ
λ

=
+

 (34) 

 ( )(cov) 2
0 1

x

W
n
λ

α β
λ

= + − +
+

 (35) 

 

( )
( ) (cov) 1

2
mean

i i
x

W W
n λ

= =
+

 (36) 

1,..., 2 xi n=  
where: 
 ( )2

x xn k nλ α= + −  (37) 

is the scaling factor of the unscented transformation, 0X  is 

initial state mean, iX is set of 2 1xn +  sigma points, 
( )

0
meanW is the weight of the state mean, (cov)

0W  is weight of 

state mean covariance, ( )mean
iW  are the weights of the sigma 

points, (cov)
iW are the weights of the state covariance, xn is 

number of states, xP is state covariance, and α  and β are 
positive scaling parameters used to minimise higher order 
effect.  Furthermore the weights of the sigma points and the 
covariance are selected so that  
 2 2

cov

0 0
1

x xn n
mean

i i
i i

W W
= =

= =∑ ∑  (38) 

The UKF algorithm can be described as follows: 
 
1. Initialisation: 
 [ ]0 0x E x=  

 ( )( )0 0 0 0 0
TP E x x x x= − −⎡ ⎤

⎣ ⎦  

 And the augmented mean and covariance 

 0 0 0 0
Ta a Tx E x x= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

( )( )
0

0 0 0 0 0

0 0
0 0
0 0

Ta a a a a
P

P E x x x x Q
R

= − − =
⎡ ⎤
⎢ ⎥⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 

2. Sigma points update: 

( )1 1 1 1
a a a a
t t t a tX x x n Pλ− − − −= ± +⎡ ⎤

⎣ ⎦  

3. Time Update: 
    a. ( )| 1 1 1,x x Q

t t t tX f X X− − −=  

    b. 
2

( )
| 1 , | 1

0

an
mean x

t t i i t t
i

x W X− −
=

= ∑  

    c. 
2

(cov)
| 1 , | 1 | 1

0

an
x

t t i i t t t t
i

P W X x− − −
=

= −∑ ⎡ ⎤×⎣ ⎦  

  , | 1 | 1

Tx
i t t t tX x Q− −− +⎡ ⎤⎣ ⎦  

    d. ( )| 1 | 1 | 1,x R
t t t t t tY h X X− − −=  

    e. 
2

( )
| 1 , | 1

0

an
mean

t t i i t t
i

y W Y− −
=

= ∑  

 
4. Measurement Update: 

    a. 
2

(cov)
, | 1 | 1

0

a

t t

n

y y i i t t t t
i

P W Y y− −
=

= −∑ ⎡ ⎤×⎣ ⎦� �  

  , | 1 | 1

T

i t t t tY y R− −− +⎡ ⎤⎣ ⎦  

    b. 
2

(cov)
, | 1 | 1

0

a

t t

n

x y i i t t t t
i

P W X x− −
=

= −∑ ⎡ ⎤×⎣ ⎦  

  , | 1 | 1

T

i t t t tY y− −−⎡ ⎤⎣ ⎦  

    c. 1
t t t tt x y y yK P P−= � �  

    d. | 1 t t

T
t t t t y y tP P K P K−= − � �  

    e. ( )| 1 | 1t t t t t t tx x K y y− −= + −  

where Q is process noise covariance, R is measurement noise 
covariance, and Q and R  are the tuning parameters of the 
UKF. 
 

4. AN UNSCENTED UTKIN OBSERVER 
 
The Utkin observer is a deterministic observer which is 
driven by the system input, the difference between the 
measurement and the estimated measurement, and a 
discontinuous vector component 
 

1 1ˆsgn( )
i iiv K y y= −  (39) 

which makes it a robust observer that guarantees a 
convergence of any initial state to the true state under the 
assumption that the measurement is not corrupted by any 
noise. 
 
In contrast to the Utkin observer, the UKF minimises the 
effect of noise on the estimated states.  However, the 
convergence condition is not explicitly expressed in the UKF 
algorithm.  Convergence in the UKF depends entirely on the 
selection of the two tuning parameters Q and R.  Both the 
convergence of estimated state and the minimisation in noise 
effect can be achieved by combining the two observers to 
form an unscented Utkin observer.  For linear systems this is 
simply done by replacing step 3a of the UKF algorithm: 

 ( )| 1 1 1,x x Q
t t t tX f X X− − −=  (40) 

by a stable design of nonlinear Utkin observer. 
 
Note that the linear Utkin observer design procedure can also 
be applied to nonlinear systems which are linear in the 
control variable, and where the output equation is linear.  
This is done by separating the state equation into a linear part 
and nonlinear part.  Let the nonlinear system be described as 
follows: 
 ( ) ( ) ( , ) ( )x t Ax t N t x Bu t= + +�  (41) 
 ( ) ( )y t Cx t=  (42) 
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Now let A  be the linear matrix, N  the nonlinearity vector, 
B  the input matrix, and C the output matrix.  The system is 
assumed to be nonlinearly observable (Hermann and Krener, 
1977).  Applying the transformation given by equation (3) 
yield: 
 

1 11 1 12 1 1( ) ( ) ( ) ( )x A x A y N B ut t t t= + + +�  (43) 
 

21 1 22 2 2( ) ( ) ( ) ( )y A x A y N B ut t t t= + + +�  (44) 
Then further transforms the system using the L  dependent 
transformation given by equation (16) to give: 
 

1 11 1 12 1 1 1( ) ( ) ( ) ( )x A x A y N B ut t t t= + + +� �� � �� � �  (45) 
 

1 21 1 22 1 2 2( ) ( ) ( ) ( )y A x A y N B ut t t t= + + +� �� � �� � �  (46) 
Thus the modified Utkin observer for a nonlinear case is 
given by: 

11 11 1 12 1 1 1 1
ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )yx A x A y N B u G et t t t t= + + + −� � � � �� � � �  (47) 

11 21 1 22 1 2 2 2
ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )yy A x A y N B u G e vt t t t t= + + + − +� � � � �� � � �  

(48) 
Now, instead of propagating the sigma points through the 
model of the plant, the sigma points are now propagated 
through the Utkin observer and the propagated sigma points 
will then go through the UKF steps.  The unscented Utkin 
observer can be seen as having 2 1xn +  Utkin observers to 
correct each of the sigma points trajectories before updating 
them using the UKF algorithm. Although the propagation 
algorithm (48) and (49) is in a continuous-time form, in 
practice the Utkin observer requires to be integrated between 
sampling times to obtain sampled values of the continuous 
Utkin state estimate, which are required for the UKF part of 
the combined observer. The combined observer has four 
design parameters: the process and measurement noise 
covariances Q and R , and the two design parameters of the 

Utkin observer L and 22
SA . 

 
5. SIMULATION AND RESULTS 

 
The unscented Utkin observer is tested using a simulation of 
a single link robot arm with an elastic revolute joint rotating 
in a vertical plane (Koshkouei and Zinober ,2004).  The robot 
arm model is given by: 

1 2

2 2 1 1 3 1

3 4

4 4 1 3 2

sin( ) ( )

1( )

l

l l l

m

m m m

x x
F glM kx x x x x
J J J

x x
F kx x x x u
J J J

η

η

=

= − − − − +

=

= − + − + +

�

�

�

�

 

where 1x is the link displacement (rads), 2x  is the link 

velocity (rads/s), 3x  is the rotor displacement (rads), and 4x  

is the rotor velocity (rads/s).  lJ  is the link inertia, mJ  is the 

motor rotor inertia, k is the elastic constant, M  is the mass 
of the link, l  is the centre of the mass, and g is the 

acceleration due to gravity.  lF  and mF  viscous friction 

coefficients, 1η  and 2η  are random perturbations. For the 
purpose of simulation the following values are 
selected: 24 NmlJ = , 24 NmmJ = , 0.3ml = , 

15 Nm/radk = , 0.005mF = , 0.006lF = , 0.15 kgM = , 
29.81m/sg = , 1 0.02η ξ= , 2 0.04η ξ= , where ξ  is  

Gaussian random noise with variance 0.001. The same 
system can be written in matrix form where the nonlinear and 
linear parts are separated as follows: 
 ( ) ( ) ( , ) ( )x t Ax t N t x Bu t Hξ= + + +�   
 ( ) ( ) ( )y t Cx t tυ= +   
where 

0 1 0 0

0

0 0 0 1

0

l

l l l

m

m m m

Fk k
J J J

A

Fk k
J J J

− −

=

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

10 sin( ) 0 0
T

l

N x
glM
J

= −
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

[ ]0 00.02 0.04 T
H = , 

1
0 0 0

T

m

B
J

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

[ ]0 1 0 0C =  

where A  is a matrix with linear coefficients with respect to 
the states, N is the vector of nonlinearities, H is the process 
noise distribution matrix, B is the input matrix,  C is the 
output distribution matrix, and ( )tυ represents measurement 
noise. Now, for the purposes of Utkin observer design,  
assume that ( ) ( ) 0t tξ υ= = , and transform the system into 
new coordinates using the transformation given by equation 
(3) to bring the system into the form of equations (43) and 
(44).  Then further transform the system using the 
transformation matrix of equation (16) to bring the system 
into the form of equation (45) and (46).  The Utkin observer 
for this particular system is given by: 

1

1

1 11 1 12 1 1 1 1

1 21 1 22 1 2 2 2

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ
y

y

x A x A y N B u G e

y A x A y N B u G e v

= + + + −

= + + + − −

� � � � �� � � �
� � � � �� � � �

 

The simulated output is corrupted with a Gaussian noise 
( )tυ  with a variance of 0.001, and the chosen tuning 

parameters are: 
3

3

3

3

0 0 010
0 0 010
0 0 010
0 0 0 10

Q

−

−

−

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 310R −=  , 
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[ ]1.5 1 0
T

L = − −  , 22 1sA = − , 0.001K = −  
Note that the transformed form of the model (with states  

1 1,x y� � ) was used for the purposes of simulation, so that the 
estimated states obtained by the unscented Utkin observer 
could be compared with the simulated ones. The same was 
done with the UKF simulations, to make it possible to 
compare the results in both cases. Figures 1 to 4 show the 
simulation results of the unscented Utkin observer. Figures 5 
to 8 below show the simulation results of the UKF obtained 
from the same system simulated under the same conditions 
and initial states.  
 

 
Fig 1. 1x�  and 1̂x� (dotted) obtained through the unscented 
Utkin observer 
 

 
Fig 2. 2x�  and 2x̂�  (dotted) obtained through the unscented 
Utkin observer 

 

 
Fig 3. 3x�  and 3x̂�  (dotted) obtained through the unscented 
Utkin observer 

 
Fig 4. 1y�  and 1ŷ�  (dotted) obtained through the unscented 
Utkin observer 

 

 
Fig 5. 1x�  and 1̂x� (dotted) obtained through the UKF 

 

 
Fig 6. 2x�  and 2x̂� (dotted) obtained through the UKF 

 

 
Fig 7. 3x�  and 3x̂� (dotted) obtained through the UKF 
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Fig 8. 1y�  and 1ŷ�  (dotted) obtained through the UKF 

 
Table 1 shows the mean square error of each state from both 
UKF and unscented Utkin observer obtained from different 
initial states.  The mean square errors of the states are 
computed from simulations lasting for 100 seconds.  The 
mean square error for each transformed state was computed 
as follows: 

 2
, ,

1

1 ˆ( )
N

i i k i k
k

MSE x x
N =

= −∑ � �  (49) 

 
Table 1: Computed Mean Square Errors 

Initial states MSE with 
Unscented Kalman 

Filter 

MSE with 
Unscented Utkin 

Observer 

1 (0)x =� 0.8214 0.62680 0.00250 

2 (0)x =� 0.4447 0.63260 0.00210 

3 (0)x =� 0.6154 0.02060 0.00100 

1
(0)y =� 0.7919 0.00140 0.00140 

1 (0)x =� 0.8913 0.00260 0.00260 

2 (0)x =� 0.7621 0.00230 0.00230 

3 (0)x =� 0.4565 0.00095 0.00093 

1
(0)y =� 0.0185 0.00081 0.00080 

1 (0)x =� 0.9501 0.30700 0.02000 

2 (0)x =� 0.2311 0.30950 0.01950 

3 (0)x =� 0.6068 0.01280 0.00290 

1
(0)y =� 0.4860 0.00100 0.00100 

1 (0)x =� 0.9218 0.03640 0.01280 

2 (0)x =� 0.7382 0.03630 0.01300 

3 (0)x =� 0.1763 0.00190 0.00170 

1
(0)y =� 0.4057 0.00097 0.00096 

1 (0)x =� 0.1389 0.02040 0.01560 

2 (0)x =� 0.2028 0.02050 0.01550 

3 (0)x =� 0.1987 0.00170 0.00160 

1
(0)y =� 0.6038 0.00120 0.00120 

 
Notice that the mean square error is smaller for all states in 
the case of the Unscented Utkin observer. 

 
6. CONCLUSION 

 
This paper describes the integration of the Utkin observer and 
the unscented Kalman filter, investigates the performance of 
the combined observer by simulation using a model of a 
single link robot arm, and compares it with an unscented 
Kalman filter.  The computed mean square error indicates 
that the unscented Utkin observer outperforms the unscented 
Kalman filter. As well as achieving a good convergence and 
noise rejection, the unscented Utkin observer should also 
provides robustness due to its discontinuous component.   
However having established that the unscented Utkin 
observer outperforms UKF, the unscented Utkin observer is 
limited to systems whose output has a linear relationship 
given by equation (42). 
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