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Abstract: The management of dynamic workflows needs adequate formal models and support
tools to handle in a safe way changes occurring during workflow operation. A common approach
is to pollute models with details that do not regard the workflow behavior, rather its evolution.
That hampers analysis, reuse and maintenance in general.
We propose and discuss the adoption of a recent Petri net-based reflective model to support
dynamic workflow design, by addressing a localized open problem: how to determine what tasks
should be redone and which ones do not when transferring a workflow instance from an old to a
new template. The idea behind is that keeping functional aspects separated from evolutionary
ones, applying evolution to a workflow template only when necessary, results in a clean reference
model of dynamic workflows on which the ability of verifying major workflow properties favors
a dependable evolution.

1. INTRODUCTION

Business processes are frequently subject to change due to
two main reasons (van der Aalst and Jablonski [2000]): i)
at design time the workflow specification is incomplete due
to lack of knowledge, ii) errors or exceptional situations
can occur during the workflow execution; these are usually
tackled on by deviating from the static schema, and
may cause breakdowns, reduced quality of services, and
inconsistencies.

Most of existing Workflow Management Systems -WMS in
the sequel (e.g., IBM Domino, iPlanet, Fujisu iFlow, Team-
Center) are designed to cope with static processes. The
commonly adopted policy is that, once process changes
occur, new workflow templates are defined and workflow
instances are initiated accordingly from scratch. This over-
simplified approach forces tasks that were completed on
the old instance to be executed again, also when not
necessary. If the workflow is complex and/or involves a
lot of external collaborators, a substantial business cost
will be incurred.

Dynamic workflow management might be brought in as a
solution. Formal techniques and analysis tools can support
the development of WMS able to handle undesired results
introduced by dynamic change.

In the research on dynamic workflows, the prevalent opin-
ion is that models should be based on a formal theory
and be as simple as possible. In Agostini and De Michelis
[2000] process templates are provided as ’resources for
action’ rather than strict blueprints of work practices.
May be the most famous dynamic workflow formalization,
the ADEPTflex system (Reichert and Dadam [1998]), is
designed to support dynamic change at runtime, making
at our disposal a complete and minimal set of change oper-
ations. The correctness properties defined by ADEPTflex

are used to determine whether a specific change can be
applied to a given workflow instance or not.

Most of workflow modeling techniques are based on Petri
Nets (PN) (Salimifard and Wright [2001]), due to PN’s
description efficacy, formal essence, and the availability
of consolidated PN-based analysis techniques. Classical
PN have a fixed topology, so they are well suited to
model workflow matching a static paradigm. Conversely,
concerns relating to dynamism/evolution must be hard-
wired in classical PN and bypassed when not in use. That
requires some expertise in PN modeling, and might result
in incorrect or partial descriptions of workflow behavior.
Even worst, analysis would be polluted by a great deal of
details concerning evolution.

Separating evolution from (current) system behavior is
worthwhile. This concept has been recently applied to
a PN-based context (Capra and Cazzola [2005]), using
reflection (Maes [1987]) as mechanisms that easily permits
separation of concerns. A basic reflective model layered in
two causally connected levels (base-, and meta-) is used.

With respect to several dynamic PN extensions recently
appeared (Cabac et al. [2005], Hoffmann et al. [2005], and
as concerns specifically the workflow field Badouel and
Oliver [1998], Ellis and Keddara [2000], Hicheur et al.
[2006]) reflective Petri nets (Capra and Cazzola [2005])
are not a new PN class, rather they rely upon classical
PN. That gives the possibility of using available tools and
consolidated analysis techniques.

We propose reflective PN as formal model supporting
the design of sound dynamic workflows. A structural
characterization of sound dynamic workflows is adopted,
based on PN’s free-choiceness preservation. The approach
is applied to a localized open problem: how to determine
what tasks should be redone and which ones do not
when transferring a workflow instance from an old to

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3598 10.3182/20080706-5-KR-1001.2576



guards checking

begin strategies

strategies

Reflective Framework

Shift Up Action

Base Level Petri Net

Evolutionary Meta-Program

Evolutionary Interface

Base-Level Reification

newP
delP newT

ext_ev2 start up ext_ev1

true

shift-down

Fig. 1. Snapshot of the reflective model: the base-level prone to be adapted, the meta-level driving the adaptation.

a new template. The problem is efficiently but rather
empirically addressed in Qiu and Wong [2007], according
to a template-based schema relying on the concept of
bypassable task. Conforming to the same concept we
propose an alternative, that allows evolutionary steps to
be soundly formalized, and basic workflow properties to
be efficiently verified.

As it is widely agreed (Agostini and De Michelis [2000]),
the workflow model is kept as simple as possible. Our
approach has some resemblance also with Reichert and
Dadam [1998], sharing the completeness/minimality cri-
teria, even if it considerably differs in management of
changes: it neither provides exception handling nor undo-
ing mechanism of temporary changes, rather it relies upon
a sort of “on-the-fly” validation.

The balance of the paper is as follows: in section 2 we out-
line the PN-based reflective model, and the adopted ter-
minology; in section 3 we state some basic notions around
PN and workflows; in section 4 we sketch the template-
based dynamic workflow approach (Qiu and Wong [2007])
that we are comparing to; in section 5 we present our
alternative based on reflective PN, using the same example
as in Qiu and Wong [2007]; last we draw some conclusions
and perspectives.

2. THE REFLECTIVE PN MODEL

The reflective Petri net model (Capra and Cazzola [2005])
permits designers to formalize a discrete-event system
and separately its possible evolutions, and to dynamically
adapt the system model when evolution is necessary.

The approach is based on a reflective architecture (Fig. 1)
structured in two logical layers. The base-level is an
ordinary Petri net (Reisig [1991]) modeling a system

prone to evolve (in this context a workflow), called base-
level PN ; whereas the second layer is the meta-level, or
meta-program following the reflection parlance, a high-
level PN (Jensen and Rozenberg [1991]) composed by the
evolutionary strategies that will drive the evolution of the
base-level PN when certain events occur.

The reflective framework, realized by a high-level PN as
well, is responsible for carrying out the evolution of the
base-level PN at the meta-level. Meta-level computations
in fact operate on a representative of the lower-level,
called reification. The base-level PN reification is defined
as a marking of the reflective framework, and is updated
every time the base level Petri net enters a new state.
The reification is used by the meta-program to observe
(introspection) and manipulate (intercession) the base-
level PN. After a meta-computation any change made to
the reification is reflected to the base-level (shift-down),
thanks to the one-to-one correspondence which is set
between these entities.

According to the reflective paradigm, the base-level PN
runs irrespective of the meta-program, being not aware of
the existence of a meta-level. The meta-level is implicitly
activated (shift-up), then a suitable strategy is put into
action, i) either when the base-level PN model reaches
a given configuration, or ii) when triggered by an exter-
nal/unpredictable event. Each strategy locally acts on a
precomputed influence area, a base-level region which is
temporarily frozen for the sake of consistency while the
strategy is being executed.

Intercession on the base-level PN is carried out in terms
of a minimal but complete set of low-level transforma-
tions (the evolutionary interface), taking effect both on
base-level’s structure and current state (marking). The
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evolutionary strategy specifies arbitrary transformation
patterns. To make it easier the strategy design, meta-
programmers have been provided with a simple meta-
language whose syntax is inspired by Hoare’s CSP (Hoare
[1985]), enriched with a few ad-hoc constructs for manipu-
lation of nets. A strategy can be automatically translated
into a high-level PN, that in turn interacts to the evolu-
tionary framework.

Evolutionary strategies are transactions: either they suc-
ceed, or leave the base-level unchanged. Several strategies
could be candidate for execution at a given instant: differ-
ent policies, ranging from full non-determinism to static
priorities, could be adopted to select one.

The whole reflective PN structure, as well as the interac-
tion between base- and meta-level and between meta-level
entities, have been fully defined in (Capra and Cazzola
[2005]). Let us outline the essential aspects:

— the reflective framework structure is fixed, while the
evolutionary strategies are coupled to the base-level,
so they vary from time to time;

— the reflective framework and the meta-program share
the base-level reification and the evolutionary inter-
face;

— the meta-program manipulates the base-level PN
reification; the evolutionary interface records the
transformation commands issued by the evolutionary
strategies to the reflective framework (that operates
them);

— the base-level reification data sets are like formal
parameters, that are bound from time to time to
a given base-level PN; reification’s initial marking
corresponds to the initial base-level configuration.

The fixed part of the reflective architecture is responsible
for the reflective behavior, hiding the work of the evo-
lutionary component to the base-level PN: that permits
a clean separation between the models of evolution and
evolving system, and avoids the base-level PN being pol-
luted by details related to evolution.

3. WORKFLOW PETRI NETS

This section introduces terminology and notations for the
base-level Petri net class used in the sequel. Basic concepts
and properties related to workflow modeling are also given.
We refer to Reisig [1991], van der Aalst [1996] for more
elaborate introductions.
Definition 1. (Petri net) A Petri net is a triple (P ;T ;F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅;),
- F ⊆ (P × T )∪ (T ×P ) is a set of arcs (flow relation)

Symbols •n, n• denote the pre/post sets of n ∈ P ∪ T ,
respectively. The extensions •A,A•, A ⊆ P ∪T will be also
used. In the workflow context it makes no sense to have
weighted arcs, because places correspond to conditions. A
marking (state) M is a distribution of tokens over places,
M ∈ Bag(P ).

Transitions change the state of the net according to the
following firing rule:

-A transition t is said to be enabled in M if and only if
each place p ∈ •t contains at least one token.

-An enabled transition t may fire, consuming one token
from each p ∈ •t and producing one token for each p ∈ t•.

Given PN = (P ;T ;F ) and marking Mi, we have the
following notations:

M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads

from M1 to Mn via M2, . . . ,Mn−1.

Mn is reachable from M1 if and only if ∃σ, M1
σ→ Mn.

(PN ;M0) denotes a Petri net with an initial state M0.
Given (PN ;M0), M ′ is said reachable if and only if it is
reachable from M0.

Let us define a few standard properties for Petri nets. First,
we define properties related to the dynamics of a Petri net,
then we give some structural properties.

(Live). (PN ;M0) is live if and only if, for every reachable
state M ′ and every transition t there exists M ′′ reachable
from M ′ which enables t.

(Bounded, safe). (PN ;M0) is bounded if and only if for
each place p there exists n ∈ N such that for every
reachable state M , M(p) ≤ n. A bounded net is safe if
and only if n = 1. A marking of a safe PN is denoted by a
set of places.

(Path). A path C from a node n1 to a node nk of PN
is a sequence n1, n2, . . . , nk such that (ni, ni+1) ∈ F ,
1 ≤ i ≤ k − 1.

(Conflict). t1 and t2 are in conflict if and only if
•t1 ∩ •t2 6= ∅.
(Free-choice). PN is free-choice if and only if, for every
pair of transitions t1 and t2, •t1 ∩ •t2 6= ∅ ⇒ •t1 = •t2.

(Causal connection - CC). transition t1 is causally con-
nected to t2 if and only if (t1• \ •t1) ∩ •t2 6= ∅.

3.1 Sound Workflow-nets and Free-Choiceness

A Petri net can be used to specify the control flow of a
workflow. Tasks are modeled by transitions and causal
dependencies by places and arcs. A place corresponds to a
task pre/post-condition.
Definition 2. (Workflow-net). A Petri net PN = (P ;T ;F )
is a Workflow-net (hereafter WF-net) if and only if:

¶ There is one source place i such that •i = ∅.
· There is one sink place o such that o• = ∅.
¸ Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has exactly one input place (i) and one output
place (o), because a WF-net specifies the life-cycle of a
case. The third requirement in definition 2 avoids dangling
tasks and/or conditions, i.e., tasks and conditions which
do not contribute to the processing of cases.

If we add to a WF-net PN a transition t∗ such that •t∗ = o
and t∗• = i, then the resulting Petri net PN (called the
short-circuited net of PN) is strongly connected.
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The requirements stated in definition 2 only relate to
the structure of the Petri net. However, there is another
requirement that should be satisfied:
Definition 3. (soundness) A procedure modeled by a WF-
net PN = (P ;T ;F ) is sound if and only if:

¶ For every state M reachable from state {i}, there
exists σ, M

σ→ {o}
· {o} is the only state reachable from {i} with at least

one token in place o.
¸ There are no dead transitions in (PN ;{i}): ∀t ∈ T ,

there exists M reachable from {i}, M
t→ M ′

In other words, for any case the procedure will terminate
eventually (in the context of workflow we reasonably
assume a strong notion of fairness) and the moment the
procedure terminates there is a token in place o and all
the other places are empty. That is sometimes referred
to as proper termination. Moreover, it should be possible
to execute any tasks by following the appropriate route
though the WF-net.

The soundness property relates to the dynamics of a
WF-net, and may be considered as a basic requirement
for a process. A WF-net PN is sound if and only if
(PN ; {i}) is live and bounded (van der Aalst [1996]).
Despite that useful characterization, it may be intractable
to decide soundness for arbitrary WF-nets: liveness and
boundedness are decidable, but also EXPSPACE-hard.

Therefore some structural characterizations of sound WF-
nets were investigated (van der Aalst [1996]). Free-Choice
(FC) Petri nets seem a good compromise between expres-
sive power and ’analyzability’. They are the largest class of
Petri nets for which strong theoretical results and efficient
analysis techniques exist (Desel and Esparza [1995]). In
particular (van der Aalst [1996]), soundness of a FC WF-
net (as well as many other problems) can be decided in
polynomial time. Moreover, a sound FC WF-net (PN ; {i})
is guaranteed to be safe, according to the interpretation of
places as conditions.

Another good reason for restricting to FC WF-nets is that
the routing of a case should be independent of the order
in which tasks are executed. If non-FC Petri nets were
admitted, then the solution of conflicts could be influenced
by the order in which tasks are executed. In literature
the term confusion is often used to refer to a situation
where the FC property is violated by a badly mixture of
parallelism and choice.

Free-choiceness is a desirable property for workflow. If a
process can be modeled as FC WF-net, one should do so.
Most of existing WMS support FC processes only. We will
admit as base-level Petri nets FC WF-nets.

Although FC WF-nets are a satisfactory characteri-
zation of well-structured workflows, there are non-FC
WF-nets which correspond to sensible processes. S-
coverability (van der Aalst [1996]) is a generalization of
FC property: a sound FC WF-net is S-coverable. Unfortu-
nately, it is impossible to verify soundness of an arbitrary
S-coverable WF-net in polynomial time, this problem be-
ing PSPACE-complete.

4. A TEMPLATE-BASED DYNAMIC APPROACH

An interesting solution to facilitate efficient dynamic work-
flow change is proposed in Qiu and Wong [2007]. WMS
supporting dynamic workflow change can either directly
modify the affected instance, or restart it on a new
workflow template. The first method is instance based
while the second is template based. The approach we
are describing, according to a consolidated practice, falls
in the second category, and is implemented in Dassault
Systèmes’s SmarTeam, a PLM (Product Lifecycle Manage-
ment) system including a WMS module. The idea consists
of identifying all bypassable nodes, i.e., all nodes in the new
workflow instance that satisfy the following conditions:
i) they are unchanged, ii) they have finished in the old
workflow instance, and iii) they need not be re-executed.

Two nodes (transitions in PN) are identical, before and af-
ter change, if and only if they represent the same task and
preserve input/output connections. We hereafter assume
that two nodes represent the same task if and only if they
preserve name. To determine if a node/task is bypassable
when the instance is transferred to a new template, an
additional constraint is needed: all nodes from which there
is a path to the node itself, must be bypassable themselves.
A smart algorithm recognizes bypassable nodes: starting
from the start node, bypassable by default, only successors
of bypassable ones are considered.

This solution has been implemented in SmarTeam system,
that includes a workflow manager and a messaging subsys-
tem, but no built-in mechanisms facing dynamic workflow
change. A set of API enables detaching and attaching
operations between processes and workflow templates. A
process is re-executed entirely if its template is changed.
To realize workflow change, a server-application executes
the following steps:

¶ obtain a process instance;
· obtain the old and new workflow templates;
¸ attach the new workflow template to the process;
¹ identify and mark the nodes that can be bypassed in

the new workflow instance;
º initiate the new workflow without re-executing the

marked nodes.

What appears unspecified in Qiu and Wong [2007] is how
to safely operate steps ¹ and º: some heuristics are
implemented, rather than a well defined methodology. No
formal test is carried out to check the soundness of a
workflow instance running on the modified template.

5. AN ALTERNATIVE BASED ON REFLECTIVE PN

Our alternative to Qiu and Wong [2007] is based on reflec-
tive PN. It allows a formalization of evolutionary steps, as
well as a validation by means of PN structural analysis of
changes proposed for the workflow templates. Validation is
accomplished “on-the-fly”, i.e., on the workflow reification
while change is in progress. In particular, free-choiceness
preservation is guaranteed. Changes are not reflected to
the base-level in case of a negative check.

We consider the same application case presented in Qiu
and Wong [2007]. A company has several regional branches.
To enhance operation consistence, the company head-
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Fig. 2. A basic template and its possible evolution.

quarter (HQ) standardizes its business processes in all
branches. A workflow template is defined to handle cus-
tomer problems. When the staff in a branch encounters a
problem, a workflow instance is initiated from the template
and executed until completion.

The PN specification of the initial template is given in
Fig. 2(a). A problem goes through two stages: problem
solving and on-site realization. Problem solving involves
several tasks, included in a dashed box. When opening
a case, the staff in the branch reports the case to the
HQ. When closing the case, the staff archives the related
documents. The HQ manages all instances related to the
problem handling process.

In response to business needs, the HQ may decide to
change the problem handling template. The new template
(Fig. 2(b)) differs from the original one in two points: a)
“reporting” and “problem solving” become independent;
b) “on site realization” can fail, in that case “problem
solving” procedure restarts.

At Petri net level, we can observe that transition Report is
causally-connected to ProductChange in Fig. 2(a), while is
not in Fig. 2(b), and that a new transition has been added
in Fig. 2(b) (RealizationRejected, which is in free-choice
conflict with OnSiteRealization).

When using reflective PN, the evolutionary schema is
completely different. The new workflow template is not
passed as input to the staff of the company branches,
but it results from applying an evolutionary strategy to
a workflow instance belonging to the current template.
The initial base-level PN is assumed a free-choice WF-
net. No details related to the workflow dynamics are hard-
wired in the base-level net. Evolution is delegated to the
meta-program, that acts on the WF-net reification. The
meta-program is activated when an evolutionary signal
is sent in by HQ, or some anomaly (e.g., a deadlock)
is revealed by introspection. Introspection is also used
to discriminate whether evolutionary commands can be
safely applied to the current workflow instance, or they
have to be discarded.
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Fig. 2 depicts the following situation: a workflow instance
running on the initial template (Fig. 2(a)) has received
a message from HQ. At the current state “solution de-
sign” (a sub-task of “problem solving”) and “report” are
pending, whereas a number of tasks (e.g., “analysis” and
“case opening”) have finished. The meta-program in that
case successfully operates a change on the old template’s
instance, once verified that all paths to any pending tasks
are composed by bypassable tasks only. The workflow
instance transferred to the new template is illustrated in
Fig. 2(b)). One might think of this approach as instance-
based, rather than template-based. In truth it covers both:
if the evolutionary commands are broadcasted to workflow
instances we fall in the latter scheme.

The evolutionary strategy relies upon the definition of ad-
jacency preserving node, more general than the unchanged
node notion used in Qiu and Wong [2007]. It is inspired
by van der Aalst’s general concept that a workflow change
must preserve the inheritance relationship between old and
new templates (van der Aalst and Basten [2002]).

Let us introduce some notations. Symbols x,x will be
used to denote the same node before and after change,
respectively: x belongs to a WF-net PN , x belongs to
the net PN ′ resulting from change. NEW P , DEL P ,
NEW T , DEL T , and NEW A, DEL A, denote the base
level places/transitions/arcs to be added and removed,
respectively; DEL N = DEL P ∪ DEL T , NEW N =
NEW P ∪ NEW T . Nodes/arcs before change are de-
noted by OLD N , OLD A. Finally, NO ADJ , NO BY PS
denote the set of nodes not preserving adjacency and non-
bypassable, respectively (NO ADJ ⊆ NO BY PS).
Definition 4. (adjacency preserving transition)

Let At = •(•t ∪ t•)∪ (•t ∪ t•)•. t is adjacency preserving if
and only if At ∩OLD N = At and there exist a bijection
ϕ : •t ∪ t• → •t ∪ t• such that ∀x ∈ At∀y ∈ •t ∪ t•,
y ∈ •x ⇔ ϕ(y) ∈ •x and y ∈ x• ⇔ ϕ(y) ∈ x•

If t is adjacency preserving then all its causality/conflict
relationships to adjacent tasks are maintained. A case
where Def. 4 holds, and another one where it does not, are
illustrated in Fig. 3 (the black bar denotes a new task).

Checking definition 4 is computationally expensive. How-
ever, if useless changes are forbidden, e.g., “deleting a

given place p, then adding p′ inheriting p’s connections”,
or “adding an arc 〈p, t〉, then deleting p or t”, then check’s
complexity is greatly reduced. Lemma 5 states some rules
for identifying a superset Na of nodes not preserving ad-
jacency that can be easily translated to an efficient meta-
routine. In most practical cases Na = NO ADJ .
Lemma 5. Consider set Na, built as follows

p ∈ DEL P ⇒ •p ∪ p• ⊆ Na

t ∈ DEL T ⇒ •(•t) ∪ (t•)• ⊆ Na

〈p, t〉 ∈ DEL A ∨ 〈t, p〉 ∈ DEL A ⇒ •p ∪ p• ⊆ Na

〈p, t〉 ∈ NEW A ∧ t ∈ OLD N ⇒ {t} ∪A ⊆ Na,

where A = •p ∪ p• if p ∈ OLD N , else A = ∅.
Then NO ADJ ⊆ Na

The evolutionary meta-program corresponds to the CSP-
like code in listing 1. The meta-program is activated at
any transition of state on the current workflow instance
(shift-up), reacting to three different types of events. In
the case of deadlock, a signal is sent to HQ, represented
by a CSP process identifier. If the current instance has
finished, and a “new instance” message is received, the
workflow is activated. Instead if there is an incoming
evolutionary message from HQ, the evolutionary strategy
starts running.

Just after an evolutionary signal, HQ communicates the
workflow nodes/connections to be removed/added. For the
sake of simplicity we assume that change can only involve
workflow topology. The (super)set of non-bypassable nodes
is then computed.

After operating the evolutionary commands on the current
workflow reification, definition 2 and free-choiceness are
checked out on the newly changed reification. Following,
the strategy checks by reification introspection whether
the suggested workflow change might cause a deadlock,
or there might be any non-bypassable tasks causally-
connected to an old task which is currently pending.
In either case, a restart procedure takes the workflow
reification back to the state before strategy’s activation.
Otherwise, change is reflected to the base-level (shift-
down). The scheme just described might be adopted for
a wide class of evolutionary patterns.
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∗ [
VAR p , t , n : NODE;
VAR NEW P,NEW T,OLD N,DEL N,

NO BYPS : SET(NODE) ;
VAR NEW A,DEL A: SET(ARC) ;
HQ ? change−msg ( ) → [

// r e c e i v i n g e vo l u t i ona ry commands
HQ ? NEW P; HQ ? NEW T; HQ ? NEW A;
HQ ? DEL A; HQ ? DEL N;
// computing WF−net r e i f i c a t i o n
OLD N = ReifiedNodes ( ) ;
// computing non−bypa s sab l e t a s k s
NO BYPS = ccTo(notAdjPres ( ) ) ;
// changing r e i f i c a t i o n
newNode(NEW P+NEW T) ; newArc(NEW A) ;
deleteArc (DEL A) ; delNode(DEL N) ;
// check ing WF−net we l l−formedness
checkWfNet ( ) ; checkFc ( ) ;
/∗ t h e r e cou ld be a deadlock , or

a non−bypa s sab l e t a s k i s c a u s a l l y
connected to a pending one . . . ∗/

! exists t in Tran , enab( t ) or
( exists t in Tran ∗ OLD N, enab( t )
and ! isEmpty(ccBy( t )∗ NO BYPS) )
→ [ restart ( ) ] // doing no change

shiftDown ( ) // r e f l e c t i n g change
]

2

#end=0 and ! exists t in Tran ,
enab( t )
→ [HQ ! not i f y−deadlock ( ) ]

2

#end=1; HQ ? newInstance−msg ( )
→ [ flush ( end ) ; incMark( begin ) ]

]

Listing 1. workflow evolutionary strategy

[
VAR t , p , t1 : NODE;
VAR FC : SET(NODE) ;
∗(〈 p , t〉 in NEW A + DEL A)

[
exists (p) and exists ( t ) → [
∗( t1 in post (p) \ FC) [
t1 <> t and pre ( t ) <> pre ( t1 )

→ [ restart ( ) ]
FC = FC + post (p) ]
]

]
]

Listing 2. piece of code checking free-choiceness

Language built-ins and routine calls are in bold. The
NODE type represents a (logically unbounded) recipient
of base-level nodes, and is partitioned into PLACE and
TRAN subtypes . A particular version of CSP repeti-
tive command is used: letting set E be finite, *(e in
E)[ command ] makes command to be executed iteratively
for each e ∈ E. Note the overloading of operator ’*’,
which is used also to denote the set intersection. The

exists quantifier is used to check whether a net ele-
ment is currently reified. The built-in routine ReifNodes
computes the nodes belonging to the current base-level
reification. The routine notAdjPres initializes the set of
non-bypassable nodes, according to lemma 5. The routines
ccTo and ccBy compute the set of nodes that routine’s
argument is causally connected to, and that are causally
connected to routine’s argument, respectively. Listing 2
expands the routine checking preservation of base-level’s
free-choiceness (checkFc). Let us explain how the strategy
works considering again Fig. 2. After receiving evolution-
ary commands:

-NEW_PLACE={};DEL_NODE={}

-NEW_TRAN={RealizationRejected};

-DEL_ARC=〈p13, ProductChange〉};
-NEW_ARC={〈p6, RealizationRejected〉,
〈p13, Archiving〉, 〈RealizationRejected, p5〉}.

The non-bypassable tasks come to be: Report, Archiving,
ProductChange, OnSiteRealization, CaseClosure. In
the new workflow tasks Report and ProductChange are
pending (enabled) in the current marking M : {p11, p14}
of the net (PN ′) in Fig. 2(b). All old completed tasks that
are causally connected to one of them can be bypassed,
so the new workflow has not to be restarted from scratch,
saving a lot of work.

The approach just described ensures a dependable evo-
lution of workflows, while being enough flexible. We do
not intend to propose a general solution to the problem
addressed in Qiu and Wong [2007]. Better policies do prob-
ably exist. Rather, we aim at showing that the approach
merging consolidated reflection concepts to classical PN
techniques can suitably address the criticisms of dynamic
workflow change.

The base-level PN, which is guaranteed to be a free-choice
WF-net during its evolution, may be analyzed using differ-
ent polynomial techniques. Structural techniques, in par-
ticular, are elegant and very efficient, but in general they
are highly affected by model complexity. The separation
between evolutionary and functional aspects encourages
their usage.

By operating the structural algorithms of GreatSPN
tool (Chiola et al. [1995]), it is possible to discover that
both models in Fig. 2 are covered by place-invariants.
Thereby a lot of interesting properties descend: in partic-
ular boundedness and liveness, i.e., workflow soundness.

5.1 Counter example

Assume that evolution takes place when the only pend-
ing task is OnSiteRealization (i.e., consider as current
marking in Fig. 2(a) M ′ : {p6}), that means, among other,
tasks ProductChange, VersionMerging and Report have
finished: change in that case is discarded after verifying
that there are some non-bypassable tasks causally con-
nected to the only pending one.

If the suggested change were carried out (reflected) with-
out any consistency control, a deadlock would be even-
tually entered (state {p8}) after the process continues
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running on the modified template. The problem is that M ′

is not a reachable state of (PN ′; {begin}), but reachability
is NP-complete in live and safe free-choice Petri nets, so
it would not make sense checking reachability at meta-
program level.

6. CONCLUSION

Covering the intrinsic dynamism of modern processes has
been widely recognized as a challenge by designers of
workflow management systems. PN are a central model of
workflows, but traditionally they have a fixed structure.
We have proposed and discussed the adoption of reflective
PN as a formal model for designing sound dynamic work-
flows. A clean separation between the current behavior
and the evolution of a workflow, and the use of efficient
PN structural techniques, make it possible to check basic
workflow properties while evolution is in progress. As an
application, an algorithm is delivered to soundly transfer-
ring workflow instances from an old to a new template.
Ongoing research is in two directions: i) integrating the
approach into the GreatSPN package, ii) using a high-level
PN class also for the base-level of the reflective model,
to incorporate both resources and data in the process
description.
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