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Abstract: This paper applies hybrid modeling method based optimal control in industrial process. Hybrid 
modeling method combines a priori information with a nonlinear residual compensation technique to build 
a global model which predicts alumina raw pulp slurry quality. Process control is accomplished based on 
blending expert knowledge with multi-objective hierarchy reasoning approach. Through the coordination 
of model and controller, the optimal control of blending process is achieved. Application results show that 
the proposed method can resolve optimization problems of a kind of industrial processes characterized by 
time delay and multi-constraints.  

 

1. INTRODUCTION 

The increased fierce competition over the last few years 
combined with large alumina price fluctuations has forced 
most alumina and metallurgy companies to find ways to 
streamline and optimize plant operations. At the same time, 
increased computing power combined with improved 
modeling tools has provided the opportunity to use different 
modeling technology for generating accurate product quality 
predictions. Moreover, modeling such complex industrial 
processes is a complicated procedure and is traditionally done 
using white box modelling or black box identification 
(Sjőberg et al., 1995), where white box modelling means that 
the model is constructed using scientific relations that 
completely describe the process. The black box identification 
of making a process model is done by using a standard 
parametric model is adapted to measured data obtained from 
the process. 

Many white box modelling techniques, so-called first 
principle, exist for metallurgy processes, such as mass and 
energy balance, physicochemical reaction and 
thermodynamic mechanic. However it’s very hard to deduce 
a precise physical formula, no matter its structure or 
parameter, due to not only the inherent complexity of such 
process but also the practical production environment. On the 
other hand, most model-based control strategies (Rohit, 2007; 
Zhang, 2007) make use of general linear or nonlinear black-
box techniques to model the relationship between process 
input and output variables. This kind of method has the 
advantage of bypassing the complexity and the uncertainty of 
the physical systems. However, such models, especially 
nonlinear ones, may become themselves complex and involve 
a large number of parameters. Searching for the desired 
model parameters in a high dimensional model parameter 
space is prone to local minima and could lead to an 
inappropriate model. So, a new strategy combining these first 
principles with general black-box techniques is adopted as a 
means to trade-off between the complexity and the 

performance of such complex industrial processes at the 
supervisory control level. 

Generally, in hybrid modeling approach (Bohlin, 2001; 
Sohlberg, 2003), fundamental knowledge captured from 
industry process is used to define a prior parametric model 
with fixed structure derived from either first principle, 
existing empirical correlation or mathematical 
transformation, while the unknown part is modeled by a 
black-box model. Modeling this unknown part is usually 
much less complicated than modeling the whole process 
using a black-box model.  

The main contribution of hybrid modeling approach (Chen et 
al., 2004; Li et al., 2004) is as follows. First, this kind of 
model contains more physical meaning than a total black-box 
model thanks to the introduction of mechanical knowledge 
about the process. Second, some inherent problem of black-
box technology can be overcame, for instance, the dimension 
and the feasible region of the parameter space are reduced 
that can hopefully overcome some identifiability problems, at 
the same time, the model has better generalization capability 
than a complete black-box model when the hybrid model 
structure is appropriate. Last but not least, the whole hybrid 
model is more suitable to be used in the practical 
engineering.  

In this paper, as the key to the process control success, the 
hybrid modelling technology is realized successfully in a 
metallurgy process, alumina blending process control. The 
control system is composed of a prediction model and an 
expert controller. The prediction model is employed to 
forecast raw pulp slurry quality, which consist of mass 
balance equation and neural network model as estimator for 
some of the important process parameters as well as 
compensator of the physical model. The function of 
controller is to implement optimal raw material ratio setting 
control, which is based on expert knowledge. Through the 
coordination between the prediction model and expert 
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controller, the optimal control of the blending process is 
achieved. 

The rest of this paper is devoted to implementation details 
and explains the benefits derived from such an application in 
a metallurgy process. The structure of paper is as follows. 
Section 2 describes the blending process. The control 
approach existing in practical spot and the new control 
system proposed in this paper is analyzed in this section. 
Section 3 focuses on the hybrid prediction model of RPS 
quality and verifies the model using the practical production 
data. The expert controller is designed in Section 4. Section 5 
shows the practical application results. Section 6 ends with a 
conclusion. 

2. BLENDING PROCESS CONTROL SYSTEM  

2.1 Process Description 

The goal of alumina production is to extract alumina from the 
bauxite. This production process is a long and complex 
production flow, which is composed of many procedures. In 
such multi-unit production chain, the product of a previous 
procedure is used as the primary material of the subsequent 
process, thereby having the direct influence on the following 
product quality and indirectly impact on the final product. 
The failure of any node in this long chain has fatal detriment 
to the overall production system. So, in order to guarantee the 
final product quality, every production unit has to meet the 
strict technological requirements. Our research focuses on the 
first procedure of the alumina production, the blending 
process (BP). As the first procedure, the significance of BP is 
obvious. The quality of raw pulp slurry (RPS), product of BP, 
is pivotal to achieve the whole production success (Zhou, 
2004). 

In BP, the first step is to send all raw materials to ball mills to 
grind it for about forty minutes. In actual production, it is 
impossible to obtain the qualified RPS at the first time due to 
many issues which will be analyzed later. In order to satisfy 
the quality requirement, a second mixture or multiple-time 
mixture is introduced until the requirement is satisfied. 
Mixture procedures occur in some huge vessels on industrial 
spot. In the plant where the research was carried out, the 
matter from ball mill experience a total three-time mixture. 
Consequently, the practical BP becomes more complex than 
that in theory and alumina production costs are raised greatly. 
How to promote the one-time-quality of RPS and shorten the 
production procedure is a concern of research community and 
alumina industry (Li, X.B. et al., 2004). 

The BP complexity results from many aspects.  

First, especially in China, the quality of raw materials can not 
be guaranteed. Source and ingredients of raw ore frequently 
change, which cause stable product control difficult.  

Second, in BP, the sort of raw material is numerous. The 
materials include not only necessary ore (bauxite) and 
chemical matters (lime, and lime stone, caustic soda, coal) 
but also the product from the other procedures in long 

alumina production chain such as spent liquor and white 
residue. Spent liquor is the product of carbonization 
precipitation process, which is recycled to BP in order to 
maintain the alkali balance of the whole alumina production 
system. White residue is a kind of mud residue from the de-
silicification process, which is reintroduced to BP in order to 
prevent loss of alumina as much as possible. The ingredients 
and flux of these two matters are time-varying, which are 
influenced by production condition of carbonization and de-
silicification procedure. Shortly, BP is impacted by the other 
units in this production chain.  

Third, a large lag time exists in BP which is caused by the 
process inherent characteristics and delayed access to key 
measurements. Moreover, this lag-time is a variable changing 
with different production conditions. 

Fourth, many hidden variables and external random disturbs 
affect the process, which are often impossible to be measured 
and thus impossible to control.  

Last, it should be noted that qualified scopes of RPS 
technical index are rather minute (fine). Take the most 
important index, ratio of alumina to silicon (A/S) for 
example, the value should be within the range (4.50, 5.10), 
that is to say the gap can’t exceed 0.60. For such large-scale 
industrial production, such precision requirements definitely 
add great control difficulties. 

2.2 Quality Indexes and Control Targets  

Quality of RPS is characterized by several quality indexes. 
They are: 

Alkali ratio ([N/R]). The alkali ratio is the molar 
concentration ratio of sodium oxide to sum of alumina and 

ferrous oxide, that is 2

2 3 2 3

[ ]
[ ] [ ]

Na O
Al O Fe O+

. If the molar 

concentration of each matter in [N/R] is converted to mass, 

the expression is 2

2 3 2 3

1.645
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∑
∑ ∑

.  

Calcium ratio ([C/S]). The calcium ratio is the molar 

concentration ratio of calcium oxide to silica, that is
2

[ ]
[ ]
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. 

The mass expression converted from molar concentration is 

2

1.071 CaO
SiO
∑ . 

∑
Alumina silica ratio (A/S). The alumina silica ratio is the pure 
mass ration of alumina to silica. 

Ferro alumina ratio ([F/A]) is the molar concentration ratio of 

ferric oxide to aluminium oxide, that is 2 3
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Finally, the water percentage of the raw pulp slurry.  

All these indexes should be controlled within certain range. 
The value range of each index for example is shown in the 
Table 1. The given value is determined by the technical index 
of clinker which is the product of the consequent procedure 
in alumina production and will change periodically with 
clinker production condition variance. 

Table. 1 Value range of index 

Index [C/S] A/S [F/A] 
Range 1.90~2.10 4.80~5.00 0.077~0.081 

Thus, the control task is to determine the ratio setting value 
of each raw material according to the given quality indexes 
and accordingly achieve high quality of RPS using obtained 
ratios. 

2.3 Existing control approach 

At present, the common control approach in practical 
production is to establish an approximate mass balance 
equation of BP using linear programming or empirical 
formula. The basic feature of this method is to link 
observations together into some pattern. However, due to the 
mechanical limitations of BP and large number of the 
variable involved in system it is hard to set up such formula 
which can reflect the real system completely. At the same 
time, in order to alleviate the complexity, the multi-variable 
problems are usually solved as a less variable one. Besides, 
the industrial conditions where this research was carried out 
are much stricter than those considered for the modelling. For 
all these reasons the process is controlled using empirical 
knowledge of operate experts as the only strategy.  

The human operator on production site determines proper set-
point values for control variables of each raw material. This 
human supervised blending operation with DCS is 
schematically illustrated in Fig.1. 

 

2.4 New Control Framework  

In the new control system, we make good use of all available 
process information. Firstly, we combine the physical 

knowledge modeling technology and intelligent technology 
to set up hybrid prediction model of RPS quality. Secondly, 
the experience and knowledge of human operator are 
employed as decision strategy. Accordingly, an expert rule 
base is set up based on it. The whole control system is 
illustrated in Fig. 2 and discussed in detail below. 

♦ The physical model based on mass balance is a first- 
principle model. In this physical model, some important 
process parameters are obtained by a nonlinear prediction 
method (Neural Network).  

♦ The physical model can’t reflect practical production 
completely. So, the other forms of knowledge, statistical, 
qualitative or expert rules are applied to compensate the 
mechanical knowledge. The residual compensation 
integration model of physical model fulfils this function, 
which is integrated to physical model by an expert 
coordinator. 

♦ A rule based ratio optimization controller is designed to 
achieve the ratio settings. The rule controller includes a 
knowledge base and hierarchy reasoning mechanism. In 
rule database, expert knowledge is divided into several 
rule groups according to different constraints and 
practical ratio regulating principle. Such well-organized 
rule bases facilitate the inference speed. Hierarchical 
reasoning strategy is designed to infer the optimal ratio of 
raw material as control setting value. 

Raw material 
component 
parameters 

 

3. HYBRID PREDICTION MODEL OF RPS QUALITY 

3.1 Physical Models Embedded with NN  

Based on mechanical knowledge of the BP, the physical 
model is set up according to mass balance theory. Suppose K 
kinds of raw material are used to produce the raw pulp slurry. 
Let Mi be the mass of the ith raw material. 
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Fig.2. New BP control system scheme proposed
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The equation of water mass balance can be obtained using the 
following equation, 

1

1

ˆ

K

i i Los
i

K

i
i

M H H
H

M

=

=

−
=

∑

∑
        (1) 

Where, Ĥ is the water concentration percentage in RPS, iH  
the water content percentage of the ith raw material. LosH  the 
water consumed in a chemical reaction which will be 
depicted later. 

The framework of CaO, Na2O, SiO2, Fe2O3, Al2O3 mass 
balance is  

1

1 1

ˆ
( )

K

i i
i

K K

i i i L
i i

M P
P

M M H H

=

= =

=
− −

∑

∑ ∑ os

ˆ
al al al alN k m N= ⋅ ⋅

2 2( )CaO H O Ca OH+ = ↓

       (2) 

Where, is content percentage of the matter P in the dry 
RPS, Pi the matter P content percentage of the ith raw 
material. 

P̂

Because some chemical reactions occur in BP, some 
parameters can’t be obtained directly. These parameters in 
the physical model are calculated as follows.   

 (1) On production site the measured composition of alkali is 
Na2CO3, in the balance equation of Na2O the useful content 
of Na2CO3 should be converted to that of Na2O. The equation 
is: 

            (3) 

Where kal is conversion coefficient, mal is mass of alkali. Nal 
represents useful Na2CO3 content in alkali. 

(2) The test method of water in RPS goes as follows: one unit 
RPS is weighted and dried at 150 . Difference between the ℃
wet matter and the dry one is the weight of water. However, 
in this process a chemical reaction will take place between 
the lime and water.  

 

Calcium hydroxide is the production of this chemical reaction, 
which consumes some water. That is why, in the equation of 
water mass balance, the consumed water LosH  should be 
subtracted. 

Los ca ca cak m C= ⋅ ⋅

Si SiH

H             (4) 

Where, kca is conversion coefficient. mca mass of lime. Cca is 
CaO content percent of lime. 

(3) White residue density is an important parameter, but can’t 
be obtained directly. However, it has certain relationship with 
water content. A linear regression model is used to reveal this 

relationship based on the least-square method. The deduced 
equation is  

ρ α β             (5) = +

0.0089,α = − 1.9304Where, = . β

(4) The NN model of spent liquor density. Spent liquor from 
carbonization precipitation is a kind of supersaturation 
solution whose ingredients are rather complex. The 
unsolvable part is called GUHAN in production. On 
industrial site, for spent liquor three parameters are measured 
directly. They are NT density (Na+content in liquid), AO 
density (Al3+content in liquid) and mass of GUHAN. The 
density of spent liquor is related to NT density, AO density 
and mass of GUHAN and this relationship is nonlinear. 
Owning to the property of function approximation of NN, an 
NN model of multilayer feedforward network is introduced to 
describe this relationship as formulated in (6). Levenberg-
Marquardt algorithm is adopted as learning strategy, which 
has fast convergence and can avoid local minimum. 

( , , )TM NNf N A G            (6) ρ =

Where, N represents NT density, A is AO density, G is mass 
of GUHAN. 

3.2 Intelligent Residual Compensation Models  

The BP mechanism in practice is quite different from that in 
theory. Theoretical mechanisms ignore factors brought by 
real production environment. In addition, physical model 
ignores some useful information due to measurement 
problem. All these make development of a precise physical 
model difficult. In order to compensate such inevitable errors, 
neural network (NN) is employed to model the residue of 
physical model. 

In order to simplify the structure of NN, PCA (principal 
component analysis) is employed to reduce the dimension of 
input variables of the NN model. Take the calcium oxide 
compensation model for example. The neural network is a 
traditional three-layered feedforward one. It receives 
operating variables, including the amount of bauxite, lime, 
caustic soda, spent liquid, coal and alkali and the calcium 
oxide content in the bauxite and caustic soda. The hidden 
layer has 15 neural nodes. The output of NN is compensation 
value. 

In total 100 sets of chemical analysis results fitting to the 
sample space are divided into two parts. One part is 
employed for training, the other for verification. The 
observed deviations between the physical model and the state 
variable measurements are used as error signals to the 
network. The weight factors of the neural network in the 
hybrid model are determined by minimizing the deviations of 
the model outputs from the experimental data. 

The compensation method of other variables is similar to that 
of calcium oxide.  
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3.3 Hybrid Prediction Models 

Within the experimental data, the NN model is more precise, 
but extrapolation capacity is limited. In order to deal with the 
model residual from sample space, history data are employed 
to compensate. 

Suppose at K time, if the inputs are outside the domain of NN 
training, the compensation value ( )GP KΔ  is computed like 
this: 

ˆ( ) ( ) (G RP K P K P K )τ τΔ = − − −        (8) 

Where (RP K )τ− and ˆ(P K )τ− are state variable 
measurements and mathematical model prediction of K-τ 
time. τ is the lag time of process and relates to sampling time 
and number of available ball mills and vessels. 

Supposed is the domain of the NN model input variables, 
is the input variables. The expert coordinator on line 

works like this: 

S
X

Rule1: IF  THEN  ∈X S N NP PΔ = Δ  

Rule2: IF  THEN   ∉X S GP PΔ = Δ

So the hybrid quality prediction model of RPS is: 

ˆP P P= + Δ                (9) 

Where  and  are the output of physical model and 
hybrid residual component model. 

P̂ PΔ

3.4 Analysis of the hybrid model precision  

The verification result of the proposed model using practical 
production data is shown in Fig.3. 

RMSE (Relative Mean Squared Error) is used to judge the 
precision of the model, which is defined as follows: 

2

1

ˆ1 ( ) ( )( ) %
( )

N

k

y k y kRMSE
N y k=

−
= ∑       （10） 

Table 2 illustrates the RMSE comparison of A/S, [C/S], [F/A] 
index value predicted by the physical and hybrid model 
respectively. 

Tab.2 RMSE comparison between physical and hybrid model 

 A/S [C/S] [F/A] 

Physical model 6.20% 8.37% 7.97% 

Hybrid model 3.46% 4.71% 5.32% 

From the results, we can see that the hybrid model is more 
precise than the physical one. The practical results, when the 
proposed model is used in production process, also verify that 
it is an effective reference for the practical production. 
Although the proposed model can’t give the 100% accurate 
prediction value, the result is still satisfying and exciting. 
After all taking serious disturbance and system complexity 

into account, the performance of the model provides the good 
basis for the system controller. 
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Fig.3 Comparison between the predictive values of physical model 
and hybrid model 

4. RATIO OPTIMIZATION SETTING 

The optimization controller of the ratio setting adopts the 
multi-object hierarchy reasoning strategy to realize the ratio 
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optimization setting control. The ratio setting value is 
deduced by quality predictions and the given indexes. 

4.1 BP Knowledge Base  

The amount of BP expert knowledge information is so large 
due to the facts such as multi-variable, multi-constraint 
involved in the process and coupling between different 
variables and so on. All these make BP knowledge rules 
extremely diverse. So, a well-structured expert system that 
can be utilized easily and practically can promote the system 
performance greatly.  

In practice, the principle of human operator regulating ratio 
follows such criterion, “the index A/S requires more 
attention, while the other indexes are regulated in sequence”. 
Accordingly, a quality effective coefficient (QEC) is assigned 
to each index to indicate the different importance of each 
index in the regulating process. The more important the 
index, the smaller the QEC, and vice versa. Thus the QEC of 
A/S is smallest, the value of which is 1. The QEC value of 
[C/S], [N/R], [F/A] and water is 2,3,4,5 respectively. 
Consequently, according to QEC the BP knowledge is 
divided into the corresponding knowledge group. In each 
group, the corresponding rules are arranged by the priority 
level. The rules which are invoked more often have higher 
priority level. Such rule organization architecture can speed 
up reference engine greatly. 

The general expression of rules is like:   

: ( , , , )Rule R RGNo RNo CList ConcNoi  

Where, Rulei represents the corresponding knowledge group 
whose QEC is i. RGNo is group number. RNo is rule number 
in a knowledge group and is arranged by rule density. CList 
is a table of conditions (TC). Each TC is of form: 
“((CNOi,Tagi), i=1,2,…,n)”.Where, Tagi is a tag which 
indicates whether this rule is the last one. If the rule is last 
one, the value of Tagi is 1, else 0. ConcNo is result number. 
Each number matches a corresponding expert operating 
action, all of which are stored in result database. 

For example: R1 ： IF {A/S qualified,0} AND IF {[C/S] 
qualified,0} AND IF {[N/R] qualified,0} AND IF {[F/A] 
qualified,1} THEN {0101} 

R1 is the knowledge group used to regulate A/S. 

0101 is the result number. The reference engine invokes 
corresponding action from the result database. In this case, 
the action represented by 0101 is that there is no need to 
regulate ratio. 

4.2 Hierarchical Inference Strategy 

The inputs of ratio optimization reference model(RORM) are 
the difference between the outputs of quality prediction 
model and index setting value which are denoted by EA/S, 
E[C/S], E[N/R], E[F/A], EH respectively. 

Hierarchical inference strategy is adopted in the RORM. The 
reasoning procedure is divided into several sub-reasoning 
procedures according to object constraints. Suppose Ei is the 
difference between the prediction value of ith index and its 
set point. Mi (>0), Li (>0) are technical parameters relating to 
the ith index（Mi < Li）in the production process. P2i, P1i are 
the ratio regulation step length of ith level, P2i>P1i. The value 
of step length is decided by the practical operation experience. 

The ith level optimization inference mechanism is as follows: 

Step1: Judge whether the ith level reasoning is the last level 
reasoning. If yes, the reasoning is ended and the 
current value of the ratio is outputted; else, go to Step 
2. 

Step2: IF i iE M≤ ，THEN go to step 6; ELSE go to the 
Step3.  

Step3: IF i iE L> , THEN regulating ratio by P2i  step length, 
then go to the Step 5; ELSE go to Step 4. 

Step4: IF i i iM E L< ≤ , THEN regulating ratio by P1i step 
length. 

Step5: Recalculate the prediction value by inputting new 
calculated ratio. Then go to Step2. 

Step6: Go to the i++th level reasoning.  

The inference progress can be illustrated by Figure 4. 

 

5. INDUSTRIAL APPLICATIONS 

The proposed control system of BP has been put into 
service in Zhongzhou Alumina Refinery which is located in 
Henan province, China in 2004. It is an important part for the 
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optimal control of BP in alumina production. Control 
software is implemented by Visual C++ program language 
and is executed on an expert optimization computer (EOC). 
EOC exchanges the information with six real-time monitor 
and control computers (RMCCs) by OPC technology. 
RMCCs send the ratio setting value to distributed control 
system (DCS) by DH+ (Data Highway Plus) Network. The 
automatic feed control is realized. 

In order to show the system performance, quantitative 
analysis is done. One work day data (24 hours) was analyzed 
to show the validity thanks to control system implementation. 
Due to page limitation, data are not shown in the paper. 

A judgment index, shooting percentage (SP), is introduced to 
verify the performance of the result, which indicates the 
fluctuation of the practical results.  

ri(i=1,2,…,n) is the sample from A vessels. r  is supposed to 
be the average value of all samples ri. The difference between 
each sample and r is ( 1, 2,..., )i ir r i nμ = − = . 

The SP is defined as: 100%mP
n

= × .Where, m is the sample 

number which satisfies
iμ ε≤ , ε is a technical parameter 

depending on specific application. P denotes the fluctuation 
degree of production index. A larger P means that more data 
points fall into [ r - μi, r + μi], more smooth control result, 
verse vice. 

In this case, according to practical quality requirements, 

[ / ] / [ / ], ,C S A S F Aε ε ε is fixed to±0.15, ±0.15, ±0.005 
respectively. Thus, comparison of P[C/S], PA/S, P[F/A] before 
and after the new system implementation is shown in Tab.3. 

Tab. 3 Indices comparison before and after the new system 
implementation 

 After before 
P[C/S] 83.72% 48.48％ 
PA/S 77% 45.45% 

P[F/A] 93.93% 48.48% 
From table 3, we can see that product quality index became 
much better after the new system implementation than 
before. The result reveals the fact that the proposed control 
system can eliminate the bad influence caused by system 
inherent delay. 

6. CONCLUSION 

BP is a classical complex industrial process with a large lag-
time, multi-variable, uncertainty and multi-constraint. As the 
foundation of successful system control, the hybrid modelling 
technology shows the amazing power. The paper takes 
advantage of hybrid model technology to set up RPS quality 
prediction model. Thanks to its desired precision, this model 
effectively eliminates the awful influence caused by inherent 
process delay, while which can’t be achieved by human 
operator. Based on trustworthy predictions, an expert 
controller which mimics human inference process is 

developed to optimize ratio setting value of input raw 
material. A well-constructed rule base and novel hierarchical 
reasoning mechanism promote system performance greatly. 
The coordination of two important parts (model & controller) 
finally brings the success. Application results prove this 
success powerfully. The method proposed in this paper 
provides an available, feasible and general framework for 
goal-directed optimization control of such complex industrial 
process. 
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