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Abstract: The hysteretic behaviour is an essential feature of many physical systems. Such a feature is 
conveniently accounted for in hysteretic systems modelling through the well known nonlinear Bouc-Wen 
equations. But these involve several unknown parameters and internal signals that are not all accessible to 
measurements. These difficulties make the identification of hysteretic systems a challenging problem. To 
cope with these issues, previous works are generally based on simplifying assumptions that  amount to 
supposing, among others, that the Bouc-Wen equations describe an isolated physical element in which 
‘hysteretis’ is the only dynamic feature. The point is that, even such a case, the control input should be an 
external driving force and no the displacement.  In this paper, the hysteretic equations are let to be what 
they really are in most practical situations: just a part of the system dynamics. A multi-stage parametric 
identification scheme is designed and shown to recover consistently the system unknown parameters. The 
proposed solution is suitable for systems not tolerating large displacements (e.g. like buildings) as well as 
for situations where force sensors are not available.  

1. INTRODUCTION 

Hysteresis is a memory feature that characterises a wide 
variety of nonlinear systems. To describe the behaviour of 
hysteretic processes several mathematical models have been 
proposed (Macki, et al, 1993). In this paper the focus is made 
on the Bouc-Wen model (Wen, 1976) which is suitable for 
smooth hysteresis. It has received a great deal of interest and, 
in particular, it has been used to model piezoelectric 
actuators, base isolation devices and magnetorheological 
dampers (Nagarajaiah and Xiaohong, 2000), (Ni et al, 1998, 
Savaresia et al, 2005). In this model, the restoring force 

)t(BWΦ  is related to the displacement )t(x as follows: 
 
 )t(Dkz)1()t(kx)t(BW ααΦ −+=   (1) 

))t(z)t(x)t(z)t(z)t(x)t(xA(D)t(z n1n1 &&&& γβ −−= −−

      (2) 
 
where the parameters 10 << α , 0k > , 0D > , 0A > , 

βγβ ≤<− , 1n ≥  determine the shape and  size of the 
hysteresis loop. 
Identification of the model (2) amounts to determining the 
parameters α, β, γ, Α, D, k, n. This is not a trivial task as the 
state )t(z  is not accessible to measurements. In particular, 
the parameter n comes nonlinearly in the model and is not 
necessarily an integer. Many identification methods have 
been proposed to get estimates of the Bouc-Wen model 
parameters. A number of early methods have been reported in 
(Wen, 1976) and more recent ones have been presented in 
(Smith et al., 1999; Ni et al., 1998; Ikhouane and Rodellar, 
2005b). However, the proposed methods are generally based 
on simplifying assumptions on the system or on the signals. 
For instance, in (Smith et al., 1999) and (Ni et al., 1998) it 

was supposed that some system parameters (e.g. mass, 
friction coefficient) are known and the second derivative of 
x(t) is measurable. In (Smith et al., 1999), it was assumed 
that n is an integer and bounded by a known integer. In 
(Ikhouane and Rodellar, 2005b) it is supposed that the 
restoring force )t(BWΦ  is accessible to measurements and 
the displacement x(t) is the actual control input of the system. 
 
In this paper, the hysteretic element (1)-(2) is considered as a 
part of a more complete mechanical structure. Accordingly, 
the displacement x(t) undergoes a Newton motion equation 
that is driven by an external force. Furthermore, the 
displacement measurement is affected by an additive noise. 
The global structure is controlled by the driving force (input 
signal) and observed by the (noisy) measured displacement 
(output signal). The more realistic system thus defined is 
characterized by equations (1)-(2) together with the Newton 
and output equations. The Newton equation introduces 
additional unknown parameters (inertia and friction 
coefficients). An identification scheme is designed to get 
estimates of all unknown parameters without resorting to 
those unrealistic assumptions such as supposing accessible to 
measurement the restoring force and the displacement 
derivatives or supposing the parameter n to be an integer. The 
proposed method operates in three main stages. In each stage 
a part of the unknown parameters and unmeasured signals are 
estimated and the estimates obtained in one stage are based 
upon in the next stage. The proposed identification method 
relies on simple experiments that only necessitate sine wave 
exciting signals. Finally, note that consistency properties are 
formally established for all involved estimators, while most 
earlier works were limited to simulations (Wen, 1976; Smith 
et al., 1999; Ni et al., 1998).  
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2. IDENTIFICATION PROBLEM STATEMENT 

2.1 Class of identified systems 

We are interested in (mechanical/structural) systems that 
involve the hysteresis feature. This is for instance the case of 
base isolators installed to supply passive or active (through 
actuators) protection of huge buildings against earthquakes. 
The motion of the base is described applying Newton’s law: 
 
 )t(u)t()t(xf)t(xm BW =++ Φ&&&   (5a) 
 )t()t(x)t(xd ξ+=    (5b) 
 
where u(t) represents the excitation force; x(t) denoted the 
real displacement and  )t(xd is measured value;  )t(ξ is a 
zero-mean ergodic stochastic process accounting for external 
disturbances. The constants m and f are respectively the 
inertia and the friction coefficient. ΦBW(t) denotes the 
nonlinear restoring force that is assumed to undergo the 
normalized Bouc-Wen model:  
 
 )t(k)t(xk)t( wxBW ωΦ +=    (6) 

))t()t(x)1()t()t()t(x)t(x()t( n1n ωσωωσρω &&&& −−−=
−

      (7) 

where 1n
2
1,0,0k,0k wx ≥≥>>>  and σρ . 

The normalized model (6)-(7) involves only five unknown 
parameters, while the initial model (1)-(2) involved seven 
parameters. Equation (6) shows that the restoring force 
ΦBW(t)  is the superposition of an elastic component kxx(t) and 
a hysteretic component kwω(t). The signal )t(ω , which is an 
internal state, is not supposed to be available. Consequently, 
the restoring force is in turn not available. In fact, u(t) and 
xd(t) are the measurable signals. In particular, x(t) and its 
derivatives )t(x&  and )t(x&&  are not supposed to be 
measurable.   
 
Remark 2.1. 
1) The fact that none of )t(BWΦ , x(t), )t(x&  and (t)x &&   is 
supposed to be measurable does constitute a substantial 
progress with respect to the existing literature (e.g. (Smith et 
al., 1999); (Ni et al., 1998); (Ikhouane and Rodellar, 2005b)).  
2) Note also that, unlike (Ikhouane and Rodellar, 2005b), the 
internal signal x(t) is not considered to be the actual control 
input. In fact, taking x(t) as the control input would be 
possible if the hysteretic model (1)-(2) could exist as an 
autonomous physical element. The fact is that, in most 
situations, equations (1)-(2) come in as a part of a more 
general model; they just point out the fact that hysteresis is a 
feature of the considered system. As a matter of fact, the 
system is driven by an external force u(t). Consequently, 
there is no way to enforce x(t) to fit the non-smooth triangular 
signal resorted to in (Ikhouane and Rodellar, 2005a-b). 
3) An other interesting feature of the present study, compared 
to the previously mentioned works, is that a measurement 
noise is accounted for in the displacement, making the 
present study more realistic. 

2.2 Identification objective 

Our purpose is to design an identification scheme that 
provides asymptotically accurate estimates of the unknown 
parameters n and ,,k,k,f,m wx σρ .  

3. IDENTIFICATION SCHEME DESIGN 

3.1 Hysteretic model re-parameterization 

The proposed identification scheme is based on a new re-
parameterization of the system. To this end, we rewrite 
equations (6) and (7) as follows: 
 
 )t(v)t(xk)t( xBW +=Φ    (8) 

 n1n )t(v)t(xc)t(v)t(v)t(xb)t(xa)t(v &&&& +−=
−  (9) 

where: 
 (t)kv(t) wω=     (10a) 

 1n
w

1n
w

w k
)1ρ(σc;

k
ρσb;ρka

−−

−
===  (10b) 

 
In this re-parameterized model, the unknown parameters are 
n, m, f, kx, a, b, and c. The parameters   , , kw γρ can be 
obtained from the parameters a, b, c and n using the 
following equations: 
 

 n
w

w

n/1

w )k(
a
b;

k
a;

cb
ak ==








−
= σρ  (11) 

3.2 Estimation of the true displacement x(t) 

First, recall that (see e.g. (Smith et al., 1999)) when the input 
u(t) is periodic, the undisturbed output x(t) is in turn periodic, 
in steady-state, with the same period. In fact, in steady-state, 
one observes in practice a hysteretic limit cycle.  
The proposed identification scheme necessitates three 
experiments all of them involving a periodic input signal. 
More specifically, the input signals considered are simple 
sine waves. Consequently, in all experiments, the undisturbed 
output x(t) turns out to be, in the steady-state stage, a periodic 
signal with the same period as the input u(t). This property, 
together with those of the external disturbance )t(ξ , makes 
it possible to consistently estimate x(t), using the measured 
signal xd(t). In effect, letting T denotes the period of the input 
signal, the displacement x(t) can estimated averaging the 
measured output xd(t) as follows:  
 

 ∑
=

+=
N

1i
d )iTt(x

N
1)N,t(x   (12) 

 
Proposition 3.1. The estimator (12) is consistent i.e 
 )t(x)N,t(x →     (w.p. 1) as N→∞     � 
 
Proof. The proof is omitted due to the limitation of the length 
of the paper.  

3.3. Outline of the proposed identification scheme 
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Before presenting in detail the different components of the 
identification scheme, it is convenient to first sketch a general 
view. Roughly speaking, the proposed identification scheme 
includes three main steps. First, the parameters m and f are 
estimated ( f̂m̂   and  ), and  )t(x&  and )t(x&&  are estimated 
from )t(x  ( )t(x& and )t(x&& ). Then, an obvious estimator of 
ΦBW(t) would simply be: 
 
       (t)xf̂(t)xm̂u(t)(t)Φ̂BW

&&& −−=       (13) 
 
In the second step, the parameter kx is estimated and the 
estimate xk̂  is used in the following estimator of the internal 
variable v(t) : 
 
  ( )(t)xk̂(t)Φ̂(t)v̂ xBW −=      (14) 
 
In the third step, the rest of the parameters (i.e. a, b, c, n) are 
estimated based on (9), using )t(v̂ . The estimates thus 
obtained are used to get estimates for the parameters γρ ,,kw  
making use of (11). 
 

3.4  Step 1: Estimation of m, f and ΦBW(t) 

As already mentioned, in this paper we only consider sine 
input signals i.e.  
 
 )tcos(U)t(u m ω=      (15) 
 
It has also been mentioned earlier that the resulting (steady-
state) displacement x(t) is periodic with period ωπ /2T = . 
Then, invoking the Fourier series theory, the displacement 
can be decomposed as follows: 
 
  )t(x)tcos(X)t(x har1 +−= ϕω    (16a) 
with:  
 2)(h   ≥−= ∑

h
hhhar )thcos(X)t(x ϕω   (16b) 

 
Furthermore, it can be shown (see e.g. (Ikhouane and 
Rodellar, 2005a)), that for small displacements the 
relationship between )t(BWΦ and x(t) becomes linear in 
steady state, i.e.: 
 
         )t(x)ak()t( xBW +=Φ   (17) 
 
This means that for a periodic displacement with small 
magnitude the hysteretic feature has no substantial effect on 
the displacement. In view of (17), equation (5) becomes: 
 
 )t(u)t(Kx)t(xf)t(xm ≅++ &&&   (18a) 
with: 
  akK x +=    (18b) 
 

The smaller is ))t(x(max
t

, the more accurate the linear 

equation (18a). This in turn implies that 0)t(xhar →  as 
0))t(x(max

t
→ .  

The second-order linear equation (18a) is particularly suitable 
to get estimates of the unknown parameters m, f, K. But, it is 
important to recall that here )t(x is the output of the system 
that is driven by )t(u , and furthermore )t(x  is not directly 
measurable. So, the question is: how to be sure that such 
equation actually holds ? 
To answer the above question, we make use of the fact that 

)N,t(x  is a consistent estimate of the (unavailable) signal 
x(t) and the fact that 0)t(xhar →  as 0))t(x(max

t
→ . The 

idea is to drive the system into a ‘small-signals’ operation 
regime, by tuning Um (and possibly ω) and observing the size 
of )t(xhar . This is precisely formulated in the following 
research procedure: 
 
Small Signals Operation (SSO) 
1) Develop the T-periodic signal )t(x  in Fourier series. 

2) Compute the distortion ratio: 2
1

h

2
h

R X

)X(
D

∑
=   

3) If ε>RD , then tune Um or ω  to decreasing x(t) and go to 
step 1. Else, note the values of Um , ω  and 1X  and end the 
procedure. 
 
In Step 3, the parameter ε is a real threshold whose choice is 
let to the designer. The outcome of the SSO procedure is a 
quadruplet ( ))(X),(,,U 1m εεϕω  corresponding to conditions 
where equations (17)-(18a) hold with an error that depend on 
ε. The smaller is ε, the more accurate are (17)-(18a). 
However, a too small value of ε would necessitates a too long 
time for the SSO procedure to end up research. Therefore, ε 
should be chosen bearing in mind the above two 
requirements. Our simulations has shown that that the choice 
ε=0.05 a satisfactory compromise. 
The above procedure can be run on several times leading to 
different quadruplets. Let ( ))(X),(,,U 11111m εεϕω  and 
( ))(X),(,,U 12222m εεϕω  denote two such quadruplets.  
On the other hand, from (18a) one gets the following 
expressions: 
 

 
222

m

1

)mK()f(
1

U
X

ωω −+
=     (19a) 

  
2mK

ftan
ω

ωϕ
−

=    (19b) 

In effect, these characterize the harmonic behavior of any 
linear second-order system. Substituting, successively 
( ))(X),(,,U 11111m εεϕω  and ( ))(X),(,,U 12222m εεϕω  in the 
above expressions, one gets four equations involving the 
unknown parameters m, f and K. Then estimates 

)(K̂),(f̂),(m̂ εεε  can then be obtained by simply solving 
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the obtained equations. The quality of the estimates depends 
on the value of ε. The smaller is ε, the more accurate the 
estimates. The result thus established is simply formulated as 
follows: 
      )(m)(m̂ εΟε += ;  )(f)(f̂ εΟε +=    (20a) 

      )(K)(K̂ εΟε +=        (20b) 
 
Remark 3.1. In (Ikhouane and Rodellar, 2005b), no method 
has been given to check whether (18a) holds or not. In the 
light of these observations, the procedure SSO presented 
above turns out to be a significant progress. 
Moreover, since the signal x(t) and its derivatives )t(x&  and 

)t(x&& have all been supposed to be  unavailable, the 
estimation of the parameters K,f,m  based on the 
parametrization (18a) and the least-squares  is not possible.  

3.5  Step 2: estimation of  xk , a and v(t) 

In this section, the amplitude of the output signal x(t) is no 
longer supposed to be small. In such a case, the curve 
( ))t(x),t(u  leads to a hysteretic limit cycle.  
Estimation of xk and a. To this end, we perform two 
experiments that consist in exciting the system, successively, 
with the two following signals: 
 
 )T/t2cos(U)t(u m1 π=   (21a) 
 U)T/t2cos(U)t(u m2 += π  (21b) 
 
where mU and U are any real constants. Let x1(t) and x2(t) 
denote the resulting (undisturbed) displacements. These are 
T-periodic because the input signals u1(t) and u2(t) are so. 
Then, consistent estimates )N,t(x1 and )N,t(x2  of x1(t) and 
x2(t) are obtained using (12).  Let us introduce the notations 
where 1,2)(i = : 

  N)(t,x min)N(x      ,N)(t,x max)N(x i
t

minii
t

maxi ==
 

Through the multiple experiments, we always observe that : 
 

)N()N(x)N(x)N(x)N(x min1max1min2max2 δ+−=−   (22a) 
 )N(x)t(xx)t(x min11min22 δ+−=−  (22b) 
 0)N( →δ  as ∞→N   (22c) 
Using these observations, consistent estimators are 
constructed and presented in the following proposition. 
 
Proposition 3.2. Let the system described by (5a-b) and (8)-
(9) be successively excited with the two input signals defined 
by (17a-b). Let x1(t), x2(t) denote the resulting displacements 
and )t(x1 , )t(x2  be their estimates obtained applying (12). 
Consider the following estimators for the parameters kx and 
a: 

 
)N(x)N(x

U)N(k̂
min1min2

x −
=  (23) 

 )N(k̂)N(K̂)N(â x−=   (24) 
 

Then, one has: 
 xx k)N(k̂ →  and a)N(â →  w.p.1 as ∞→N   � 
Proof. The proof is omitted due to the limitation of the length 
of the paper.  
 
Estimator for v(t).  
If the derivatives )t(x&  and )t(x&& were measurable, then a 
consistent estimator of v(t) could readily be obtained from 
(5a), (6) and (10a). Specifically, the obtained estimator would 
be: 
 

)t(x)N(k̂)t(x)(f̂)t(x)(m̂)t(u),N,t(v̂ x−−−= &&& εεε    (25) 
 
However, accurate sensors of the displacement derivatives 
are generally not available in practice. Furthermore, it is 
generally not possible to design accurate estimators for 
arbitrary signals derivatives. Nevertheless, we will show that 
this is presently possible, thanks to the (steady-state) T-
periodicity of the involved signals. Indeed, as x(t) is periodic 
(in steady-state) with period ωπ /2T = , it can be developed 
in Fourier series: 

   ∑
∞

=

−+=
1h

hh0 )thcos(Xx)t(x ϕω   (26) 

 
The derivatives )t(x&  and )t(x&&  are in turn given the 
following Fourier expansions: 

  ∑
∞

=

−−=
1h

hh )thsin(Xh)t(x ϕωω&     (27a) 

  
1h

∑
∞

=

−−= )thcos(X)h()t(x hh
2 ϕωω&&  (27b) 

 
The above expressions show that if the Fourier coefficients 

hX  of x(t) were available, then it would be possible to obtain 
the derivatives )t(x&  and )t(x&& . The point is that the 
measurements )t(xd  of x(t) are noisy. Nevertheless, we do 
have a consistent estimator of x(t), namely )N,t(x . Then, 
instead of (26) we consider the Fourier series of )t(x : 
 

 ( )  ∑
∞

=

−+=
1h

hh0 )N(thcos)N(X)N(x)N,t(x ϕω  (28) 

Then, deriving twice (28) and truncating the obtained 
developments, one gets the following estimators for )t(x& and 

)t(x&& : 

    ( )  ∑
=

−−=
M

1h
hh )N(thsin)N(Xh)M,N,t(x ϕωω&  (29a) 

   ( )  ∑
=

−−=
M

1h
hh

2 )N(thcos)N(X)h()M,N,t(x ϕωω&&  (29b) 

 
where M is any positive integer. Given the above estimates of 

)t(x& and )t(x&& , equation (25) suggests the following 
estimator of v(t): 
 

)M,N,t(x)(m̂)t(u),M,N,t(v̂ && εε −=    

    )N,t(x)N(k̂)M,N,t(x)(f̂ x−− &ε  (30) 
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Proposition 3.3. The estimators (29a-b) and (30) have the 
following properties: 
1) (25a-b) are consistent, i.e. 
a) )t(x)M,N,t(x && →    (w.p. 1)    as N, M → ∞ 
b) )t(x)M,N,t(x &&&& →   (w.p. 1)    as N, M → ∞ 
2) (30) is consistent up to an error that depends on ε, the 
threshold introduced in the procedure SSO. More precisely, 
we have: 
 )()t(v)M,N,t(v̂ εΟ→−  (w.p. 1) as N, M → ∞  
where 0)( →εΟ   if 0→ε  � 
 
Proof.  The proof is omitted due to the limitation of the 
length of the paper.  
 
Remark 3.2. The results of Proposition 3.3 suggest that the 
integers N and M should be sufficiently large. The larger are 
these integers the batter the quality of the estimates. As long 
as M is concerned, equations (23a-b) show that a convenient 
choice is one such that: 1h

2 XXh <<  for all Mh > . 
 

 3.6  Step 3: Estimation of the remaining parameters 

Though the signal v(t) is accurately estimated, the estimation 
of the remaining parameters in (9) (namely b, c and n) is not 
that easy. One key idea to overcome these difficulties is to 
notice that equation (9) considerably simplifies in each 
quadrant of the plane ( ))t(x),t(v & . More specifically, it 
follows from (9) that: 
 
if 0)t(v,0)t(x >>& , [ ] )t(x)t(v)cb(a)t(v n && −−=   (31a) 

if 0)t(v0)t(x <>  ,& , [ ] )t(x)t(v)cb(a)t(v n
&& ++=    (31b) 

if 0)t(v,0)t(x <<& , [ ] )t(x)t(v)cb(a)t(v n
&& +−+=  (31c) 

if 0)t(v,0)t(x ><& , [ ] )t(x)t(v)cb(a)t(v n && ++=       (31d) 
 
These equations are completed with (10a-b).  It follows from 
(31a) that: 

  n)t(v)bc(a
)t(x
)t(v

−=−
&

&
        (32) 

 
On the other hand, one gets from (10) that: 

  n
w

1n
w k

a
k

bc −=−=− −

ρ <0 

Then, taking logarithms of both sides of (32), yields: 
( ) ( ))t(vlogn)cblog(a)t(log +−=+−ϑ  (33a) 

)t(x
)t(v)t(

def

&

&
=ϑ     (33b) 

Equation (33a) is quite interesting because: i) the unknown 
parameters n and )cblog( −  come in linearly, ii) accurate 
estimates are available for the involved signals, namely 

( )alog +−ϑ  and )vlog( . Therefore, the unknown 
parameters can be recovered applying the least-squares 
estimator to the equation: 

 
( ))N(â),L,M,N,t(ˆlog +− εϑ  

      ( )),M,N,t(v̂logn)cblog( ε+−=    (34a) 
where:  

 ( )
)M,N,t(x

),L,M,N,t(v̂,L,M,N,tˆ
&

& εεϑ =        (34b)

    
where ),L,M,N,t(v̂ ε&  denotes a consistent estimator (up to 

an error )(εΟ ) of the derivative )t(v& . ),L,M,N,t(v̂ ε&  is 
constructed making use of the fact that v(t) is T-periodic (in 
steady-state) and ),M,N,t(v̂ ε  is a consistent estimator (up 
to )(εΟ ). This construction is based on the Fourier series 
expansion of ),M,N,t(v̂ ε up on order L, just as this was 
done to get the estimators )M,N,t(x&  and )M,N,t(x&&  (see 
(29a-b)) making use of the T-periodicity of x(t) and the fact 
that )N,t(x  is a consistent estimator. 
The least-squares estimator should be run on every time 

  0)M,N,t(x >& and 0),M,N,t(v̂ >ε . Doing so, one gets 
consistent estimates of )cb( −  and n.  
Similarly, considering the case where   0)t(x >& and 

0)t(v < , it follows from (31b) and (10a-b) that: 
 

n)t(v)bc(a
)t(x
)t(v

+=−
&

&
      (35a) 

  0
k

)12(bc 1n
w

≥
−

=+ −

σρ (because 2/1≥σ ) (35b) 

 
These imply: 
 

( ) ))t(vlog(n)cblog(a)t(log ++=−ϑ   (36) 
 
There too, the unknown parameters, )cblog( +  and n, come 
in linearly and consistent estimators are available for the 
involved signals i.e. )t(ϑ  and v(t). Then, the unknown 
parameters can be recovered applying the least-squares 
estimator to the equation: 
 

( ))N(â),L,M,N,t(ˆlog −εϑ  
       ( )),M,N,t(v̂logn)cblog( ε++=   (37) 
The present least-squares estimator is run on every time 

  0)M,N,t(x >& and 0),M,N,t(v̂ <ε . The consistent 
estimate thus obtained for )cb( +  is combined with that 
obtained previously for )cb( −  to get consistent estimates 
for b and c.  
 

4. EVALUATION OF THE IDENTIFICATION SCHEME 

 
To illustrate the efficiency of the proposed identification 
scheme, we consider a system described by (5a-b)-(6)-(7) 
where the parameters take the following values: 
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7.0σ;2kk7f;3; m7.2n;6 wx =======   ;  ρ  
So the parameters to identified, according the new  re-
parameterisation (8), are from (10), (18b) and (31c): 

14K;  554.0c; 292.1b;12a =−===      
The disturbance is a sequence of uniformly distributed 
random numbers over the interval [ ]04.004.0− . 
First step: we proceed with two experiments using the 
followings input signals: 
 )20/tsin(4.0)t(u1 π= and )10/tsin(5.0)t(u2 π=  
The obtained estimates of the parameters are regrouped in 
table 1. 

Table1 Estimation of parameters m, f, K 
Estimates for  m=3 f=7 K=14 
N=50 3.534 7.201 14.075 
N=200 3.070 7.184 14.009 

 
Second step: we proceed with two experiments that using the 
followings input signals: 

)10/tsin(2)t(u1 π=  and 1)10/tsin(2)t(u2 += π  
The corresponding undisturbed outputs )N,t(x1  , )N,t(x2  
are constructed with N=200. Using (23) one has: 
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= and 009.122-009.14k̂K̂â x ==−=  

Third step: In this step the system is excited by the following 
input signal: 
  )10/tsin(2)t(u3 π=  
Then in steady state,  for  N=800, M=8, L=8 and 05.0=ε , 
one computes successively )N,t(x , )M,N,t(x& , 

)M,N,t(x&& , ),M,N,t(v̂ ε  )L,,M,N,t(v̂ ε&  and 

),L,M,N,t(ˆ εϑ  using respectively (12), (25a-b), and (30), 
(34b). By running the least-squares estimator to the equation 
(34), one gets : 
 652.2n̂ =  and 877.1ĉb̂ =−   (38) 
In the same way, by running the least-squares estimator to the 
equation (37), one gets: 
 860.2n̂ =  and 662.0ĉb̂ =+   (39) 
Combining (38) and (39), one gets: 

75.22/)652.286.2(n̂ =+= , 269.1b̂ = , 607.0ĉ =  (40) 

From (11) one gets : 963.1k̂w = ; 112.6ρ̂ = ; 675.0σ̂ = . 
The obtained estimates are close to their true values, despite 
the presence of disturbances. In the figure 1 we have plotted 
the limit cycle ( ))t(),t(x BWd Φ (Black) obtained from the true 
model, and the estimated limit cycle ( ))t(),t(x BWd Φ  (White) 
obtained from the estimated model. It is important to notice 
the level of disturbances. 
 

5. CONCLUSIONS 

 
We have considered the problem of identifying systems 
whose dynamic behaviour involves a hysteretic feature. Such 
a feature has been accounted for using the well known Bouc-
Wen equations. This model (5)-(7) involves internal signals 
that are not necessarily accessible to measurements (e.g. 

ΦBW(t), v(t), (t)x ),t(x &&& ). Moreover, the displacement x(t) 
stands as an internal signal and, consequently, cannot be 
considered as the system control input. The identification 
scheme we have designed operates in three main steps. The 
involved estimators are generally shown to be consistent. 
Compared to the existing works, our solution does not 
suppose that the internal signals (ΦBW(t), v(t), (t)x ),t(x &&& ) are 
available, the parameter n is known or is an integer. 
Moreover, the system actual control input is let be what it 
really is in practice i.e. the driving force u(t). Finally, the 
proposed solution requires simple experiments as these only 
involve sine input signals.  
 

 
Fig. 1. Limit cycle  ( ))t(),t(x BWd Φ  for the true model (back) 
and for the estimated model (white) 
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